Calendar

Nov
17
Fri
Colloquium: Larisza Krista (Host: James McAteer)
Nov 17 @ 3:15 pm – 4:15 pm

The statistical study of solar dimmings and their eruptive counterparts

Larisza Krista, Cu/CIRES, NOAA/NCEI

Picture1Results are presented from analyzing the physical and morphological properties of 154 dimmings (transient coronal holes) and the associated flares and coronal mass ejections (CMEs). Each dimming in the catalog was processed with the semi-automated Coronal Dimming Tracker (CoDiT) using Solar Dynamics Observatory AIA 193 Å observations and HMI magnetograms. Instead of the typically used difference images, the transient dark regions were detected “directly” in extreme ultraviolet (EUV) images. This allowed us to study dimmings as the footpoints of CMEs—in contrast with the larger, diffuse dimmings seen in difference images that represent the projected view of the rising, expanding plasma. Studying the footpoint-dimming morphology allowed us to better understand the CME structure in the low corona. While comparing the physical properties of dimmings, flares, and CMEs, the relationships between the different parts of this complex eruptive phenomenon were identified: larger dimmings were found to be longer-lived, which suggests that it takes longer to “close down” large open magnetic regions. During their growth phase, smaller dimmings were found to acquire a higher magnetic flux imbalance (i. e., become more unipolar) than larger dimmings. Furthermore, the EUV intensity of dimmings (indicative of local electron density) was found to correlate with how much plasma was removed and how energetic the eruption was. Studying the morphology of dimmings (single, double, fragmented) also helped identify different configurations of the quasi-open magnetic field.

BIO

Dr Larisza Krista received an MSc degree in astrophysics in 2007 from Eotvos Lorand University, in Budapest, Hungary. She did her PhD at Trinity College Dublin (Ireland) as a Government of Ireland Scholar, on “The Evolution and Space Weather Effects of Solar Coronal Holes”. She moved to Boulder in 2011 to accept a research scientist position at CU/CIRES in residence at NOAA/SWPC. She has also been a long-term scientific visitor at the High Altitude Observatory, where she collaborates with Dr Scott McIntosh. Her main interests involve the evolution of open solar magnetic field regions over the solar cycle as well as the related heliospheric structures and geomagnetic effects.

 

 

Nov
23
Thu
Solar Group meeting
Nov 23 @ 1:30 pm – 2:30 pm
Nov
27
Mon
Pizza Lunch: Rachel Marra and Trevor Picard
Nov 27 @ 12:30 pm – 1:30 pm
Pizza Lunch: Rachel Marra and Trevor Picard @ AY 119

ASTR 598 Talk

Nov
30
Thu
Solar Group meeting
Nov 30 @ 1:30 pm – 2:30 pm
Dec
1
Fri
Colloquium: Laura Keating (Host: Kristian Finlator)
Dec 1 @ 3:15 pm – 4:15 pm
Colloquium: Laura Keating (Host: Kristian Finlator) @ BX102

Colloquium Title

Colloquium Speaker Name, Affiliation

Abstract text

Dec
4
Mon
Pizza Lunch: Karen Kinemuchi
Dec 4 @ 12:30 pm – 1:30 pm
Pizza Lunch: Karen Kinemuchi @ AY 119

Life at Apache Point Observatory

Dec
7
Thu
Solar Group meeting
Dec 7 @ 1:30 pm – 2:30 pm
Dec
8
Fri
Colloquium – Dean Pesnell (Host: James McAteer)
Dec 8 @ 3:15 pm – 4:15 pm
Colloquium - Dean Pesnell (Host: James McAteer) @ BX102

SDO, the Sun, the Universe

Dean Pesnell, NASA / GSFC

ABSTRACT: The Sun is our best example for how stars evolve and behave. It is the only star whose surface is well-resolved in time and space. It is the only star which local helioseisomology can look into and through. One tool we to study the Sun is the Solar Dynamics Observatory (SDO), a NASA satellite that has been returning data for seven years. SDO focuses on the variations in the Sun caused by changes in the magnetic field generated by the convection zone.I will describe some aspects of SDO science that can be directly related to Sun-like stars. First are spectral irradiance measurements in extreme ultraviolet wavelengths that contribute to the loss of planetary atmospheres. Next are failed filament eruptions that fall back onto the surface as a form of accretion. Finally, how the magnetic field evolves from solar minimum to maximum and back is giving us clues about predicting that magnetic field. Please come and have a look at how studying the Sun informs our knowledge of stars.

Dec
14
Thu
Solar Group meeting
Dec 14 @ 1:30 pm – 2:30 pm
Oct
19
Fri
Colloquium: Sanchayeeta Borthakur (Host: Kristian Finlator)
Oct 19 @ 3:15 pm – 4:15 pm
Colloquium:  Sanchayeeta Borthakur (Host: Kristian Finlator) @ BX102

Understanding How Galaxies Reionized the Universe

 Sanchayeeta Borthakur, Arizona State University

Identifying the population of galaxies that was responsible for the reionization of the universe is a long-standing quest in astronomy. While young stars can produce large amounts of ionizing photons, the mechanism behind the escape of Lyman continuum photons (wavelength < 912 A) from star-forming regions has eluded us. To identify such galaxies and to understand the process of the escape of Lyman continuum, we present an indirect technique known as the residual flux technique. Using this technique, we identified (and later confirmed) the first low-redshift galaxy that has an escape fraction of ionizing flux of 21%. This leaky galaxy provides us with valuable insights into the physics of starburst-driven feedback. In addition, since direct detection of ionizing flux is impossible at the epoch of reionization, the residual flux technique presents a highly valuable tool for future studies to be conducted with the upcoming large telescopes such as the JWST.