
Characterizing the oscillatory response of the chromosphere during solar flares
Laurel Farris; NMSU Astronomy Department
Quasi-periodic pulsations (QPPs) are observed in the emission of solar flares over a wide range of wavelengths,
particularly in the radio and hard x-ray regimes where non-thermal emission dominates. These pulsations are
considered to be an intrinsic feature of flares, yet the exact mechanism that triggers them remains unclear.
There have been reports of an increase in the oscillatory power at 3-minute periods (the local acoustic
cutoff frequency) in the solar chromosphere associated with flaring events. I propose to investigate the
chromospheric response to flares by inspecting the spatial and temporal onset and evolution of the 3-minute
oscillatory power, along with any QPP patterns that may appear in chromospheric emission. The analysis
will be extended to multiple flares, and will include time before, during, and after the main event. To test
initial methods, the target of interest was the well-studied 2011 February 15 X-class flare. Data from two
instruments on board the Solar Dynamics Observatory (SDO) were used in the preliminary study, including
continuum images from the Helioseismic and Magnetic Imager (HMI) and UV images at 1600 and 1700
Angstroms from the Atmospheric Imaging Assembly (AIA). Later, spectroscopic data from the Interface
Region Imaging Spectrometer (IRIS) will be used to examine velocity patterns in addition to intensity.

The Circumstellar Disks and Binary Companions of Be Stars
Drew Chojnowski, NMSU
Tremendous progress has been made over the past two decades toward understanding Be stars, but a number of key aspects of them remain enigmatic. The unsolved mysteries include identification of the mechanism responsible for disk formation, the reason this mechanism occasionally turns off or on unexpectedly, the source of viscosity in the circumstellar disks, and the cause of slowly precessing density perturbations in the disks of many or most Be stars. On a deeper level, the origin of Be stars’ near-critical rotation is unknown, with one possible explanation being spin-up due to interaction with a binary companion. A better understanding of these stars is needed, with a particular focus on high-mass binaries being warranted in the age of gravitational wave astronomy. In this dissertation, I will extend the knowledge and understanding of Be stars through a series of three projects. First, I will present and describe the largest ever homogeneous, spectroscopic sample of Be stars to date. I will then focus on investigation of a rare class of Be stars found in binary systems with hot, low mass companions. The second project will present detailed characterization and modeling of HD~55606, a newly discovered member of this class. Finally, I will discuss the results of spectroscopic monitoring of seven newly discovered systems and establish or place limits on the orbital parameters of the binary components.

Metal Absorption in the Circumgalactic Medium During the Epoch of Reionization
Caitlin Doughty, NMSU
The characteristics of metal absorption arising from the circumgalactic medium of galaxies have been demonstrated to be related to conditions in the galaxy which sourced them, as well as to the ambient ultraviolet background. I propose a three- pronged thesis in order to better understand and utilize these relationships. First, I will explore whether the spectral energy distributions of binary stars, incorporated into a custom version of GADGET-3, can explain the discrepancy between observed and simulated absorber statistics. Second, I will study the relationship between neu- tral oxygen absorbers and the neutral hydrogen fraction in simulated quasar sight- lines and relate the results to observations of neutral oxygen at z ≥ 4.0. Third, I will study the relationships between the emissive properties of galaxies, stemming from their nebular gas, and the metal absorbers which they source. Taken as a whole, this thesis will improve the ability of cosmological simulations to reproduce realistic metal absorption, probe the local progress and topology of reionization, and under- stand what emissive galaxy traits we expect at z > 5 based on observations of metal absorbers.

An Observer’s Examination of the Circumgalactic Medium using Cosmological Simulations
Rachel Marra, NMSU
A significant aspect to understanding galaxy evolution is having an understanding of the intricacies involving the inflow and outflow of baryons onto a galaxy. Gas needs to accrete onto the galaxy in order for star formation to occur, while stellar winds, supernovae, and radiation pressure result in the outflow of gas from the galaxy. The diffuse region around the galaxy that has gas from interstellar medium (ISM) inflows and intergalactic medium (IGM) outflows interacting is the circumgalactic medium (CGM). Studying the CGM will help us learn about the baryon cycle and give us a better understanding of galactic evolution.
The primary method to studying the CGM is through absorption, as the density is too low to detect emission. Studying these absorption features allows us to learn about the physical properties of the gas giving rise to the absorption. Other than through observations, cosmological simulations play a large role in how we learn about the CGM of galaxies. Using MOCKSPEC, the Quasar Absorption Line Analysis Pipeline, to create mock quasar sightlines through the VELA simulation suite of galaxies, we use the absorption features seen in the sightlines to study the CGM in the simulations. While there are many ions that are used to study the CGM, we focus on OVI.
We intend to study how effective our methods are for studying the CGM with both observations and simulations. The covering fraction of OVI for a sample of observed galaxies will be compared with the covering fraction that is found from a selection of LOS that probe simulated, Milky-Way type galaxies. This tells us if the simulations can reproduce the observations, and if they do not, we can gain insights as to why the simulations do not match observed data. We will also investigate if the metallicity calculated from an observed absorption feature reflects the actual metallicity of the probed gas by using mock sightlines through simulations. Additionally, we will do a comparison of different methodologies used to study the CGM in simulations, to determine if using mock quasar sightlines is a more realistic and accurate method to compare to observed data.