Calendar

Mar
29
Thu
Colloquium (Joint with Physics): Jim Fuller (Host: Ethan Dederick)
Mar 29 @ 4:00 pm – 5:00 pm
Colloquium (Joint with Physics): Jim Fuller (Host: Ethan Dederick) @ Gardiner Hall 230

Surprising Impacts of Gravity Waves

Jim Fuller, Caltech

Gravity waves are low frequency fluid oscillations restored by buoyancy forces in planetary and stellar interiors. Despite their ubiquity, the importance of gravity waves in evolutionary processes and asteroseismology has only recently been appreciated. For instance, Kepler asteroseismic data has revealed gravity modes in thousands of red giant stars, providing unprecedented measurements of core structure and rotation. I will show how gravity modes (or lack thereof) can also reveal strong magnetic fields in the cores of red giants, and I will demonstrate that strong fields appear to be common within “retired” A stars but are absent in their lower-mass counterparts. In the late phase evolution of massive stars approaching core-collapse, vigorous convection excites gravity waves that can redistribute huge amounts of energy within the star. I will present preliminary models of this process, showing how wave energy redistribution can drive outbursts and enhanced mass loss in the final years of massive star evolution, with important consequences for the appearance of subsequent supernovae.
Oct
8
Mon
Pizza lunch: Patrick Gaulme
Oct 8 @ 12:30 pm – 1:30 pm
Pizza lunch: Patrick Gaulme @ AY 119

Red giants, eclipsing binaries, and asteroseismology.

Patrick Gaulme, Max Planck Institute for Solar System Research

Jan
23
Wed
Colloquium Thesis Defense: Lauren Kahre
Jan 23 @ 3:00 pm – 4:00 pm
Colloquium Thesis Defense: Lauren Kahre

Extinction Mapping and Dust-to-Gas Ratios of Nearby Galaxies

Lauren Kahre, NMSU

We present a study of the dust{to{gas ratios in 31 nearby (D >
10 Mpc) galaxies. Using Hubble Space Telescope broad band WFC3/UVIS UV and
optical images from the Treasury program LEGUS (Legacy ExtraGalactic UV
Survey) combined with archival HST/ACS data, we correct thousands of
individual stars for extinction across these galaxies using an
isochrone-matching (reddening-free Q) method. We generate extinction maps
for each galaxy from the individual stellar extinctions using both
adaptive and fixed resolution techniques, and correlate these maps with
neutral HI and CO gas maps from literature, including The HI Nearby Galaxy
Survey (THINGS) and the HERA CO-Line ExtraGalactic Survey (HERACLES). We
calculate dust-to-gas ratios and investigate variations in the dust-to-gas
ratio with galaxy metallicity. We find a power law relationship between
dust-to-gas ratio and metallicity. The single power law is consistent with
other studies of dust-to-gas ratio compared to metallicity, while the
broken power law shows a significantly shallower slope for low metallicity
galaxies than previously observed. We find a change in the relation when
H_2 is not included. This implies that underestimation of N_H2 in
low-metallicity dwarfs from a too-low CO-to-H2 conversion factor X_CO
could have produced too low a slope in the derived relationship between
dust-to-gas ratio and metallicity. We also
compare our extinctions to those derived from fitting the spectral energy
distribution (SED) using the Bayesian Extinction and Stellar Tool (BEAST)
for NGC 7793 and and systematically lower extinctions from SED-fitting as
compared to isochrone matching. Finally, we compare our extinction maps of
NGC 628 to maps of the dust obtained via IR emission from Aniano et al.
(2012) and find a factor of 2 difference in dust-to-gas ratios determined
from the two maps, consistent with previous work.