Colloquium: Travis Metcalfe (Host: Jason Jackiewicz)
Sep 8 @ 3:15 pm – 4:15 pm
Colloquium: Travis Metcalfe (Host: Jason Jackiewicz) @ BX102

The Magnetic Mid-life Crisis of the Sun

Dr. Travis Metcalfe, Space Sciences Institute

After decades of effort, the solar activity cycle is exceptionally well characterized but it remains poorly understood. Pioneering work at the Mount Wilson Observatory demonstrated that other sun-like stars also show regular activity cycles, and suggested two possible relationships between the rotation rate and the length of the cycle. Neither of these relationships correctly describe the properties of the Sun, a peculiarity that demands explanation. Recent discoveries have started to shed light on this issue, suggesting that the Sun’s rotation rate and magnetic field are currently in a transitional phase that occurs in all middle-aged stars. We have recently identified the manifestation of this magnetic transition in the best available data on stellar cycles. The results suggest that the solar cycle may be growing longer on stellar evolutionary timescales, and that the cycle might disappear sometime in the next 0.8-2.4 Gyr. Future tests of this hypothesis will come from ground-based activity monitoring of Kepler targets that span the magnetic transition, and from asteroseismology with the TESS mission to determine precise masses and ages for bright stars with known cycles.

Colloquium PhD Defense: Jean McKeever
Sep 20 @ 3:00 pm – 4:15 pm
Colloquium PhD Defense: Jean McKeever @ Business College 103

Asteroseismology of Red Giants: The Detailed Modeling of Red Giants in Eclipsing Binary Systems

Jean McKeever, NMSU

Asteroseismology is an invaluable tool that allows one to peer into the inside of a star and know its fundamental stellar properties with relative ease. There has been much exploration of solar-like oscillations within red giants with recent advances in technology, leading to new innovations in observing. The Kepler mission, with its 4-year observations of a single patch of sky, has opened the floodgates on asteroseismic studies. Binary star systems are also an invaluable tool for their ability to provide independent constraints on fundamental stellar parameters such as mass and radius. The asteroseismic scaling laws link observables in the light curves of stars to the physical parameters in the star, providing a unique tool to study large populations of stars quite easily. In this work we present our 4-year radial velocity observing program to provide accurate dynamical masses for 16 red giants in eclipsing binary systems. From this we find that asteroseismology overestimates the mass and radius of red giants by 15% and 5% respectively. We further attempt to model the pulsations of a few of these stars using stellar evolution and oscillation codes. The goal is to determine which masses are correct and if there is a physical cause for the discrepancy in asteroseismic masses. We find there are many challenges to modeling evolved stars such as red giants and we address a few of the major concerns. These systems are some of the best studied systems to date and further exploration of their asteroseismic mysteries is inevitable.


Colloquium (Joint with Physics): Jim Fuller (Host: Ethan Dederick)
Mar 29 @ 4:00 pm – 5:00 pm
Colloquium (Joint with Physics): Jim Fuller (Host: Ethan Dederick) @ Gardiner Hall 230

Surprising Impacts of Gravity Waves

Jim Fuller, Caltech

Gravity waves are low frequency fluid oscillations restored by buoyancy forces in planetary and stellar interiors. Despite their ubiquity, the importance of gravity waves in evolutionary processes and asteroseismology has only recently been appreciated. For instance, Kepler asteroseismic data has revealed gravity modes in thousands of red giant stars, providing unprecedented measurements of core structure and rotation. I will show how gravity modes (or lack thereof) can also reveal strong magnetic fields in the cores of red giants, and I will demonstrate that strong fields appear to be common within “retired” A stars but are absent in their lower-mass counterparts. In the late phase evolution of massive stars approaching core-collapse, vigorous convection excites gravity waves that can redistribute huge amounts of energy within the star. I will present preliminary models of this process, showing how wave energy redistribution can drive outbursts and enhanced mass loss in the final years of massive star evolution, with important consequences for the appearance of subsequent supernovae.
Colloquium PhD Thesis Defense: Sten Hasselquist
Apr 6 @ 3:15 pm – 4:15 pm
Colloquium PhD Thesis Defense: Sten Hasselquist @ BX102

Colloquium Title

Sten Hasselquist, NMSU


Colloquium: Dawn Gelino (Host: Tom Harrison)
Aug 24 @ 3:15 pm – 4:15 pm
Colloquium: Dawn Gelino (Host: Tom Harrison) @ BX102

NASA, Exoplanets, and Life After NMSU

Dawn Gelino, NASA Exoplanet Science Institute, CalTech

Abstract:  Are you interested in learning more about the search for life in the Universe? Or perhaps you may be interested in being awarded time on 10 m telescopes for your science? Or maybe you are ready to learn more about prestigious NASA Postdoctoral Fellowships? This talk will touch on some recent and exciting results in the exoplanet field, as well as the different NASA HQ programs that I currently run for all of astrophysics (many of which may be helpful and applicable to YOU), and the path I took from NMSU to where I am now.

Society of Astronomy Students Meeting
Aug 28 @ 4:00 pm – 5:00 pm
Colloquium: Don Terndrup (Host: Nancy Chanover)
Aug 31 @ 3:15 pm – 4:15 pm
Colloquium: Don Terndrup (Host: Nancy Chanover) @ BX102

Stellar Winds and Stellar Rotation

Don Terndrup, Ohio State University

For more than 50 years, we have known that stars rotate quickly when they are young and slow down as they age.  This process gives us important clues about magnetic field strength and geometry, as well as the nature of stellar winds, in solar-like stars.  We have been working to put the analysis of stellar rotation on a modern statistical footing, and in this talk I will give you an update on our efforts.  There are a number of critical observational problems that must be considered in calibrating models of angular momentum loss, especially problems of data censorship (older or less active stars are not detected in studies of rotation).  I will conclude by evaluating the prospects for using stellar rotation as an age indicator, and demonstrate that such ages are far less precise – though still useful – than our group and others have previously claimed.



Society of Astronomy Students Meeting
Sep 4 @ 4:00 pm – 5:00 pm
Society of Astronomy Students Meeting
Sep 11 @ 4:00 pm – 5:00 pm
Colloquium PhD Thesis Defense: Alexander Thelen (Host: Nancy Chanover)
Sep 12 @ 3:00 pm – 4:00 pm
Colloquium PhD Thesis Defense: Alexander Thelen (Host: Nancy Chanover) @ Domenici Hall Room 102

The Chemical Composition and Dynamics of Titan’s Atmosphere as Revealed by ALMA

Alexander Thelen, NMSU

Over the last century, remarkable advances in our understanding of Titan’s atmosphere have been accomplished by a campaign of ground- and space-based observations revealing a wealth of complex, organic species in the moon’s upper atmosphere. Many of Titan’s atmospheric constituents produced through the photochemistry and ionospheric interactions of N2 and CH4 exhibit significant variations with latitude and time, particularly towards the poles and within the winter circumpolar vortex. The measurement of spatial and temporal variations in Titan’s atmosphere enables us to elucidate connections between its dynamics, photochemistry, and the influence of seasonal changes. At the end of the Cassini mission in 2017, we can employ the Atacama Large Millimeter/submillimeter Array (ALMA) for future observations of Titan’s atmosphere. Here we detail the analysis of numerous short integration (~3 minute) ALMA observations from 2012 to 2015 to investigate Titan’s stratospheric composition, temporal variations, and search for new molecular species. Using the Non-linear optimal Estimator for MultivariatE spectral analySIS (NEMESIS) radiative transfer code, we retrieved vertical profiles of temperature and abundance in Titan’s lower stratosphere through mesosphere (~50–550 km) from three spatially independent regions. We modeled CO emission lines to obtain temperature measurements, and retrieved abundance profiles for HCN, HC3N, C3H4, and CH3CN. The combination of integrated flux maps and vertical atmospheric profiles from spatially resolved observations allowed us to study the circulation of Titan’s middle atmosphere during northern spring. We observed increased temperatures in Titan’s stratopause at high northern latitudes and a persistent northern enrichment of HCN, C3H4, and CH3CN during this epoch; however, increased abundances of all molecules in the southern mesosphere, particularly HCN, and spatial maps of HC3N also show evidence for subsidence at the south pole. We validated these measurements through direct comparisons with contemporaneous Cassini data, previous ground-based observations, and photochemical model results. While no new trace species were detected, ALMA has proven to be a highly capable asset to enhance the data from the final few years of the Cassini mission, and for the continued study of Titan’s atmospheric dynamics, composition, and chemistry into Titan’s northern summer.