Calendar

Jul
3
Mon
Colloquium PhD Defense: Nigel Mathes
Jul 3 @ 2:00 pm – 3:00 pm
Colloquium PhD Defense: Nigel Mathes

The Vulture Survey of MgII and CIV Absorbers: Feasting on the Bones of Spectra Left to Die

Nigel Mathes, NMSU

Abstract:

We present detailed measurements of the absorption properties and redshift evolution of MgII and CIV absorbers as measured in archival spectra from the UVES spectrograph at the Very Large Telescope (VLT/UVES) and the HIRES spectrograph at the Keck Telescope (Keck/HIRES) to equivalent width detection limits below 0.01 angstroms. This survey examines 860 high resolution spectra from various archival data sets representing 700 unique sightlines, allowing for detections of intervening MgII absorbers spanning redshifts 0.1 < z < 2.6 and intervening CIV absorbers spanning redshifts 1 < z < 5. We employ an accurate, automated approach to line detection which consistently detects redshifted absorption doublets. We observe three distinct epochs of evolution in the circumgalactic medium (CGM) as traced by MgII and CIV absorbers. At high redshifts, from 3 < z < 5, galaxies rapidly build up a metal enriched halo where, despite significant evolution in the ionizing background, the production of metals through star formation driven outflows dominates observed trends increasing the number of observed absorbers per redshift path length towards z = 3. At mid redshifts, from 2 < z < 3, a large cosmic increase in the global star formation rate drives large numbers of high column density outflows into the halos of galaxies. At this time, metal line absorption of all species is increased above all other epochs. At low redshifts, for z < 2, the universe becomes more quiescent in both star formation and ionizing background. Weak, low column density MgII absorbers proliferate, while strong MgII absorbers likely fragment or re-accrete onto their host galaxy. Strong CIV absorbers, at this time, still increase in number per absorption path, while their weaker counterparts begin to disappear. MgII and CIV absorbers appear to originate in star formation driven outflows, but their different evolutionary properties imply they represent two physically distinct phases of gas. These two phases comprise the CGM and contribute separately to the cycle of baryons into and out of galaxies.

Oct
23
Mon
Pizza Lunch: Kristian Finlator
Oct 23 @ 12:30 pm – 1:30 pm
Pizza Lunch: Kristian Finlator @ AY 119

Vastly Improved Simulations of the Hydrogen Reionization Epoch: Too Much for One Paper?

Sep
28
Fri
Colloquium: Bharat Ratra (Host: Anatoly Klypin)
Sep 28 @ 3:15 pm – 4:15 pm
Colloquium: Bharat Ratra (Host: Anatoly Klypin) @ BX102

Spatial Curvature, Dark Energy Dynamics, Neither, or Both?

Bharat Ratra, Kansas State University

Experiments and observations over the two last decades have persuaded cosmologists that (as yet undetected) dark energy is by far the main component of the energy budget of the current universe. I review a few simple dark energy models and compare their predictions to observational data, to derive dark energy model-parameter constraints and to test consistency of different data sets. I conclude with a list of open cosmological questions.
Oct
19
Fri
Colloquium: Sanchayeeta Borthakur (Host: Kristian Finlator)
Oct 19 @ 3:15 pm – 4:15 pm
Colloquium:  Sanchayeeta Borthakur (Host: Kristian Finlator) @ BX102

Understanding How Galaxies Reionized the Universe

 Sanchayeeta Borthakur, Arizona State University

Identifying the population of galaxies that was responsible for the reionization of the universe is a long-standing quest in astronomy. While young stars can produce large amounts of ionizing photons, the mechanism behind the escape of Lyman continuum photons (wavelength < 912 A) from star-forming regions has eluded us. To identify such galaxies and to understand the process of the escape of Lyman continuum, we present an indirect technique known as the residual flux technique. Using this technique, we identified (and later confirmed) the first low-redshift galaxy that has an escape fraction of ionizing flux of 21%. This leaky galaxy provides us with valuable insights into the physics of starburst-driven feedback. In addition, since direct detection of ionizing flux is impossible at the epoch of reionization, the residual flux technique presents a highly valuable tool for future studies to be conducted with the upcoming large telescopes such as the JWST.

Sep
6
Fri
Colloquium: Brian Svoboda (Host: Moire Prescott)
Sep 6 @ 3:15 pm – 4:15 pm
Colloquium: Brian Svoboda (Host: Moire Prescott) @ BX102

Starless clumps and the earliest phases of high-mass star formation in the Milky Way

Brian Svoboda, NRAO Jansky Fellow

High-mass stars are key to regulating the interstellar medium, star formation activity, and overall evolution of galaxies, but their formation remains an open problem in astrophysics. In order to understand the physical conditions during the earliest phases of high-mass star formation, I will present observational studies we have carried out on dense starless clump candidates (SCCs) that show no signatures of star formation activity. We identify 2223 SCCs from the 1.1 mm Bolocam Galactic Plane Survey, systematically analyse their physical properties, and show that the starless phase is not represented by a single timescale, but evolves more rapidly with increasing clump mass. To investigate the sub-structure in SCCs at high spatial resolution, we investigate the 12 most high-mass SCCs within 5 kpc using ALMA. We find previously undetected low-luminosity protostars in 11 out of 12 SCCs, fragmentation equal to the thermal Jeans length of the clump, and no starless cores exceeding 30 solar masses. While uncertainties remain concerning the star formation efficiency in this sample, these observational facts are consistent with models where high-mass stars form from initially low- to intermediate-mass protostars that accrete most of their mass from the surrounding clump. I will also present on-going research studying gas inflow signatures with GBT/Argus and ALMA, and the dense core mass function with the JVLA.

(note:slide overlay error)