
Understanding How Galaxies Reionized the Universe
Sanchayeeta Borthakur, Arizona State University
Identifying the population of galaxies that was responsible for the reionization of the universe is a long-standing quest in astronomy. While young stars can produce large amounts of ionizing photons, the mechanism behind the escape of Lyman continuum photons (wavelength < 912 A) from star-forming regions has eluded us. To identify such galaxies and to understand the process of the escape of Lyman continuum, we present an indirect technique known as the residual flux technique. Using this technique, we identified (and later confirmed) the first low-redshift galaxy that has an escape fraction of ionizing flux of 21%. This leaky galaxy provides us with valuable insights into the physics of starburst-driven feedback. In addition, since direct detection of ionizing flux is impossible at the epoch of reionization, the residual flux technique presents a highly valuable tool for future studies to be conducted with the upcoming large telescopes such as the JWST.

How to Take Pictures of Baby Planets
Kate Follette, Amherst College
Of the thousands of known extrasolar planets, why are the dozen or so directly imaged exoplanets among the most important despite their apparently anomalous properties within the general exoplanet population (>10 astronomical units, >2x the mass of Jupiter)? What are the prospects for (and recent successes in) detecting younger, lower-mass and/or closer-in planets via direct imaging? I will discuss the current state of the art in the field of high-contrast imaging of extrasolar planets and the disks of gas and dust from which planets form (“circumstellar disks”). I will place particular emphasis on a subset of objects that host both disks and (likely) planets – the so-called “transitional disks”. These young circumstellar disks are almost certainly actively undergoing planet formation, and yet the presence of disk material complicates our ability to isolate light from planets and/or protoplanets embedded within them. I will end by discussing recent results from the Giant Accreting Protoplanet Survey (GAPplanetS) of 15 southern-hemisphere transition disks. The GAPlanetS survey aims to find protoplanets embedded in transitional disks through a distinctive signature at hydrogen wavelengths, and has so far discovered: 2-3 planets, 1 accreting M-dwarf stellar companion, and 1 disk feature masquerading as a planet.

Rethinking the Fundamentals of Classical Nova Explosions
Laura Chomiuk, MSU
Over the past few years, a revolution has been taking place in our understanding of classical novae, largely driven by the discovery of GeV gamma-rays emanating from these garden-variety explosions. These gamma-rays hint that shocks are energetically important—perhaps even dominant—in novae. I will present our burgeoning understanding of shocks in novae, from both multi-wavelength observational and theoretical perspectives, and illustrate how novae can be used as testbeds to understand other shock-powered explosions.