Colloquium: Michael Boylan-Kolchin
Feb 17 @ 3:15 pm – 4:15 pm
Colloquium: Michael Boylan-Kolchin @ BX 102

Near-field Cosmology: Big Science from Small Galaxies

Dr. M. Boylan-Kolchin, UT Austin

The local Universe provides a unique and powerful way to explore galaxy formation and cosmological physics. Through measurements of the abundances, kinematics, and chemical composition of nearby systems that can be studied in exquisite detail, we can learn about the initial spectrum of cosmological density fluctuations, galaxy formation, dark matter physics, and processes at cosmic dawn that might otherwise remain unobservable. I will summarize some of the new and surprising results in this rapidly-changing subject of “near-field cosmology” and discuss how these results are driving advances in both astronomy and particle physics.

Colloquium: Jack Burns (Host: Nancy Chanover)
Mar 2 @ 3:15 pm – 4:15 pm
Colloquium: Jack Burns (Host: Nancy Chanover) @ Domenici Hall Room 106

Cosmology from the Moon: The Dark Ages Radio Explorer (DARE)

Dr. Jack Burns, University of Colorado Boulder

In the New Worlds, New Horizons in Astronomy & Astrophysics Decadal Survey, Cosmic Dawn was singled out as one of the top astrophysics priorities for this decade. Specifically, the Decadal report asked “when and how did the first galaxies form out of cold clumps of hydrogen gas and start to shine—when was our cosmic dawn?” It proposed “astronomers must now search the sky for these infant galaxies and find out how they behaved and interacted with their surroundings.” This is the science objective of DARE – to search for the first stars, galaxies, and black holes via their impact on the intergalactic medium (IGM) as measured by the highly redshifted 21-cm hyperfine transition of neutral hydrogen (HI). DARE will probe redshifts of 11-35 (Dark Ages to Cosmic Dawn) with observed HI frequencies of 40-120 MHz. DARE will observe expected spectral features in the global signal of HI that correspond to stellar ignition (Lyman-α from the first stars coupling with the HI hyperfine transition), X-ray heating/ionization of the IGM from the first accreting black holes, and the beginning of reionization (signal dominated by IGM ionization fraction). These observations will complement those expected from JWST, ALMA, and HERA. We propose to observe these spectral features with a broad-beam dipole antenna along with a wide-band receiver and digital spectrometer. We will place DARE in lunar orbit and take data only above the farside, a location known to be free of human-generated RFI and with a negligible ionosphere. In this talk, I will present the mission concept including initial results from an engineering prototypes which are designed to perform end-to-end validation of the instrument and our calibration techniques. I will also describe our signal extraction tool, using a Markov Chain Monte Carlo technique, which measures the parameterized spectral features in the presence of substantial Galactic and solar system foregrounds.


Pizza Lunch: Jean McKeever
Mar 13 @ 12:30 pm – 1:30 pm
Pizza Lunch: Jean McKeever @ AY 119

Red Giants in Eclipsing Binary Systems

Jean McKeever


Colloquium PhD Defense: Sean Markert
Mar 31 @ 3:15 pm – 4:15 pm
Colloquium PhD Defense: Sean Markert


Dr. S. Markert, NMSU


The weak gravitational lensing of galaxy clusters is a valuable tool. The deflection of light around a lens is solely dependent on the underlying distribution of foreground mass, and independent of tracers of mass such as the mass to light ratio and kinematics. As a direct probe of mass, weak lensing serves as an independent calibration of mass-observable relationships. These massive clusters are objects of great interest to astronomers, as their abundance is dependent on the conditions of the early universe, and accurate counts of clusters serve as a test of cosmological model. Upcoming surveys, such as LSST and DES, promise to push the limit of observable weak lensing, detecting clusters and sources at higher redshift than has ever been detected before. This makes accurate counts of clusters of a given mass and redshift, and proper calibration of mass-observable relationships, vital to cosmological studies.
We used M> 10 13.5 h −1 M ⊙ halos from the MultiDark Planck simulation at z∼0.5 to study the behavior of the reduced shear in clusters. We generated 2D maps of convergence and shear the halos using the GLAMER lensing library. Using these maps, we simulated observations of randomly placed background sources, and generate azimuthal averages of the shear. This reduced shear profile, and the true reduced shear profile of the halo, is fit using analytical solutions for shear of the NFW, Einasto, and truncated NFW density profile. The masses of these density profiles are then compared to the total halo masses from the halo catalogs.
We find that fits to the reduced shear for halos extending past ≈ 2 h −1 Mpc are fits to the noise of large scale structure along the line of sight. This noise is largely in the 45 ◦ rotated component to the reduced tangential shear, and is a breakdown in the approximation of g tan ≈g tot required for density profile fitting of clusters. If fits are constrained to a projected radii of < 2 h −1 Mpc, we see massively improved fits insensitive to the amount of structure present along the line of sight.

Colloquium PhD Defense: Jacob Vander Vliet
May 5 @ 3:15 pm – 4:15 pm
Colloquium PhD Defense: Jacob Vander Vliet @ Domenici Hall 106

Observing the Baryon Cycle in Hydrodynamic Cosmological Simulations

Jacob Vander Vliet, NMSU

An understanding of galaxy evolution requires an understanding of the flow of baryons in and out of a galaxy. The accretion of baryons is required for galaxies to form stars, while stars eject baryons out of the galaxy through stellar feedback mechanisms such as supernovae, stellar winds, and radiation pressure. The interplay between outflowing and infalling material form the circumgalactic medium (CGM). Hydrodynamic simulations provide understanding in the connection between stellar feedback and the distribution and kinematics of baryons in the CGM. To compare simulations and observations properly the simulated CGM must be observed in the same manner as the real CGM. I have developed the Mockspec code to generate synthetic quasar absorption line observations of the CGM in cosmological hydrodynamic simulations. Mockspec generates synthetic spectra based on the phase, metallicity, and kinematics of CGM gas and mimics instrumental effects. Mockspec includes automatic analysis of the spectra and identifies the gas responsible for the absorption. Mockspec was applied to simulations of dwarf galaxies at low redshift to examine the observable effect different feedback models have on the CGM. While the different feedback models had strong effects on the galaxy, they all produced a similar CGM that failed match observations. Mockspec was applied to the VELA simulation suite of high redshift, high mass galaxies to examine the variance of the CGM across different galaxies in different environments. The observable CGM showed little variation between the different galaxies and almost no evolution from z=4 to z=1. The VELAs were not able to generate a CGM to match the observations. The properties of cells responsible for the absorption were compared to the derived properties from Voigt Profile decomposition. VP modeling was found to accurately describe the HI and MgII absorbing gas but failed for high ionization species such as CIV and OVI, which do not arise in the assumed coherent structures.  The technique of mock QAL is useful for testing the accuracy of the simulated CGM and for verifying observational techniques, but not for differentiating between feedback prescriptions in dwarf galaxies.


Colloquium PhD Defense: Nigel Mathes
Jul 3 @ 2:00 pm – 3:00 pm
Colloquium PhD Defense: Nigel Mathes

The Vulture Survey of MgII and CIV Absorbers: Feasting on the Bones of Spectra Left to Die

Nigel Mathes, NMSU


We present detailed measurements of the absorption properties and redshift evolution of MgII and CIV absorbers as measured in archival spectra from the UVES spectrograph at the Very Large Telescope (VLT/UVES) and the HIRES spectrograph at the Keck Telescope (Keck/HIRES) to equivalent width detection limits below 0.01 angstroms. This survey examines 860 high resolution spectra from various archival data sets representing 700 unique sightlines, allowing for detections of intervening MgII absorbers spanning redshifts 0.1 < z < 2.6 and intervening CIV absorbers spanning redshifts 1 < z < 5. We employ an accurate, automated approach to line detection which consistently detects redshifted absorption doublets. We observe three distinct epochs of evolution in the circumgalactic medium (CGM) as traced by MgII and CIV absorbers. At high redshifts, from 3 < z < 5, galaxies rapidly build up a metal enriched halo where, despite significant evolution in the ionizing background, the production of metals through star formation driven outflows dominates observed trends increasing the number of observed absorbers per redshift path length towards z = 3. At mid redshifts, from 2 < z < 3, a large cosmic increase in the global star formation rate drives large numbers of high column density outflows into the halos of galaxies. At this time, metal line absorption of all species is increased above all other epochs. At low redshifts, for z < 2, the universe becomes more quiescent in both star formation and ionizing background. Weak, low column density MgII absorbers proliferate, while strong MgII absorbers likely fragment or re-accrete onto their host galaxy. Strong CIV absorbers, at this time, still increase in number per absorption path, while their weaker counterparts begin to disappear. MgII and CIV absorbers appear to originate in star formation driven outflows, but their different evolutionary properties imply they represent two physically distinct phases of gas. These two phases comprise the CGM and contribute separately to the cycle of baryons into and out of galaxies.

Colloquium PhD Defense: Jean McKeever
Sep 20 @ 3:00 pm – 4:15 pm
Colloquium PhD Defense: Jean McKeever @ Business College 103

Asteroseismology of Red Giants: The Detailed Modeling of Red Giants in Eclipsing Binary Systems

Jean McKeever, NMSU

Asteroseismology is an invaluable tool that allows one to peer into the inside of a star and know its fundamental stellar properties with relative ease. There has been much exploration of solar-like oscillations within red giants with recent advances in technology, leading to new innovations in observing. The Kepler mission, with its 4-year observations of a single patch of sky, has opened the floodgates on asteroseismic studies. Binary star systems are also an invaluable tool for their ability to provide independent constraints on fundamental stellar parameters such as mass and radius. The asteroseismic scaling laws link observables in the light curves of stars to the physical parameters in the star, providing a unique tool to study large populations of stars quite easily. In this work we present our 4-year radial velocity observing program to provide accurate dynamical masses for 16 red giants in eclipsing binary systems. From this we find that asteroseismology overestimates the mass and radius of red giants by 15% and 5% respectively. We further attempt to model the pulsations of a few of these stars using stellar evolution and oscillation codes. The goal is to determine which masses are correct and if there is a physical cause for the discrepancy in asteroseismic masses. We find there are many challenges to modeling evolved stars such as red giants and we address a few of the major concerns. These systems are some of the best studied systems to date and further exploration of their asteroseismic mysteries is inevitable.


Special Pizza Lunch: Jane Rigby
Nov 9 @ 1:00 pm – 2:00 pm
Special Pizza Lunch: Jane Rigby @ AY 119

Galaxy Evolution in High Definition Via Gravitational Lensing

Dr. Jane Rigby

Deputy Project Scientist for JWST, NASA Goddard Space Flight Center

Abstract: In hundreds of known cases, “gravitational lenses” have deflected, distorted, and amplified images of galaxies or quasars behind them.  As such, gravitational lensing is a way to “cheat” at studying how galaxies evolve:  lensing can magnify galaxies by factors of 10–100 times, transforming them from objects we can barely detect to bright objects we can study in detail.   For such rare objects, we are studying how galaxies formed stars at redshifts of 1–4, the epoch when most of the Universe’s stars were formed. For lensed galaxies, we can obtained spectral diagnostics that are currently unavailable for the distant universe, but will become routine with next-generation telescopes.

In particular, I’ll discuss MEGaSaURA, The Magellan Evolution of Galaxies Spectroscopic and Ultraviolet Reference Atlas, which comprises high signal-to-noise, medium spectral resolution (R~3300) spectra of 15 extremely bright gravitationally lensed galaxies at redshifts of 1.6<z<3.6.   The sample, drawn from the SDSS Giant Arcs Survey, are many of the brightest lensed galaxies known.  The MEGaSaURA spectra reveal a wealth of spectral diagnostics: absorption from the outflowing wind; nebular emission lines that will be key diagnostics for JWST, GMT, and TMT; and photospheric absorption lines and P Cygni profiles from the massive stars that power the outflow.

Pizza Lunch: James Lewis
Nov 13 @ 12:30 pm – 1:30 pm
Pizza Lunch: James Lewis @ AY 119

Multivariate Analysis of the CGM

Colloquium: Dave Thilker (Host: Rene Walterbos)
Sep 21 @ 3:15 pm – 4:15 pm
Colloquium: Dave Thilker (Host: Rene Walterbos) @ BX102

Fresh Perspectives on Star Formation from LEGUS, the Legacy ExtraGalactic Ultraviolet Survey

David Thilker, Johns Hopkins University

The Legacy ExtraGalactic Ultraviolet Survey (LEGUS) was a Cycle 21 Large Treasury HST program which obtained ~parsec resolution NUV- to I-band WFC3 imaging for 50 nearby, representative star-forming Local Volume galaxies, with a primary goal of linking the scales of star formation from the limit of individual stars, to clusters and associations, eventually up through the hierarchy to giant star forming complexes and galaxy-scale morphological features.

I will review the basics of the survey, public data products and science team results pertaining to clusters and the field star hierarchy.  I will then describe work to optimize photometric selection methods for massive main sequence O star candidates and LBV candidates, in the former case establishing a means to statistically constrain the fraction of O stars in very isolated locales.  I will introduce new ideas on how to quantify the complex spatio-temporal nature of hierarchical star formation using multi-scale clustering methods. The first steps of this work have yielded a landmark OB association database for 36 LEGUS target fields (in 28 of the nearest available galaxies), with tracer stellar populations selected and interpreted uniformly.  I will finish with discussion of a pilot HST program to demonstrate remarkably increased survey efficiency of WFC3 UV imaging enabled by use of extra-wide (X) filter bandpasses.  Such efficiency is required as we move beyond LEGUS and begin to rigorously explore low surface brightness star-forming environments where canonical results for the IMF and cluster formation efficiency are increasingly called into question.