Calendar

Nov
11
Fri
Colloquium: Amy Simon (Host: Nancy Chanover)
Nov 11 @ 3:15 pm – 4:15 pm
Colloquium: Amy Simon (Host: Nancy Chanover) @ Biology Annex 102

Outer Planets Update

Dr. Amy Simon, NASA

The Hubble Outer Planet Atmospheres Legacy (OPAL) program is a yearly program for observing each of the outer planets over two full rotations. Observations began with Uranus in 2014, adding Neptune and Jupiter in 2015 (Saturn will be included in 2018, after the end of the Cassini mission). These observations have provided interesting new discoveries in their own right, but are also now being combined with observations from a number of facilities, including NASA’s IRTF, Keck, the VLA, as well as the Kepler and Spitzer missions to further expand the breadth of science they contain.  This talk will cover the latest observations for each of these planets and what we are learning from these data sets.

 

Nov
18
Fri
Colloquium: Karen Olsen
Nov 18 @ 3:15 pm – 4:15 pm
Colloquium: Karen Olsen @ Biology Annex 102

Simulations of the interstellar medium at high redshift: What does [CII] trace?

Dr. Karen Olsen, Arizona State University

We are in an exciting era were simulations on large, cosmological scales meet modeling of the interstellar medium (ISM) on sub-parsec scales. This gives us a way to predict and interpret observations of the ISM, and in particular the star-forming gas, in high-redshift galaxies, useful for ongoing and future ALMA/VLA projects.

In this talk, I will walk you though the current state of simulations targeting the the fine structure line of [CII] at 158 microns, which has now been observed in several z>6 galaxies. [CII] can arise throughout the interstellar medium (ISM), but the brightness of the [CII] line depends strongly on local environment within a galaxy, meaning that the ISM phase dominating the [CII] emission can depend on galaxy type. This complicates the use of [CII] as a tracer of either SFR or ISM mass and calls for detailed modeling following the different ways in which [CII] can be excited.

I will present SÍGAME (Simulator of GAlaxy Millimeter/submillimeter emission) – a novel method for predicting the origin and strength of line emission from galaxies. Our method combines data from cosmological simulations with sub-grid physics that carefully calculates local radiation field strength, pressure, and ionizational/thermal balance. Preliminary results will be shown from recent modeling of [CII] emission from z~6 star-forming galaxies with SÍGAME. We find strong potential for using the total [CII] luminosity to derive the ISM and molecular gas mass of galaxies during the Epoch of Reionization (EoR).

 

Mar
13
Mon
Pizza Lunch: Jean McKeever
Mar 13 @ 12:30 pm – 1:30 pm
Pizza Lunch: Jean McKeever @ AY 119

Red Giants in Eclipsing Binary Systems

Jean McKeever

 

Mar
28
Tue
Joint Physics/Astronomy Colloquium: William Newman
Mar 28 @ 4:00 pm – 5:00 pm
Joint Physics/Astronomy Colloquium: William Newman @ Gardiner Hall 229, Physics. Dept. | Ames | Iowa | United States

Giant Planet Shielding of the Inner Solar System Revisited: Blending Celestial Mechanics with Advanced Computation

Dr. William Newman, UCLA

The Earth has sustained during the last billion years as many as five catastrophic collisions with asteroids and comets which led to widespread species extinctions. Our own atmosphere was literally blown away 4.5 billion years ago by a collision with a Mars-sized impactor. However, collisions with comets originating in the outer solar system accreted much of the present-day atmosphere. Relatively advanced life on our planet is the beneficiary of a number of impact events during Earth’s history which built our atmosphere without destroying a large fraction of terrestrial life. Using very high precision Monte Carlo integration methods to explore the orbital evolution over hundreds of millions of years followed by the application of celestial mechanical techniques, the presentation will explain directly how Earth was shielded by the combined influence of Jupiter and Saturn, assuring that only 1 in 100,000 potential collisions with the Earth will materialize.

 

Jun
27
Tue
Colloquium PhD Defense: Laura Mayorga
Jun 27 @ 2:30 pm – 3:30 pm
Colloquium PhD Defense: Laura Mayorga @ Domenici Hall 102

The Orbital and Planetary Phase Variations of Jupiter-Sized Planets: Characterizing Present and Future Giants

Laura Mayorga, NMSU

It is commonly said that exoplanet science is 100 years behind planetary science. While we may be able to travel to an exoplanet in the future, inferring the properties of exoplanets currently relies on extracting as much information as possible from a limited dataset. In order to further our ability to characterize, classify, and understand exoplanets as both a population and as individuals, this thesis makes use of multiple types of observations and simulations.

Firstly, direct-imaging is a technique long used in planetary science and is only now becoming feasible for exoplanet characterization. We present our results from analyzing Jupiter’s phase curve with Cassini/ISS to instruct the community in the complexity of exoplanet atmospheres and the need for further model development. The planet yields from future missions may be overestimated by today’s models. We also discuss the need for optimal bandpasses to best differentiate between planet classes.

Secondly, photometric surveys are still the best way of conducting population surveys of exoplanets. In particular, the Kepler dataset remains one of the highest precision photometric datasets and many planetary candidates remain to be characterized. We present techniques by which more information, such as a planet’s mass, can be extracted from a transit light curve without expensive ground- or space-based follow-up observations.

Finally, radial-velocity observations have revealed that many of the larger “planets” may actually be brown dwarfs. To understand the distinction between a brown dwarf and an exoplanet or a star, we have developed a simple, semi-analytic viscous disk model to study brown dwarf evolutionary history. We present the rudimentary framework and discuss its performance compared to more detailed numerical simulations as well as how additional physics and development can determine the potential observational characteristics that will differentiate between various formation scenarios.

Exoplanet science has already uncovered a plethora of previously unconsidered phenomenon. To increase our understanding of our own planet, as well as the other various possible end cases, will require a closer inspection of our own solar system, the nuanced details of exoplanet data, refined simulations, and laboratory astrophysics.

Nov
9
Thu
Public Talk: “Preparing to Explore the Universe with the James Webb Space Telescope” – Dr. Jane Rigby (NASA Goddard)
Nov 9 @ 7:00 pm – 8:00 pm
Public Talk: "Preparing to Explore the Universe with the James Webb Space Telescope" - Dr. Jane Rigby (NASA Goddard) @ Gerald Thomas Hall, Room 194

Preparing to Explore the Universe with the James Webb Space Telescope

Dr. Jane Rigby (NASA Goddard, Deputy Project Scientist for JWST)

Abstract: NASA’s James Webb Space Telescope (JWST), scheduled to be launched in 2019, will revolutionize our view of the Universe.  As the scientific successor to the Hubble Space Telescope, JWST will rewrite the textbooks and return gorgeous images and spectra of our universe.   In my talk, I will show how JWST will revolutionize our understanding of how galaxies and supermassive black holes formed in the first billion years after the Big Bang, and how they evolved over cosmic time.  I’ll describe how our international team is preparing for launch, how we decide what targets to observe, and how we are testing the telescope to be sure it will work in space.

More information about the telescope can be found at https://www.jwst.nasa.gov/.

 

 

Jan
23
Wed
Colloquium Thesis Defense: Lauren Kahre
Jan 23 @ 3:00 pm – 4:00 pm
Colloquium Thesis Defense: Lauren Kahre

Extinction Mapping and Dust-to-Gas Ratios of Nearby Galaxies

Lauren Kahre, NMSU

We present a study of the dust{to{gas ratios in 31 nearby (D >
10 Mpc) galaxies. Using Hubble Space Telescope broad band WFC3/UVIS UV and
optical images from the Treasury program LEGUS (Legacy ExtraGalactic UV
Survey) combined with archival HST/ACS data, we correct thousands of
individual stars for extinction across these galaxies using an
isochrone-matching (reddening-free Q) method. We generate extinction maps
for each galaxy from the individual stellar extinctions using both
adaptive and fixed resolution techniques, and correlate these maps with
neutral HI and CO gas maps from literature, including The HI Nearby Galaxy
Survey (THINGS) and the HERA CO-Line ExtraGalactic Survey (HERACLES). We
calculate dust-to-gas ratios and investigate variations in the dust-to-gas
ratio with galaxy metallicity. We find a power law relationship between
dust-to-gas ratio and metallicity. The single power law is consistent with
other studies of dust-to-gas ratio compared to metallicity, while the
broken power law shows a significantly shallower slope for low metallicity
galaxies than previously observed. We find a change in the relation when
H_2 is not included. This implies that underestimation of N_H2 in
low-metallicity dwarfs from a too-low CO-to-H2 conversion factor X_CO
could have produced too low a slope in the derived relationship between
dust-to-gas ratio and metallicity. We also
compare our extinctions to those derived from fitting the spectral energy
distribution (SED) using the Bayesian Extinction and Stellar Tool (BEAST)
for NGC 7793 and and systematically lower extinctions from SED-fitting as
compared to isochrone matching. Finally, we compare our extinction maps of
NGC 628 to maps of the dust obtained via IR emission from Aniano et al.
(2012) and find a factor of 2 difference in dust-to-gas ratios determined
from the two maps, consistent with previous work.

Sep
13
Fri
Colloquium: Eric Nielsen (Host: Moire Prescott)
Sep 13 @ 3:15 pm – 4:15 pm
Colloquium: Eric Nielsen (Host: Moire Prescott) @ BX102

Charting the Outer Reaches of Exoplanetary Systems: Wide-Separation Giant Planet Demographics with Direct Imaging

Eric Nielsen, Kavli Institute for Particle Astrophysics and Cosmology, Stanford University

Over the past decade, the combination of advances in adaptive optics, coronagraphy, and data processing has enabled the direct detection and characterization of giant exoplanets orbiting young, nearby stars. In addition to the wealth of information about exoplanetary atmospheres we obtain from spectroscopy of directly imaged planets, the demographics of these wide-separation planets allow us to directly test theories of planet formation, probing the outer planetary systems compared to transit and radial velocity techniques. In this talk I will present results from the Gemini Planet Imager Exoplanet Survey (GPIES), which surveyed 521 nearby stars for giant planet and brown dwarf companions orbiting beyond 5 AU, and is one of the largest, deepest direct imaging searches for exoplanets every conducted. The overall occurrence rate of substellar companions, and trends with companion mass, semi-major axis, and stellar mass are consistent with giant planets forming via core accretion, and point to different formation mechanisms for giant planets and brown dwarfs between 10 and 100 AU.

 

Nov
22
Fri
Colloquium: Rixin Li (Host: Wladimir Lyra)
Nov 22 @ 3:15 pm – 4:15 pm
Colloquium: Rixin Li (Host: Wladimir Lyra) @ BX102

Simulating Planetesimal Formation in the Kuiper Belt and Beyond

Rixin Li, University of Arizona

A critical step in planet formation is to build super-km-sized planetesimals in protoplanetary disks. The origin and demographics of planetesimals are crucial to understanding the Solar System, circumstellar disks, and exoplanets. I will overview the current status of planetesimal formation theory. Specifically, I will present our recent simulations of planetesimal formation by the streaming instability, a mechanism to aerodynamically concentrate pebbles in protoplanetary disks. I will then discuss the connections between our numerical models and recent astronomical observations and Solar System explorations. I will explain why all planetesimals likely formed as binaries.

Apr
17
Fri
Remote Colloquium: Fuyan Bian (Host: Kristian Finlator)
Apr 17 @ 3:00 pm – 4:00 pm
Remote Colloquium: Fuyan Bian (Host: Kristian Finlator) @ Online

Evolution of Ionized Interstellar Medium across Cosmic Time

Fuyan Bian, European Southern Observatory

The ionized interstellar medium (ISM) provides essential information on the star-forming environments, metal enrichment, and underlying ionizing radiation field in galaxies. It is crucial to understand how the ionized ISM evolves with Cosmic time. In this talk, I will present a sample of local galaxies that closely resemble the properties of high-redshift galaxies at high redshift. These local analogs of high-redshift galaxies provide a unique local laboratory to study high-redshift galaxies. I will discuss how to use these analogs to improve our understanding of the high-redshift metallicity empirical calibrations and physical mechanism(s) to drive the evolution of optical diagnostics lines from high redshift to low redshift.