Calendar

Dec
4
Mon
Pizza Lunch: Karen Kinemuchi
Dec 4 @ 12:30 pm – 1:30 pm
Pizza Lunch: Karen Kinemuchi @ AY 119

Life at Apache Point Observatory

Dec
8
Fri
Colloquium – Dean Pesnell (Host: James McAteer)
Dec 8 @ 3:15 pm – 4:15 pm
Colloquium - Dean Pesnell (Host: James McAteer) @ BX102

SDO, the Sun, the Universe

Dean Pesnell, NASA / GSFC

ABSTRACT: The Sun is our best example for how stars evolve and behave. It is the only star whose surface is well-resolved in time and space. It is the only star which local helioseisomology can look into and through. One tool we to study the Sun is the Solar Dynamics Observatory (SDO), a NASA satellite that has been returning data for seven years. SDO focuses on the variations in the Sun caused by changes in the magnetic field generated by the convection zone.I will describe some aspects of SDO science that can be directly related to Sun-like stars. First are spectral irradiance measurements in extreme ultraviolet wavelengths that contribute to the loss of planetary atmospheres. Next are failed filament eruptions that fall back onto the surface as a form of accretion. Finally, how the magnetic field evolves from solar minimum to maximum and back is giving us clues about predicting that magnetic field. Please come and have a look at how studying the Sun informs our knowledge of stars.

Mar
28
Wed
Colloquium PhD Thesis Defense: Ethan Dederick
Mar 28 @ 3:15 pm – 4:15 pm
Colloquium PhD Thesis Defense: Ethan Dederick @ Science Hall 109

Seismic Inferences of Gas Giant Planets: Excitation & Interiors

Ethan Dederick, NMSU

Seismology has been the premier tool of study for understanding the interior structure of the Earth, the Sun, and even other stars. In this thesis we develop the framework for the first ever seismic inversion of a rapidly rotating gas giant planet. We extensively test this framework to ensure that the inversions are robust and operate within a linear regime. This framework is then applied to Saturn to solve for its interior density and sound speed profiles to better constrain its interior structure. This is done by incorporating observations of its mode frequencies derived from Linblad and Vertical Resonances in Saturn’s C-ring. We find that although the accuracy of the inversions is mitigated by the limited number of observed modes, we find that Saturn’s core density must be at least 8.97 +/- 0.01 g cm^{-3} below r/R_S = 0.3352 and its sound speed must be greater than 54.09 +/- 0.01 km s^{-1} below r/R_S = 0.2237. These new constraints can aid the development of accurate equations of state and thus help determine the composition in Saturn’s core. In addition, we investigate mode excitation and whether the \kappa-Mechanism can excite modes on Jupiter. While we find that the \kappa-Mechanism does not play a role in Jovian mode excitation, we discover a different opacity driven mechanism, The Radiative Suppression Mechanism, that can excite modes in hot giant planets orbiting extremely close to their host stars if they receive a stellar flux greater than 10^9~erg cm^{-2} s^{-1}. Finally, we investigate whether moist convection is responsible for exciting Jovian modes. Mode driving can occur if, on average, one cloud column with a 1-km radius exists per 6423 km^2 or if ~43 storms with 200 columns, each with a radius of 25 km, erupt per day. While this seems unlikely given current observations, moist convection does have enough thermal energy to drive Jovian oscillations, should it be available to them.

Jan
23
Wed
Colloquium Thesis Defense: Lauren Kahre
Jan 23 @ 3:00 pm – 4:00 pm
Colloquium Thesis Defense: Lauren Kahre

Extinction Mapping and Dust-to-Gas Ratios of Nearby Galaxies

Lauren Kahre, NMSU

We present a study of the dust{to{gas ratios in 31 nearby (D >
10 Mpc) galaxies. Using Hubble Space Telescope broad band WFC3/UVIS UV and
optical images from the Treasury program LEGUS (Legacy ExtraGalactic UV
Survey) combined with archival HST/ACS data, we correct thousands of
individual stars for extinction across these galaxies using an
isochrone-matching (reddening-free Q) method. We generate extinction maps
for each galaxy from the individual stellar extinctions using both
adaptive and fixed resolution techniques, and correlate these maps with
neutral HI and CO gas maps from literature, including The HI Nearby Galaxy
Survey (THINGS) and the HERA CO-Line ExtraGalactic Survey (HERACLES). We
calculate dust-to-gas ratios and investigate variations in the dust-to-gas
ratio with galaxy metallicity. We find a power law relationship between
dust-to-gas ratio and metallicity. The single power law is consistent with
other studies of dust-to-gas ratio compared to metallicity, while the
broken power law shows a significantly shallower slope for low metallicity
galaxies than previously observed. We find a change in the relation when
H_2 is not included. This implies that underestimation of N_H2 in
low-metallicity dwarfs from a too-low CO-to-H2 conversion factor X_CO
could have produced too low a slope in the derived relationship between
dust-to-gas ratio and metallicity. We also
compare our extinctions to those derived from fitting the spectral energy
distribution (SED) using the Bayesian Extinction and Stellar Tool (BEAST)
for NGC 7793 and and systematically lower extinctions from SED-fitting as
compared to isochrone matching. Finally, we compare our extinction maps of
NGC 628 to maps of the dust obtained via IR emission from Aniano et al.
(2012) and find a factor of 2 difference in dust-to-gas ratios determined
from the two maps, consistent with previous work.

Jan
25
Fri
Pizza Lunch Talk: Dale Frail
Jan 25 @ 11:30 am – 12:30 pm
Pizza Lunch Talk: Dale Frail @ AY 119

How to Write A Competitive Prize Postdoc Application

Dale Frail, NRAO

Colloquium: Dale Frail (Host: Sarah Kovac)
Jan 25 @ 3:15 pm – 4:15 pm
Colloquium: Dale Frail (Host: Sarah Kovac) @ BX102

Multi-Messenger EM-GW Astronomy: The View from the Radio End of the EM Spectrum

Dale Frail, NRAO

Abstract: With the discovery of gravitational waves and electromagnetic radiation from the binary neutron star merger GW170817, the era of GW multi-messenger astronomy has begun with style. I will describe the discovery, show where progress has been made in several areas, and then move on to describe a controversy regarding the origin of the afterglow emission. After explaining the importance of this issue, I will show how late-time radio observations have decisively resolved the issue. I will end with a discussion of the future, with an emphasis on the role of radio observations in finding and studying EM counterparts.

Feb
20
Wed
Special Colloquium: Stella Kafka (Host: Karen Kinemuchi)
Feb 20 @ 3:15 pm – 4:15 pm
Special Colloquium: Stella Kafka (Host: Karen Kinemuchi) @ Domenici Hall

The AAVSO Program: A Resource for Variable Star Research

Stella Kafka, AAVSO

The AAVSO was formed in 1911 as a group of US-based amateur observers obtaining data in support of professional astronomy projects. Now, it has evolved into an International Organization with members and observers from both the professional and non-professional astronomical community, contributing photometry to a public photometric database of about 25,000 variable objects, and using it for research projects. As such, the AAVSO’s main claim to fame is that it successfully engages backyard Astronomers, educators, students and professional astronomers in astronomical research. I will present the main aspects of the association and how it has evolved with time to become a premium resource for variable star researchers. I will also discuss the various means that the AAVSO is using to support cutting-edge variable star science, and how it engages its members in projects building a stronger international astronomical community.

 

Dr. Stella Kafka, is the Director of the AAVSO (American Association of Variable Star Observers). Before her tenure at the AAVSO, Dr Kafka held positions at CTIO, Spitzer Science center/Caltech, Carnegie Institution of Washington/DTM and AIP Publishing. The AAVSO is an international non-profit organization of variable star observers whose mission is to enable anyone, anywhere, to participate in scientific discovery through variable star astronomy.

Feb
22
Fri
Pizza Lunch Talk: Takashi Sekii
Feb 22 @ 12:15 pm – 1:15 pm
Pizza Lunch Talk: Takashi Sekii @ AY 119

Title

Takashi Sekii, National Astronomical Observatory of Japan

Abstract

Mar
1
Fri
Colloquium: RESERVED (Host: TBD)
Mar 1 @ 3:15 pm – 4:15 pm
Colloquium: RESERVED (Host: TBD) @ BX102

Colloquium Title

Colloquium Speaker Name, Affiliation

Abstract text

Mar
4
Mon
Pizza Lunch Talk: Mark Rutkowski
Mar 4 @ 12:30 pm – 1:30 pm
Pizza Lunch Talk: Mark Rutkowski @ AY 119

Ultraviolet Observations of Galaxies

Mark Rutkowski, Minnesota State Univeristy

Ultraviolet observations are essential for answering fundamental questions regarding the role and impact of galaxies in universe. I’ll discuss a number of past, ongoing, and future UV-optical-near IR high redshift surveys with which I am involved and the specific constraints the UV provides on these open questions. Specifically, I’ll highlight the utility of UV observations of starbursts and quiescent galaxies alike for constraining the history of reionization, hierarchical assembly, and (if there’s time) the cosmic history of metals.