Colloquium PhD Thesis Defense: Sten Hasselquist
Apr 6 @ 3:15 pm – 4:15 pm
Colloquium PhD Thesis Defense: Sten Hasselquist @ BX102

Colloquium Title

Sten Hasselquist, NMSU


Colloquium Thesis Defense: Lauren Kahre
Jan 23 @ 3:00 pm – 4:00 pm
Colloquium Thesis Defense: Lauren Kahre

Extinction Mapping and Dust-to-Gas Ratios of Nearby Galaxies

Lauren Kahre, NMSU

We present a study of the dust{to{gas ratios in 31 nearby (D >
10 Mpc) galaxies. Using Hubble Space Telescope broad band WFC3/UVIS UV and
optical images from the Treasury program LEGUS (Legacy ExtraGalactic UV
Survey) combined with archival HST/ACS data, we correct thousands of
individual stars for extinction across these galaxies using an
isochrone-matching (reddening-free Q) method. We generate extinction maps
for each galaxy from the individual stellar extinctions using both
adaptive and fixed resolution techniques, and correlate these maps with
neutral HI and CO gas maps from literature, including The HI Nearby Galaxy
Survey (THINGS) and the HERA CO-Line ExtraGalactic Survey (HERACLES). We
calculate dust-to-gas ratios and investigate variations in the dust-to-gas
ratio with galaxy metallicity. We find a power law relationship between
dust-to-gas ratio and metallicity. The single power law is consistent with
other studies of dust-to-gas ratio compared to metallicity, while the
broken power law shows a significantly shallower slope for low metallicity
galaxies than previously observed. We find a change in the relation when
H_2 is not included. This implies that underestimation of N_H2 in
low-metallicity dwarfs from a too-low CO-to-H2 conversion factor X_CO
could have produced too low a slope in the derived relationship between
dust-to-gas ratio and metallicity. We also
compare our extinctions to those derived from fitting the spectral energy
distribution (SED) using the Bayesian Extinction and Stellar Tool (BEAST)
for NGC 7793 and and systematically lower extinctions from SED-fitting as
compared to isochrone matching. Finally, we compare our extinction maps of
NGC 628 to maps of the dust obtained via IR emission from Aniano et al.
(2012) and find a factor of 2 difference in dust-to-gas ratios determined
from the two maps, consistent with previous work.

Colloquium: Dale Frail (Host: Sarah Kovac)
Jan 25 @ 3:15 pm – 4:15 pm
Colloquium: Dale Frail (Host: Sarah Kovac) @ BX102

Multi-Messenger EM-GW Astronomy: The View from the Radio End of the EM Spectrum

Dale Frail, NRAO

Abstract: With the discovery of gravitational waves and electromagnetic radiation from the binary neutron star merger GW170817, the era of GW multi-messenger astronomy has begun with style. I will describe the discovery, show where progress has been made in several areas, and then move on to describe a controversy regarding the origin of the afterglow emission. After explaining the importance of this issue, I will show how late-time radio observations have decisively resolved the issue. I will end with a discussion of the future, with an emphasis on the role of radio observations in finding and studying EM counterparts.

Special Colloquium: Stella Kafka (Host: Karen Kinemuchi)
Feb 20 @ 3:15 pm – 4:15 pm
Special Colloquium: Stella Kafka (Host: Karen Kinemuchi) @ Domenici Hall

The AAVSO Program: A Resource for Variable Star Research

Stella Kafka, AAVSO

The AAVSO was formed in 1911 as a group of US-based amateur observers obtaining data in support of professional astronomy projects. Now, it has evolved into an International Organization with members and observers from both the professional and non-professional astronomical community, contributing photometry to a public photometric database of about 25,000 variable objects, and using it for research projects. As such, the AAVSO’s main claim to fame is that it successfully engages backyard Astronomers, educators, students and professional astronomers in astronomical research. I will present the main aspects of the association and how it has evolved with time to become a premium resource for variable star researchers. I will also discuss the various means that the AAVSO is using to support cutting-edge variable star science, and how it engages its members in projects building a stronger international astronomical community.


Dr. Stella Kafka, is the Director of the AAVSO (American Association of Variable Star Observers). Before her tenure at the AAVSO, Dr Kafka held positions at CTIO, Spitzer Science center/Caltech, Carnegie Institution of Washington/DTM and AIP Publishing. The AAVSO is an international non-profit organization of variable star observers whose mission is to enable anyone, anywhere, to participate in scientific discovery through variable star astronomy.

Colloquium: Jack Burns
Mar 19 @ 7:30 pm – 8:30 pm
Colloquium: Jack Burns @ Domenici Hall 109

Our Future in Space: The Moon and Beyond

Jack Burns, University of Colorado Boulder

Why do we explore space? How do we explore
space? Where should we explore? What are
the tools for space exploration? These questions will be addressed in this talk focused on
the future of human and robotic exploration of
the solar system and beyond. Since the end of
the Apollo program, the justification for the human space program has proven elusive. We will
borrow a page from the computer and new
commercial space companies to argue for an
inspirational approach to the next phase of
exploration beyond Earth orbit. The “how” is
addressed with NASA’s new Orion and Space
Launch Systems along with new launch systems being developed by private companies
such as SpaceX and Blue Origin. We will argue
that both the Moon and Mars can be explored
through a combination of governmental programs, international partnerships, and public-
private partnerships. The tools for exploration
include telerobotics where astronauts aboard
NASA’s Lunar Gateway in orbit of the Moon
will operate rovers and deploy telescopes on
the lunar surface in a new synergy between
robots and humans.

Colloquium: Ylva Pihlström (Host: Moire Prescott)
Apr 5 @ 3:15 pm – 4:15 pm
Colloquium: Ylva Pihlström (Host: Moire Prescott) @ BX102

A Masing BAaDE’s Window

Ylva Pihlström, University of New Mexico

Evolved, intermediate mass stars are tracers of an intermediate age stellar population. Due to high mass-loss rates, they harbor circumstellar envelopes, in which different types of molecular maser emission can be observed. The maser emission allows not only studies of the physical conditions in the circumstellar envelope itself, but also can be used to test Galactic dynamics. Both these facets are investigated in the Bulge Asymmetries and Dynamical Evolution (BAaDE) survey, using 28,000 SiO maser emitting stars in the Milky Way galaxy observed by the VLA and ALMA. I will give an overview of this survey and discuss a few of our results and challenges: A marginal flux bias exists in our sample due to two different sets of frequencies observed, which could partly be corrected for using longer integration times at ALMA. We have collected an extensive infrared data set for our sample, providing a means of modeling parameters such as bolometric luminosities and mass loss rates. Infrared colors further helps to separate C-rich from O-rich stars, and may also be tied to line ratios, tying back to the conditions in the circumstellar envelope.

Special Colloquium: Amanda Wilber (Host: Moire Prescott)
Apr 17 @ 3:15 pm – 4:15 pm
Special Colloquium: Amanda Wilber (Host: Moire Prescott) @ AY 119

Searching for diffuse radio emission in merging galaxy clusters with LOFAR

Amanda Wilber, Universität Hamburg

Galaxy cluster mergers are powerful drivers of turbulence and shocks, which can accelerate cosmic-ray electrons within the magnetic field of the intracluster medium (ICM) to generate Megaparsec-sized radio structures. Actively merging clusters are excellent astrophysical laboratories for studying the nature of magnetic fields and the physics of particle acceleration. Questions still remain in identifying the source of cosmic-ray electrons that appear to fill the ICM so uniformly, and in determining the origin and amplification mechanisms of cluster magnetic fields. With its high-resolution, extended coverage, and sensitivity to radio emission with low surface brightness, the LOw Frequency ARray (LOFAR) Two-metre Sky Survey (LoTSS) gives us an unparalleled opportunity to hunt for diffuse radio sources in distant galaxy clusters. In this talk I present the results of LoTSS observations which reveal never-before-seen diffuse radio emission in the merging galaxy clusters Abell 1132 and Abell 1314.

Colloquium: Megan Reiter (Host: Kristian Finlator)
Apr 26 @ 3:15 pm – 4:15 pm
Colloquium: Megan Reiter (Host: Kristian Finlator) @ BX102

The Role of Ecology in Star and Planet Formation

Megan Reiter, Royal Observatory Edinburgh

Understanding how feedback regulates star and planet formation is one of the outstanding unsolved problems in astrophysics. Stellar feedback affects all astrophysical scales: it shapes the interstellar medium and mass function of galaxies, determines the fragmentation and star formation efficiency of molecular clouds, and plays a central role in the geochemical evolution of terrestrial planets. High-mass stars shape the local star-forming environment – the ecology – via radiation pressure, stellar winds, photoionization, and supernovae. Photoionization is the least explored of these; however, recent numerical work suggests that it dominates the destruction of molecular clouds and planet-forming disks around stars born in clusters. These predictions depend critically on the dynamics of newborn stars and feedback-altered gas, but these quantities are poorly unconstrained. I will talk about two on-going surveys using ALMA, MUE/VLT, and M2FS/Magellan to measure gas and stellar kinematics in order to test the role of environment in shaping the outcome of star and planet formation.

Colloquium: Brian Svoboda (Host: Moire Prescott)
Sep 6 @ 3:15 pm – 4:15 pm
Colloquium: Brian Svoboda (Host: Moire Prescott) @ BX102

Starless clumps and the earliest phases of high-mass star formation in the Milky Way

Brian Svoboda, NRAO Jansky Fellow

High-mass stars are key to regulating the interstellar medium, star formation activity, and overall evolution of galaxies, but their formation remains an open problem in astrophysics. In order to understand the physical conditions during the earliest phases of high-mass star formation, I will present observational studies we have carried out on dense starless clump candidates (SCCs) that show no signatures of star formation activity. We identify 2223 SCCs from the 1.1 mm Bolocam Galactic Plane Survey, systematically analyse their physical properties, and show that the starless phase is not represented by a single timescale, but evolves more rapidly with increasing clump mass. To investigate the sub-structure in SCCs at high spatial resolution, we investigate the 12 most high-mass SCCs within 5 kpc using ALMA. We find previously undetected low-luminosity protostars in 11 out of 12 SCCs, fragmentation equal to the thermal Jeans length of the clump, and no starless cores exceeding 30 solar masses. While uncertainties remain concerning the star formation efficiency in this sample, these observational facts are consistent with models where high-mass stars form from initially low- to intermediate-mass protostars that accrete most of their mass from the surrounding clump. I will also present on-going research studying gas inflow signatures with GBT/Argus and ALMA, and the dense core mass function with the JVLA.

(note:slide overlay error)


Remote Colloquium: Fuyan Bian (Host: Kristian Finlator)
Apr 17 @ 3:00 pm – 4:00 pm
Remote Colloquium: Fuyan Bian (Host: Kristian Finlator) @ Online

Evolution of Ionized Interstellar Medium across Cosmic Time

Fuyan Bian, European Southern Observatory

The ionized interstellar medium (ISM) provides essential information on the star-forming environments, metal enrichment, and underlying ionizing radiation field in galaxies. It is crucial to understand how the ionized ISM evolves with Cosmic time. In this talk, I will present a sample of local galaxies that closely resemble the properties of high-redshift galaxies at high redshift. These local analogs of high-redshift galaxies provide a unique local laboratory to study high-redshift galaxies. I will discuss how to use these analogs to improve our understanding of the high-redshift metallicity empirical calibrations and physical mechanism(s) to drive the evolution of optical diagnostics lines from high redshift to low redshift.