Calendar

Nov
16
Mon
Pizza Lunch: Moire Prescott
Nov 16 @ 12:30 pm – 1:30 pm
Pizza Lunch: Moire Prescott

Galaxy Nurseries in Lya Nebulae

Nov
20
Fri
Tombaugh Observatory Open House
Nov 20 @ 7:00 pm – 9:00 pm
Tombaugh Observatory Open House @ Tombaugh Observatory

Open to the public.

Faculty member: James McAteer

Graduate Students: Nigel Mathes, Emma Dahl, Laura Mayorga

 

 

Nov
30
Mon
Pizza Lunch: Ethan Dederick
Nov 30 @ 12:30 pm – 1:30 pm
Pizza Lunch: Ethan Dederick

598 Research

Dec
4
Fri
Colloquium: Brian Jackson
Dec 4 @ 3:15 pm – 4:15 pm
Colloquium:  Brian Jackson @ BX102

On the Edge: Exoplanets with Orbital Periods Shorter Than a Peter Jackson Movie

Brian Jackson, Boise State Univeristy

From wispy gas giants to tiny rocky bodies, exoplanets with orbital periods of several days and less challenge theories of planet formation and evolution. Recent searches have found small rocky planets with orbits reaching almost down to their host stars’ surfaces, including an iron-rich Mars-sized body with an orbital period of only four hours. So close to their host stars that some of them are actively disintegrating, these objects’ origins remain unclear, and even formation models that allow significant migration have trouble accounting for their very short periods. Some are members of multi-planet system and may have been driven inward via secular excitation and tidal damping by their sibling planets. Others may be the fossil cores of former gas giants whose atmospheres were stripped by tides.

In this presentation, I’ll discuss the work of our Short-Period Planets Group (SuPerPiG), focused on finding and understanding this surprising new class of exoplanets. We are sifting data from the reincarnated Kepler Mission, K2, to search for additional short-period planets and have found several new candidates. We are also modeling the tidal decay and disruption of close-in gaseous planets to determine how we could identify their remnants, and preliminary results suggest the cores have a distinctive mass-period relationship that may be apparent in the observed population. Whatever their origins, short-period planets are particularly amenable to discovery and detailed follow-up by ongoing and future surveys, including the TESS mission.

Tombaugh Observatory Open House
Dec 4 @ 7:00 pm – 9:00 pm
Tombaugh Observatory Open House @ Tombaugh Observatory

Open to the public.

Faculty member: James Murphy

Graduate Students: Jacob Vander Vliet, Kyle Uckert

 

 

Dec
7
Mon
Pizza Lunch: Chunming Zhu
Dec 7 @ 12:30 pm – 1:30 pm
Pizza Lunch: Chunming Zhu

TBD

Sep
20
Tue
Colloquium Thesis Proposal: Ethan Dederick
Sep 20 @ 3:00 pm – 4:00 pm
Colloquium Thesis Proposal: Ethan Dederick @ Science Hall 310

Utilizing Planetary Oscillations to Constrain the Interior Structure of the Jovian Planets

Ethan Dederick

Seismology has been the premier tool of study for understanding the
interior structure of the Earth, the Sun, and even other stars. Yet in this
thesis proposal, we wish to utilize these tools to understand the interior
structure of the Jovian planets, Saturn in particular. Recent observations
of spiral density structures in Saturn’s rings caused by its oscillations
have provided insight into which modes exist within Saturn and at what
frequencies. Utilizing these frequencies to compare to probable mode can-
didates calculated from Saturn models will also us to ascertain the interior
profiles of state variables such as density, sound speed, rotation, etc. Using
these profiles in a Saturn model, coupled with tweaking the interior struc-
ture of the model, i.e. the inclusion of stably stratified regions, should
allow us to explain which modes are responsible for the density structures
in the rings, as well as predict where to look to find more such structures.
In doing so, we will not only have a much greater understanding of Sat-
urn’s interior structure, but will have constructed a method that can also
be applied to Jupiter once observations of its mode frequencies become
available. In addition, we seek to explain if moist convection on Jupiter is
responsible for exciting its modes. We aim to do this by modeling Jupiter
as a 2D harmonic oscillator. By creating a resonance between moist con-
vective storms and Jovian modes, we hope to match the expected mode
energies and surface displacements of Jupiter’s oscillations.

Nov
11
Fri
Colloquium: Amy Simon (Host: Nancy Chanover)
Nov 11 @ 3:15 pm – 4:15 pm
Colloquium: Amy Simon (Host: Nancy Chanover) @ Biology Annex 102

Outer Planets Update

Dr. Amy Simon, NASA

The Hubble Outer Planet Atmospheres Legacy (OPAL) program is a yearly program for observing each of the outer planets over two full rotations. Observations began with Uranus in 2014, adding Neptune and Jupiter in 2015 (Saturn will be included in 2018, after the end of the Cassini mission). These observations have provided interesting new discoveries in their own right, but are also now being combined with observations from a number of facilities, including NASA’s IRTF, Keck, the VLA, as well as the Kepler and Spitzer missions to further expand the breadth of science they contain.  This talk will cover the latest observations for each of these planets and what we are learning from these data sets.

 

Mar
6
Mon
Pizza Lunch: F.X. Schmider
Mar 6 @ 12:30 pm – 1:30 pm
Pizza Lunch: F.X. Schmider

JIVE/JOVIAL, a network for Jupiter’s seismology and atmosphere dynamics

F.X. Schmider, Observatoire de la Cote d’Azur

Sep
8
Fri
Colloquium: Travis Metcalfe (Host: Jason Jackiewicz)
Sep 8 @ 3:15 pm – 4:15 pm
Colloquium: Travis Metcalfe (Host: Jason Jackiewicz) @ BX102

The Magnetic Mid-life Crisis of the Sun

Dr. Travis Metcalfe, Space Sciences Institute

After decades of effort, the solar activity cycle is exceptionally well characterized but it remains poorly understood. Pioneering work at the Mount Wilson Observatory demonstrated that other sun-like stars also show regular activity cycles, and suggested two possible relationships between the rotation rate and the length of the cycle. Neither of these relationships correctly describe the properties of the Sun, a peculiarity that demands explanation. Recent discoveries have started to shed light on this issue, suggesting that the Sun’s rotation rate and magnetic field are currently in a transitional phase that occurs in all middle-aged stars. We have recently identified the manifestation of this magnetic transition in the best available data on stellar cycles. The results suggest that the solar cycle may be growing longer on stellar evolutionary timescales, and that the cycle might disappear sometime in the next 0.8-2.4 Gyr. Future tests of this hypothesis will come from ground-based activity monitoring of Kepler targets that span the magnetic transition, and from asteroseismology with the TESS mission to determine precise masses and ages for bright stars with known cycles.