Calendar

Apr
2
Mon
Pizza Lunch: Michael Engelhardt (Physics), “The quarks in the proton go round and round …”
Apr 2 @ 12:30 pm – 1:30 pm
Pizza Lunch: Michael Engelhardt (Physics), "The quarks in the proton go round and round ..." @ AY 119

The quarks in the proton go round and round …

Sep
28
Fri
Colloquium: Bharat Ratra (Host: Anatoly Klypin)
Sep 28 @ 3:15 pm – 4:15 pm
Colloquium: Bharat Ratra (Host: Anatoly Klypin) @ BX102

Spatial Curvature, Dark Energy Dynamics, Neither, or Both?

Bharat Ratra, Kansas State University

Experiments and observations over the two last decades have persuaded cosmologists that (as yet undetected) dark energy is by far the main component of the energy budget of the current universe. I review a few simple dark energy models and compare their predictions to observational data, to derive dark energy model-parameter constraints and to test consistency of different data sets. I conclude with a list of open cosmological questions.
Oct
5
Fri
Colloquium: David Nataf (Host: Jason Jackiewicz)
Oct 5 @ 3:15 pm – 4:15 pm
Colloquium: David Nataf (Host: Jason Jackiewicz) @ BX102

Clues to Globular Cluster Formation

David Nataf, Johns Hopkins University

Globular clusters are now well-established to host “Second-generation” stars, which show anomalous abundances in some or all of He, C, N, O, Na, Al, Mg, etc.  The simplest explanations for these phenomena typically require the globular clusters to have been ~20x more massive at birth, and to have been enriched by processes which are not consistent with the theoretical predictions of massive star chemical synthesis models. The library of observations is now a vast one, yet there has been comparatively little progress in understanding how globular clusters could have formed and evolved. In this talk I discuss two new insights into the matter. First, I report on a meta-analysis of globular cluster abundances that combined APOGEE and literature data for 28 globular clusters, new trends with globular cluster mass are identified. I discuss the chemical properties of former globular cluster stars that are now part of the field population, and what can be learned.