Calendar

Nov
9
Thu
Public Talk: “Preparing to Explore the Universe with the James Webb Space Telescope” – Dr. Jane Rigby (NASA Goddard)
Nov 9 @ 7:00 pm – 8:00 pm
Public Talk: "Preparing to Explore the Universe with the James Webb Space Telescope" - Dr. Jane Rigby (NASA Goddard) @ Gerald Thomas Hall, Room 194

Preparing to Explore the Universe with the James Webb Space Telescope

Dr. Jane Rigby (NASA Goddard, Deputy Project Scientist for JWST)

Abstract: NASA’s James Webb Space Telescope (JWST), scheduled to be launched in 2019, will revolutionize our view of the Universe.  As the scientific successor to the Hubble Space Telescope, JWST will rewrite the textbooks and return gorgeous images and spectra of our universe.   In my talk, I will show how JWST will revolutionize our understanding of how galaxies and supermassive black holes formed in the first billion years after the Big Bang, and how they evolved over cosmic time.  I’ll describe how our international team is preparing for launch, how we decide what targets to observe, and how we are testing the telescope to be sure it will work in space.

More information about the telescope can be found at https://www.jwst.nasa.gov/.

 

 

Jan
23
Wed
Colloquium Thesis Defense: Lauren Kahre
Jan 23 @ 3:00 pm – 4:00 pm
Colloquium Thesis Defense: Lauren Kahre

Extinction Mapping and Dust-to-Gas Ratios of Nearby Galaxies

Lauren Kahre, NMSU

We present a study of the dust{to{gas ratios in 31 nearby (D >
10 Mpc) galaxies. Using Hubble Space Telescope broad band WFC3/UVIS UV and
optical images from the Treasury program LEGUS (Legacy ExtraGalactic UV
Survey) combined with archival HST/ACS data, we correct thousands of
individual stars for extinction across these galaxies using an
isochrone-matching (reddening-free Q) method. We generate extinction maps
for each galaxy from the individual stellar extinctions using both
adaptive and fixed resolution techniques, and correlate these maps with
neutral HI and CO gas maps from literature, including The HI Nearby Galaxy
Survey (THINGS) and the HERA CO-Line ExtraGalactic Survey (HERACLES). We
calculate dust-to-gas ratios and investigate variations in the dust-to-gas
ratio with galaxy metallicity. We find a power law relationship between
dust-to-gas ratio and metallicity. The single power law is consistent with
other studies of dust-to-gas ratio compared to metallicity, while the
broken power law shows a significantly shallower slope for low metallicity
galaxies than previously observed. We find a change in the relation when
H_2 is not included. This implies that underestimation of N_H2 in
low-metallicity dwarfs from a too-low CO-to-H2 conversion factor X_CO
could have produced too low a slope in the derived relationship between
dust-to-gas ratio and metallicity. We also
compare our extinctions to those derived from fitting the spectral energy
distribution (SED) using the Bayesian Extinction and Stellar Tool (BEAST)
for NGC 7793 and and systematically lower extinctions from SED-fitting as
compared to isochrone matching. Finally, we compare our extinction maps of
NGC 628 to maps of the dust obtained via IR emission from Aniano et al.
(2012) and find a factor of 2 difference in dust-to-gas ratios determined
from the two maps, consistent with previous work.

Sep
6
Fri
Colloquium: Brian Svoboda (Host: Moire Prescott)
Sep 6 @ 3:15 pm – 4:15 pm
Colloquium: Brian Svoboda (Host: Moire Prescott) @ BX102

Starless clumps and the earliest phases of high-mass star formation in the Milky Way

Brian Svoboda, NRAO Jansky Fellow

High-mass stars are key to regulating the interstellar medium, star formation activity, and overall evolution of galaxies, but their formation remains an open problem in astrophysics. In order to understand the physical conditions during the earliest phases of high-mass star formation, I will present observational studies we have carried out on dense starless clump candidates (SCCs) that show no signatures of star formation activity. We identify 2223 SCCs from the 1.1 mm Bolocam Galactic Plane Survey, systematically analyse their physical properties, and show that the starless phase is not represented by a single timescale, but evolves more rapidly with increasing clump mass. To investigate the sub-structure in SCCs at high spatial resolution, we investigate the 12 most high-mass SCCs within 5 kpc using ALMA. We find previously undetected low-luminosity protostars in 11 out of 12 SCCs, fragmentation equal to the thermal Jeans length of the clump, and no starless cores exceeding 30 solar masses. While uncertainties remain concerning the star formation efficiency in this sample, these observational facts are consistent with models where high-mass stars form from initially low- to intermediate-mass protostars that accrete most of their mass from the surrounding clump. I will also present on-going research studying gas inflow signatures with GBT/Argus and ALMA, and the dense core mass function with the JVLA.

(note:slide overlay error)