Calendar

Nov
14
Mon
Pizza Lunch: Drew Chojnowski
Nov 14 @ 12:30 pm – 1:30 pm
Pizza Lunch: Drew Chojnowski @ AY 119

Title: H-band Spectral Variability of Classical Be Stars

Drew Chojnowski

 

Feb
20
Mon
Pizza Lunch: Stephanie Ho
Feb 20 @ 12:30 pm – 1:30 pm
Pizza Lunch: Stephanie Ho @ AY 119

Quasars Probing Galaxies: Signatures of Gas Accretion at z~0.2

Stephanie Ho, Univ. California Santa Barbara

 

Feb
24
Fri
Colloquium: Thomas Rivinius
Feb 24 @ 3:15 pm – 4:15 pm
Colloquium: Thomas Rivinius

Our Current Understanding of Classical Be Stars

Dr. Thomas Rivinius, Chile, ESO Paranal

I will introduce Be stars as B-type stars with gaseous disks in Keplerian rotation. These disks form by mass ejection from the star itself and their evolution is then governed by viscosity. The observables and their formation in the disk will be discussed, as well as what we know about the central stars: they are the most rapidly rotating non-degenerate stars, they are non-radial pulsators, and they do not show magnetic fields. The pulsation is clearly (phenomenologically) linked to the mass ejection, but the physical mechanism responsible for the ejection and disk formation is not known. Finally, I will discuss several open questions of broader interest, including the (possibly absent) chemical mixing of very rapid rotators and the unexpectedly large viscosity of Be star disks.

 

Jun
27
Tue
Colloquium PhD Defense: Laura Mayorga
Jun 27 @ 2:30 pm – 3:30 pm
Colloquium PhD Defense: Laura Mayorga @ Domenici Hall 102

The Orbital and Planetary Phase Variations of Jupiter-Sized Planets: Characterizing Present and Future Giants

Laura Mayorga, NMSU

It is commonly said that exoplanet science is 100 years behind planetary science. While we may be able to travel to an exoplanet in the future, inferring the properties of exoplanets currently relies on extracting as much information as possible from a limited dataset. In order to further our ability to characterize, classify, and understand exoplanets as both a population and as individuals, this thesis makes use of multiple types of observations and simulations.

Firstly, direct-imaging is a technique long used in planetary science and is only now becoming feasible for exoplanet characterization. We present our results from analyzing Jupiter’s phase curve with Cassini/ISS to instruct the community in the complexity of exoplanet atmospheres and the need for further model development. The planet yields from future missions may be overestimated by today’s models. We also discuss the need for optimal bandpasses to best differentiate between planet classes.

Secondly, photometric surveys are still the best way of conducting population surveys of exoplanets. In particular, the Kepler dataset remains one of the highest precision photometric datasets and many planetary candidates remain to be characterized. We present techniques by which more information, such as a planet’s mass, can be extracted from a transit light curve without expensive ground- or space-based follow-up observations.

Finally, radial-velocity observations have revealed that many of the larger “planets” may actually be brown dwarfs. To understand the distinction between a brown dwarf and an exoplanet or a star, we have developed a simple, semi-analytic viscous disk model to study brown dwarf evolutionary history. We present the rudimentary framework and discuss its performance compared to more detailed numerical simulations as well as how additional physics and development can determine the potential observational characteristics that will differentiate between various formation scenarios.

Exoplanet science has already uncovered a plethora of previously unconsidered phenomenon. To increase our understanding of our own planet, as well as the other various possible end cases, will require a closer inspection of our own solar system, the nuanced details of exoplanet data, refined simulations, and laboratory astrophysics.

Mar
29
Thu
Colloquium (Joint with Physics): Jim Fuller (Host: Ethan Dederick)
Mar 29 @ 4:00 pm – 5:00 pm
Colloquium (Joint with Physics): Jim Fuller (Host: Ethan Dederick) @ Gardiner Hall 230

Surprising Impacts of Gravity Waves

Jim Fuller, Caltech

Gravity waves are low frequency fluid oscillations restored by buoyancy forces in planetary and stellar interiors. Despite their ubiquity, the importance of gravity waves in evolutionary processes and asteroseismology has only recently been appreciated. For instance, Kepler asteroseismic data has revealed gravity modes in thousands of red giant stars, providing unprecedented measurements of core structure and rotation. I will show how gravity modes (or lack thereof) can also reveal strong magnetic fields in the cores of red giants, and I will demonstrate that strong fields appear to be common within “retired” A stars but are absent in their lower-mass counterparts. In the late phase evolution of massive stars approaching core-collapse, vigorous convection excites gravity waves that can redistribute huge amounts of energy within the star. I will present preliminary models of this process, showing how wave energy redistribution can drive outbursts and enhanced mass loss in the final years of massive star evolution, with important consequences for the appearance of subsequent supernovae.
Apr
6
Fri
Colloquium PhD Thesis Defense: Sten Hasselquist
Apr 6 @ 3:15 pm – 4:15 pm
Colloquium PhD Thesis Defense: Sten Hasselquist @ BX102

Colloquium Title

Sten Hasselquist, NMSU

Abstract

Jun
21
Thu
Pizza Lunch: Michael Hayden
Jun 21 @ 12:00 pm – 1:00 pm
Pizza Lunch: Michael Hayden @ AY 119

Chemical Cartography of the Milky Way

Michael Hayden, Sydney Institute for Astronomy (NMSU alumnus)

Sep
21
Fri
Colloquium: Dave Thilker (Host: Rene Walterbos)
Sep 21 @ 3:15 pm – 4:15 pm
Colloquium: Dave Thilker (Host: Rene Walterbos) @ BX102

Fresh Perspectives on Star Formation from LEGUS, the Legacy ExtraGalactic Ultraviolet Survey

David Thilker, Johns Hopkins University

The Legacy ExtraGalactic Ultraviolet Survey (LEGUS) was a Cycle 21 Large Treasury HST program which obtained ~parsec resolution NUV- to I-band WFC3 imaging for 50 nearby, representative star-forming Local Volume galaxies, with a primary goal of linking the scales of star formation from the limit of individual stars, to clusters and associations, eventually up through the hierarchy to giant star forming complexes and galaxy-scale morphological features.

I will review the basics of the survey, public data products and science team results pertaining to clusters and the field star hierarchy.  I will then describe work to optimize photometric selection methods for massive main sequence O star candidates and LBV candidates, in the former case establishing a means to statistically constrain the fraction of O stars in very isolated locales.  I will introduce new ideas on how to quantify the complex spatio-temporal nature of hierarchical star formation using multi-scale clustering methods. The first steps of this work have yielded a landmark OB association database for 36 LEGUS target fields (in 28 of the nearest available galaxies), with tracer stellar populations selected and interpreted uniformly.  I will finish with discussion of a pilot HST program to demonstrate remarkably increased survey efficiency of WFC3 UV imaging enabled by use of extra-wide (X) filter bandpasses.  Such efficiency is required as we move beyond LEGUS and begin to rigorously explore low surface brightness star-forming environments where canonical results for the IMF and cluster formation efficiency are increasingly called into question.

 

Sep
13
Fri
Colloquium: Eric Nielsen (Host: Moire Prescott)
Sep 13 @ 3:15 pm – 4:15 pm
Colloquium: Eric Nielsen (Host: Moire Prescott) @ BX102

Charting the Outer Reaches of Exoplanetary Systems: Wide-Separation Giant Planet Demographics with Direct Imaging

Eric Nielsen, Kavli Institute for Particle Astrophysics and Cosmology, Stanford University

Over the past decade, the combination of advances in adaptive optics, coronagraphy, and data processing has enabled the direct detection and characterization of giant exoplanets orbiting young, nearby stars. In addition to the wealth of information about exoplanetary atmospheres we obtain from spectroscopy of directly imaged planets, the demographics of these wide-separation planets allow us to directly test theories of planet formation, probing the outer planetary systems compared to transit and radial velocity techniques. In this talk I will present results from the Gemini Planet Imager Exoplanet Survey (GPIES), which surveyed 521 nearby stars for giant planet and brown dwarf companions orbiting beyond 5 AU, and is one of the largest, deepest direct imaging searches for exoplanets every conducted. The overall occurrence rate of substellar companions, and trends with companion mass, semi-major axis, and stellar mass are consistent with giant planets forming via core accretion, and point to different formation mechanisms for giant planets and brown dwarfs between 10 and 100 AU.

 

Nov
22
Fri
Colloquium: Rixin Li (Host: Wladimir Lyra)
Nov 22 @ 3:15 pm – 4:15 pm
Colloquium: Rixin Li (Host: Wladimir Lyra) @ BX102

Simulating Planetesimal Formation in the Kuiper Belt and Beyond

Rixin Li, University of Arizona

A critical step in planet formation is to build super-km-sized planetesimals in protoplanetary disks. The origin and demographics of planetesimals are crucial to understanding the Solar System, circumstellar disks, and exoplanets. I will overview the current status of planetesimal formation theory. Specifically, I will present our recent simulations of planetesimal formation by the streaming instability, a mechanism to aerodynamically concentrate pebbles in protoplanetary disks. I will then discuss the connections between our numerical models and recent astronomical observations and Solar System explorations. I will explain why all planetesimals likely formed as binaries.