Colloquium: Isak Wold (Host: Moire Prescott)
Sep 1 @ 3:15 pm – 4:15 pm
Colloquium: Isak Wold (Host: Moire Prescott) @ BX102

A Faint Flux-Limited LAE Sample at z = 0.3

Isak Wold, UT Austin

Observational surveys of Lya emitters (LAEs) have proven to be an efficient method to identify and study large numbers of galaxies over a wide redshift range. To understand what types of galaxies are selected in LAE surveys – and how this evolves with redshift – it is important to establish a low-redshift reference sample that can be directly compared to high-redshift samples.  The lowest redshift where a direct Lya survey is currently possible is at a redshift of z~0.3 via the Galaxy Evolution Explorer (GALEX ) FUV grism data. Using the z~0.3 GALEX sample as an anchor point, it has been suggested that at low redshifts high equivalent width (EW) LAEs become less prevalent and that the amount of escaping Lya emission declines rapidly.  A number of explanations for these trends have been suggested including increasing dust content, increasing neutral column density, and/or increasing metallicity of star-forming galaxies at lower redshifts. However, the published z~0.3 GALEX sample is pre-selected from bright NUV objects.  Thus, objects with strong Lya emission but faint continuum (high-EW LAEs) could be missed.  In this talk, I will present my efforts to re-reduce the deepest archival GALEX FUV grism data and obtain a sample that is not biased against high-EW LAEs.  I will discuss the implications of this new sample on the evolutionary trends listed above.

Pizza Lunch: Sarah Kovac
Oct 2 @ 12:30 pm – 1:30 pm
Pizza Lunch: Sarah Kovac @ AY 119

The Citizen Cate Project

Pizza Lunch: Karen Kinemuchi
Dec 4 @ 12:30 pm – 1:30 pm
Pizza Lunch: Karen Kinemuchi @ AY 119

Life at Apache Point Observatory

Special Colloquium: Stella Kafka (Host: Karen Kinemuchi)
Feb 20 @ 3:15 pm – 4:15 pm
Special Colloquium: Stella Kafka (Host: Karen Kinemuchi) @ Domenici Hall

The AAVSO Program: A Resource for Variable Star Research

Stella Kafka, AAVSO

The AAVSO was formed in 1911 as a group of US-based amateur observers obtaining data in support of professional astronomy projects. Now, it has evolved into an International Organization with members and observers from both the professional and non-professional astronomical community, contributing photometry to a public photometric database of about 25,000 variable objects, and using it for research projects. As such, the AAVSO’s main claim to fame is that it successfully engages backyard Astronomers, educators, students and professional astronomers in astronomical research. I will present the main aspects of the association and how it has evolved with time to become a premium resource for variable star researchers. I will also discuss the various means that the AAVSO is using to support cutting-edge variable star science, and how it engages its members in projects building a stronger international astronomical community.


Dr. Stella Kafka, is the Director of the AAVSO (American Association of Variable Star Observers). Before her tenure at the AAVSO, Dr Kafka held positions at CTIO, Spitzer Science center/Caltech, Carnegie Institution of Washington/DTM and AIP Publishing. The AAVSO is an international non-profit organization of variable star observers whose mission is to enable anyone, anywhere, to participate in scientific discovery through variable star astronomy.

Colloquium: Lisa Young (Host: Rene Walterbos)
Aug 30 @ 3:15 pm – 4:15 pm
Colloquium: Lisa Young (Host: Rene Walterbos) @ BX102

Cold Gas and the Evolution of Early-type Galaxies

Lisa Young, New Mexico Tech

A major theme of galaxy evolution is understanding how today’s Hubble sequence was
established — what makes some galaxies red spheroidals and others blue disks, and what
drives their relative numbers and their spatial distributions. One way of addressing these
questions is that galaxies themselves hold clues to their formation in their internal
structures. Recent observations of early-type galaxies in particular (ellipticals and
lenticulars) have shown that their seemingly placid, nearly featureless optical images can
be deceptive. Kinematic data show that the early-type galaxies have a wide variety of
internal kinematic structures that are the relics of dramatic merging and accretion
events. A surprising number of the early-type galaxies also contain cold atomic and
molecular gas, which is significant because their transitions to the red sequence must
involve removing most of their cold gas (the raw material for star formation). We can now
also read clues to the evolution of early-type galaxies in the kinematics and the
metallicity of their gas, and possibly also in the rare isotope abundance patterns in the
cold gas. Numerical simulations are beginning to work on reproducing these cold gas
properties, so that we can place the early-type galaxies into their broader context.

(incomplete video)

Pizza Lunch: Sultan Hassan
Oct 28 @ 12:30 pm – 1:30 pm
Pizza Lunch: Sultan Hassan @ AY 119

What can DLAs tell us about galaxy formation?