Calendar

Nov
6
Fri
Colloquium: John Wisniewski
Nov 6 @ 3:15 pm – 4:15 pm
Colloquium:  John Wisniewski @ BX102

Diagnosing the SEEDS of Planet Formation

John Wisniewski, University of Oklahoma

Circumstellar disks provide a useful astrophysical diagnostic of the formation and early evolution of exoplanets. It is commonly believed that young protoplanetary disks serve as the birthplace of planets, while older debris disks can provide insight into the architecture of exoplanetary systems. In this talk, I will discuss how one can use high contrast imaging techniques to spatially resolve nearby circumstellar disk systems, and how this imagery can be used to search for evidence of recently formed planetary bodies. I will focus on results from the Strategic Exploration of Exoplanets and Disks with Subaru (SEEDS) project, as well as some ongoing follow-up work.

Nov
9
Mon
Pizza Lunch: Karen Kinemuchi
Nov 9 @ 12:30 pm – 1:30 pm
Pizza Lunch: Karen Kinemuchi

High-precision studies of RR Lyrae Stars

Nov
16
Mon
Pizza Lunch: Moire Prescott
Nov 16 @ 12:30 pm – 1:30 pm
Pizza Lunch: Moire Prescott

Galaxy Nurseries in Lya Nebulae

Nov
20
Fri
Tombaugh Observatory Open House
Nov 20 @ 7:00 pm – 9:00 pm
Tombaugh Observatory Open House @ Tombaugh Observatory

Open to the public.

Faculty member: James McAteer

Graduate Students: Nigel Mathes, Emma Dahl, Laura Mayorga

 

 

Nov
30
Mon
Pizza Lunch: Ethan Dederick
Nov 30 @ 12:30 pm – 1:30 pm
Pizza Lunch: Ethan Dederick

598 Research

Dec
4
Fri
Colloquium: Brian Jackson
Dec 4 @ 3:15 pm – 4:15 pm
Colloquium:  Brian Jackson @ BX102

On the Edge: Exoplanets with Orbital Periods Shorter Than a Peter Jackson Movie

Brian Jackson, Boise State Univeristy

From wispy gas giants to tiny rocky bodies, exoplanets with orbital periods of several days and less challenge theories of planet formation and evolution. Recent searches have found small rocky planets with orbits reaching almost down to their host stars’ surfaces, including an iron-rich Mars-sized body with an orbital period of only four hours. So close to their host stars that some of them are actively disintegrating, these objects’ origins remain unclear, and even formation models that allow significant migration have trouble accounting for their very short periods. Some are members of multi-planet system and may have been driven inward via secular excitation and tidal damping by their sibling planets. Others may be the fossil cores of former gas giants whose atmospheres were stripped by tides.

In this presentation, I’ll discuss the work of our Short-Period Planets Group (SuPerPiG), focused on finding and understanding this surprising new class of exoplanets. We are sifting data from the reincarnated Kepler Mission, K2, to search for additional short-period planets and have found several new candidates. We are also modeling the tidal decay and disruption of close-in gaseous planets to determine how we could identify their remnants, and preliminary results suggest the cores have a distinctive mass-period relationship that may be apparent in the observed population. Whatever their origins, short-period planets are particularly amenable to discovery and detailed follow-up by ongoing and future surveys, including the TESS mission.

Tombaugh Observatory Open House
Dec 4 @ 7:00 pm – 9:00 pm
Tombaugh Observatory Open House @ Tombaugh Observatory

Open to the public.

Faculty member: James Murphy

Graduate Students: Jacob Vander Vliet, Kyle Uckert

 

 

Dec
7
Mon
Pizza Lunch: Chunming Zhu
Dec 7 @ 12:30 pm – 1:30 pm
Pizza Lunch: Chunming Zhu

TBD

Feb
5
Fri
Colloquium: Steve Finkelstein (Host: Kristian Finlator)
Feb 5 @ 3:15 pm – 4:15 pm
Colloquium:  Steve Finkelstein   (Host: Kristian Finlator) @ BX102

Galaxy Evolution during the Epoch of Reionization

 Steve Finkelstein,  University of Texas at Austin

 

                       Abstract: The advent of the Wide Field Camera 3 on the Hubble Space Telescope has heralded a new era in our ability to study the earliest phases of galaxy formation and evolution.  The number of candidates for galaxies now known at redshifts greater than six has grown to be in the thousands.  This allows us to move beyond mere counting of galaxies, to endeavor to understand the detailed physics regulating the growth of galaxies.  I will review the recent progress our group in Texas has made in this arena using the exquisite datasets from the CANDELS and Frontier Fields programs.  Specifically, our detailed new measurements of both the evolution of the stellar mass function and rest-frame UV luminosity function now allow us to probe the effect of feedback on low-mass galaxies, the star-formation efficiency in high-mass galaxies, and the contribution of galaxies to the reionization of the universe.  Our most recent result comes from the Frontier Fields, where we have used an advanced technique to remove the light from the cluster galaxies to uncover z > 6 galaxies as faint as M_UV=-13.  Our updated luminosity functions show no sign of a turnover down to these extremely faint levels, providing the first empirical test of reionization models which require such faint galaxies, and is in modest tension with simulations which predict a turnover at brighter levels.   I will also discuss our spectroscopic followup efforts, which have yielded two of the four highest redshift confirmed galaxies, and also provide further insight into reionization, by the scattering of Lyman alpha emission by neutral gas in the intergalactic medium.  I will conclude with a look ahead to the problems we can expect to tackle with ALMA, JWST, and even more future facilities.

Sep
1
Fri
Colloquium: Isak Wold (Host: Moire Prescott)
Sep 1 @ 3:15 pm – 4:15 pm
Colloquium: Isak Wold (Host: Moire Prescott) @ BX102

A Faint Flux-Limited LAE Sample at z = 0.3

Isak Wold, UT Austin

Observational surveys of Lya emitters (LAEs) have proven to be an efficient method to identify and study large numbers of galaxies over a wide redshift range. To understand what types of galaxies are selected in LAE surveys – and how this evolves with redshift – it is important to establish a low-redshift reference sample that can be directly compared to high-redshift samples.  The lowest redshift where a direct Lya survey is currently possible is at a redshift of z~0.3 via the Galaxy Evolution Explorer (GALEX ) FUV grism data. Using the z~0.3 GALEX sample as an anchor point, it has been suggested that at low redshifts high equivalent width (EW) LAEs become less prevalent and that the amount of escaping Lya emission declines rapidly.  A number of explanations for these trends have been suggested including increasing dust content, increasing neutral column density, and/or increasing metallicity of star-forming galaxies at lower redshifts. However, the published z~0.3 GALEX sample is pre-selected from bright NUV objects.  Thus, objects with strong Lya emission but faint continuum (high-EW LAEs) could be missed.  In this talk, I will present my efforts to re-reduce the deepest archival GALEX FUV grism data and obtain a sample that is not biased against high-EW LAEs.  I will discuss the implications of this new sample on the evolutionary trends listed above.