Colloquium Thesis Proposal: Laura Mayorga
Aug 28 @ 3:15 pm – 4:15 pm
Colloquium Thesis Proposal: Laura Mayorga @ BX102

Probing Exoplanet Atmospheric Properties from Phase Variations and Polarization

Laura Mayorga, NMSU

The study of exoplanets is evolving past simple transit and Doppler method discovery and characterization. One of the many goals of the upcoming mission WFIRST-AFTA is to directly image giant exoplanets with a coronagraph. We undertake a study to determine the types of exoplanets that missions such as WFIRST will encounter and what instruments these missions require to best characterize giant planet atmospheres. We will first complete a benchmark study of how Jupiter reflects and scatters light as a function of phase angle. We will use Cassini flyby data from late 2000 to measure Jupiter’s phase curve, spherical albedo, and degree of polarization. Using Jupiter as a comparison, we will then study a sample of exoplanet atmosphere models generated to explore the atmospheric parameter space of giant planets and estimate what WFIRST might observe. Our study will provide valuable refinements to Jupiter-like models of planet evolution and atmospheric composition. We will also help inform future missions of what instruments are needed to characterize similar planets and what science goals will further our knowledge of giant worlds in our universe.

Colloquium: Rodolfo Montez Jr.
Oct 2 @ 3:15 pm – 4:15 pm
Colloquium: Rodolfo Montez Jr. @ BX102

Insights into Binary Stars, Stellar Winds, and Astrophysical Plasmas from X-ray Observations of Planetary Nebulae

Rodolfo Montez Jr., Vanderbilt University


Pizza Lunch: Kyle Uckert and Nancy Chanover
Oct 26 @ 12:30 pm – 1:30 pm
Pizza Lunch: Kyle Uckert and Nancy Chanover

Integration of an IR spectrometer with a rock climbing robot

Colloquium: Brian Jackson
Dec 4 @ 3:15 pm – 4:15 pm
Colloquium:  Brian Jackson @ BX102

On the Edge: Exoplanets with Orbital Periods Shorter Than a Peter Jackson Movie

Brian Jackson, Boise State Univeristy

From wispy gas giants to tiny rocky bodies, exoplanets with orbital periods of several days and less challenge theories of planet formation and evolution. Recent searches have found small rocky planets with orbits reaching almost down to their host stars’ surfaces, including an iron-rich Mars-sized body with an orbital period of only four hours. So close to their host stars that some of them are actively disintegrating, these objects’ origins remain unclear, and even formation models that allow significant migration have trouble accounting for their very short periods. Some are members of multi-planet system and may have been driven inward via secular excitation and tidal damping by their sibling planets. Others may be the fossil cores of former gas giants whose atmospheres were stripped by tides.

In this presentation, I’ll discuss the work of our Short-Period Planets Group (SuPerPiG), focused on finding and understanding this surprising new class of exoplanets. We are sifting data from the reincarnated Kepler Mission, K2, to search for additional short-period planets and have found several new candidates. We are also modeling the tidal decay and disruption of close-in gaseous planets to determine how we could identify their remnants, and preliminary results suggest the cores have a distinctive mass-period relationship that may be apparent in the observed population. Whatever their origins, short-period planets are particularly amenable to discovery and detailed follow-up by ongoing and future surveys, including the TESS mission.

Colloquium: Dave Thilker (Host: Rene Walterbos)
Sep 21 @ 3:15 pm – 4:15 pm
Colloquium: Dave Thilker (Host: Rene Walterbos) @ BX102

Fresh Perspectives on Star Formation from LEGUS, the Legacy ExtraGalactic Ultraviolet Survey

David Thilker, Johns Hopkins University

The Legacy ExtraGalactic Ultraviolet Survey (LEGUS) was a Cycle 21 Large Treasury HST program which obtained ~parsec resolution NUV- to I-band WFC3 imaging for 50 nearby, representative star-forming Local Volume galaxies, with a primary goal of linking the scales of star formation from the limit of individual stars, to clusters and associations, eventually up through the hierarchy to giant star forming complexes and galaxy-scale morphological features.

I will review the basics of the survey, public data products and science team results pertaining to clusters and the field star hierarchy.  I will then describe work to optimize photometric selection methods for massive main sequence O star candidates and LBV candidates, in the former case establishing a means to statistically constrain the fraction of O stars in very isolated locales.  I will introduce new ideas on how to quantify the complex spatio-temporal nature of hierarchical star formation using multi-scale clustering methods. The first steps of this work have yielded a landmark OB association database for 36 LEGUS target fields (in 28 of the nearest available galaxies), with tracer stellar populations selected and interpreted uniformly.  I will finish with discussion of a pilot HST program to demonstrate remarkably increased survey efficiency of WFC3 UV imaging enabled by use of extra-wide (X) filter bandpasses.  Such efficiency is required as we move beyond LEGUS and begin to rigorously explore low surface brightness star-forming environments where canonical results for the IMF and cluster formation efficiency are increasingly called into question.


Colloquium: Raja GuhaThakurta (Host: Rene Walterbos)
Oct 4 @ 3:15 pm – 4:15 pm
Colloquium: Raja GuhaThakurta (Host: Rene Walterbos) @ BX102

The SPLASH Survey of the Andromeda Galaxy

Raja Guhathurkurta, University of California, Santa Cruz

Our nearest large spiral galaxy neighbor, the Andromeda galaxy (M31),
and its dwarf satellites, offer a panoramic yet detailed view of
galaxy formation and evolution in our astronomical backyard. This
system also serves as an excellent laboratory for the study of stellar
populations because the stars are all practically at the same distance
from us. I will present results from the SPLASH (Spectroscopic and
Photometric Landscape of Andromeda’s Stellar Halo) survey, the
backbone of which was a large Keck DEIMOS spectroscopic survey of
evolved stars in M31. Most of the SPLASH spectroscopic targets in
M31’s disk were selected from the PHAT (Panchromatic Hubble Andromeda
Treasury) survey, a wide-field 6-filter Hubble Space Telescope mosaic
image of a portion of the disk of M31. The talk will cover a range of
science topics including: Local Group dynamics, structure/substructure
and metallicity of M31’s stellar halo, satellite tidal interactions,
disk/halo interface, dynamical heating of the disk, and rare stellar