Colloquium PhD Defense: Jean McKeever
Sep 20 @ 3:00 pm – 4:15 pm
Colloquium PhD Defense: Jean McKeever @ Business College 103

Asteroseismology of Red Giants: The Detailed Modeling of Red Giants in Eclipsing Binary Systems

Jean McKeever, NMSU

Asteroseismology is an invaluable tool that allows one to peer into the inside of a star and know its fundamental stellar properties with relative ease. There has been much exploration of solar-like oscillations within red giants with recent advances in technology, leading to new innovations in observing. The Kepler mission, with its 4-year observations of a single patch of sky, has opened the floodgates on asteroseismic studies. Binary star systems are also an invaluable tool for their ability to provide independent constraints on fundamental stellar parameters such as mass and radius. The asteroseismic scaling laws link observables in the light curves of stars to the physical parameters in the star, providing a unique tool to study large populations of stars quite easily. In this work we present our 4-year radial velocity observing program to provide accurate dynamical masses for 16 red giants in eclipsing binary systems. From this we find that asteroseismology overestimates the mass and radius of red giants by 15% and 5% respectively. We further attempt to model the pulsations of a few of these stars using stellar evolution and oscillation codes. The goal is to determine which masses are correct and if there is a physical cause for the discrepancy in asteroseismic masses. We find there are many challenges to modeling evolved stars such as red giants and we address a few of the major concerns. These systems are some of the best studied systems to date and further exploration of their asteroseismic mysteries is inevitable.


Colloquium: Kyoung-Soo Lee (Host: Moire Prescott)
Oct 13 @ 3:15 pm – 4:15 pm
Colloquium: Kyoung-Soo Lee (Host: Moire Prescott) @ BX102

Colloquium Title

Kyoung-Soo Lee, Purdue University

Abstract text

Colloquium: Benjamin Oppenheimer (Host: Kristian Finlator)
Oct 20 @ 3:15 pm – 4:15 pm
Colloquium: Benjamin Oppenheimer (Host: Kristian Finlator) @ BX102

Breaking the Self-Similarity of Galaxy Formation: A Circumgalactic Medium Perspective

Benjamin Oppenheimer, University of Colorado Boulder

If you could see a dark matter halo directly without knowing the scale, you probably could not distinguish a Milky Way halo from a cluster-sized halo.  However, if you look at the galaxies, you would likely see a dominant spiral galaxy in the former and a many quenched and quenching galaxies in the latter.  The study of galaxy formation aims to understand how very different galaxies form in dark matter halos of different masses.  I will argue for the importance of understanding the gaseous baryons in this context.  In contrast to the hot intracluster medium detected in emission in clusters, the circumgalactic medium (CGM) has to be probed by absorption lines toward background quasars and tells a vastly different and complicated story.  I will demonstrate, with the aid of hydrodynamic simulations, how the CGM is multi-phase (with cool ~10^4 K clouds embedded in a hot, ambient medium), plus how non-equilibrium ionization processes altering the heavy element ions we probe in spectra.  The next frontiers in the CGM require understanding the dynamics encoded not only in absorption line spectra of the UV, but in the X-ray via emission and absorption.



Colloquium: Jane Rigby (Host: Moire Prescott)
Nov 10 @ 3:15 pm – 4:15 pm
Colloquium: Jane Rigby (Host: Moire Prescott) @ BX102

Science with the James Webb Space Telescope

Jane Rigby, NASA/GSFC

NASA’s James Webb Space Telescope (JWST) will have revolutionary capabilities and sensitivity for imaging and spectroscopy from 0.7 to 28 micron.  JWST should make major scientific advances across astrophysics, including the physics of reionization, galaxy formation and assembly, planetary science, and extrasolar planets.  In anticipation of a scheduled launch in 2019, JWST Cycle 1 Guest Observer proposals will be due in spring of 2018.  I will review the scientific capabilities of the telescope, the integration and test program, and how observers will plan observations and analyze JWST data.

Colloquium: Larisza Krista (Host: James McAteer)
Nov 17 @ 3:15 pm – 4:15 pm

The statistical study of solar dimmings and their eruptive counterparts

Larisza Krista, Cu/CIRES, NOAA/NCEI

Picture1Results are presented from analyzing the physical and morphological properties of 154 dimmings (transient coronal holes) and the associated flares and coronal mass ejections (CMEs). Each dimming in the catalog was processed with the semi-automated Coronal Dimming Tracker (CoDiT) using Solar Dynamics Observatory AIA 193 Å observations and HMI magnetograms. Instead of the typically used difference images, the transient dark regions were detected “directly” in extreme ultraviolet (EUV) images. This allowed us to study dimmings as the footpoints of CMEs—in contrast with the larger, diffuse dimmings seen in difference images that represent the projected view of the rising, expanding plasma. Studying the footpoint-dimming morphology allowed us to better understand the CME structure in the low corona. While comparing the physical properties of dimmings, flares, and CMEs, the relationships between the different parts of this complex eruptive phenomenon were identified: larger dimmings were found to be longer-lived, which suggests that it takes longer to “close down” large open magnetic regions. During their growth phase, smaller dimmings were found to acquire a higher magnetic flux imbalance (i. e., become more unipolar) than larger dimmings. Furthermore, the EUV intensity of dimmings (indicative of local electron density) was found to correlate with how much plasma was removed and how energetic the eruption was. Studying the morphology of dimmings (single, double, fragmented) also helped identify different configurations of the quasi-open magnetic field.


Dr Larisza Krista received an MSc degree in astrophysics in 2007 from Eotvos Lorand University, in Budapest, Hungary. She did her PhD at Trinity College Dublin (Ireland) as a Government of Ireland Scholar, on “The Evolution and Space Weather Effects of Solar Coronal Holes”. She moved to Boulder in 2011 to accept a research scientist position at CU/CIRES in residence at NOAA/SWPC. She has also been a long-term scientific visitor at the High Altitude Observatory, where she collaborates with Dr Scott McIntosh. Her main interests involve the evolution of open solar magnetic field regions over the solar cycle as well as the related heliospheric structures and geomagnetic effects.



Colloquium: Laura Keating (Host: Kristian Finlator)
Dec 1 @ 3:15 pm – 4:15 pm
Colloquium: Laura Keating (Host: Kristian Finlator) @ BX102

Colloquium Title

Colloquium Speaker Name, Affiliation

Abstract text

Colloquium – Dean Pesnell (Host: James McAteer)
Dec 8 @ 3:15 pm – 4:15 pm
Colloquium - Dean Pesnell (Host: James McAteer) @ BX102

SDO, the Sun, the Universe

Dean Pesnell, NASA / GSFC

ABSTRACT: The Sun is our best example for how stars evolve and behave. It is the only star whose surface is well-resolved in time and space. It is the only star which local helioseisomology can look into and through. One tool we to study the Sun is the Solar Dynamics Observatory (SDO), a NASA satellite that has been returning data for seven years. SDO focuses on the variations in the Sun caused by changes in the magnetic field generated by the convection zone.I will describe some aspects of SDO science that can be directly related to Sun-like stars. First are spectral irradiance measurements in extreme ultraviolet wavelengths that contribute to the loss of planetary atmospheres. Next are failed filament eruptions that fall back onto the surface as a form of accretion. Finally, how the magnetic field evolves from solar minimum to maximum and back is giving us clues about predicting that magnetic field. Please come and have a look at how studying the Sun informs our knowledge of stars.

Colloquium Thesis Proposal: Laurel Farris
Jan 24 @ 2:30 pm – 3:30 pm
Colloquium Thesis Proposal: Laurel Farris @ Science Hall, Room 110

Characterizing the oscillatory response of the chromosphere during solar flares

Laurel Farris; NMSU Astronomy Department

Quasi-periodic pulsations (QPPs) are observed in the emission of solar flares over a wide range of wavelengths,

particularly in the radio and hard x-ray regimes where non-thermal emission dominates. These pulsations are

considered to be an intrinsic feature of flares, yet the exact mechanism that triggers them remains unclear.

There have been reports of an increase in the oscillatory power at 3-minute periods (the local acoustic

cutoff frequency) in the solar chromosphere associated with flaring events. I propose to investigate the

chromospheric response to flares by inspecting the spatial and temporal onset and evolution of the 3-minute

oscillatory power, along with any QPP patterns that may appear in chromospheric emission. The analysis

will be extended to multiple flares, and will include time before, during, and after the main event. To test

initial methods, the target of interest was the well-studied 2011 February 15 X-class flare. Data from two

instruments on board the Solar Dynamics Observatory (SDO) were used in the preliminary study, including

continuum images from the Helioseismic and Magnetic Imager (HMI) and UV images at 1600 and 1700

Angstroms from the Atmospheric Imaging Assembly (AIA). Later, spectroscopic data from the Interface

Region Imaging Spectrometer (IRIS) will be used to examine velocity patterns in addition to intensity.

Colloquium: Zheng Cai (Host: Kristian Finlator)
Jan 26 @ 3:15 pm – 4:15 pm
Colloquium: Zheng Cai (Host: Kristian Finlator) @ BX102

Colloquium Title

Colloquium Speaker Name, Affiliation

Abstract text

Colloquium Thesis Proposal: Jodi Berdis
Feb 23 @ 3:15 pm – 4:15 pm
Colloquium Thesis Proposal: Jodi Berdis @ BX102

Colloquium Title

Jodi Berdis, NMSU

Abstract text