Calendar

Aug
26
Fri
Colloquium PhD Defense: Kyle Uckert
Aug 26 @ 3:15 pm – 4:15 pm
Colloquium PhD Defense: Kyle Uckert @ BX102

Characterization of Biosignatures within Geologic Samples Analyzed using a Suite of in situ Techniques

Kyle Uckert, NMSU   

Abstract:
I investigated the biosignature detection capabilities of several in situ techniques to evaluate their potential to
detect the presence of extant or extinct life on other planetary surfaces. These instruments included: a laser desorption
time-of- flight mass spectrometer (LD-TOF-MS), an acousto-optic tunable filter (AOTF) infrared (IR) point spectrometer, a
laser-induced breakdown spectrometer (LIBS), X-ray diffraction (XRD)/X-ray fluorescence (XRF), and scanning electron
microscopy (SEM)/energy dispersive X-Ray spectroscopy (EDS). I measured the IR reflectance spectra of several speleothems
in caves in situ to detect the presence of biomineralization. Microorganisms (such as those that may exist on other solar
system bodies) mediate redox reactions to obtain energy for growth and reproduction, producing minerals such as
carbonates, metal oxides, and sulfates as waste products. Microbes occasionally become entombed in their mineral
excrement, essentially acting as a nucleation site for further crystal growth. This process produces minerals with a
crystal lattice distinct from geologic precipitation, detectable with IR reflectance spectroscopy. Using a suite of
samples collected from three subterranean environments, along with statistical analyses including principal component
analysis, I measured subsurface biosignatures associated with these biomineralization effects, including the presence of
trace elements, morphological characteristics, organic molecules, and amorphous crystal structures.

I also explored the optimization of a two-step LD-TOF-MS (L2MS) for the detection of organic molecules and other
biosignatures. I focused my efforts on characterizing the L2MS desorption IR laser wavelength dependence on organic
detection sensitivity in an effort to optimize the detection of high mass (≤100 Da) organic peaks. I analyzed samples
with an IR reflectance spectrometer and an L2MS with a tunable desorption IR laser whose wavelength range (2.7 – 3.45
microns) overlaps that of our IR spectrometer (1.6 – 3.6 microns), and discovered a IR resonance enhancement effect. A
correlation between the maximum IR absorption of organic functional group and mineral vibrational transitions – inferred
from the IR spectrum – and the optimal IR laser configuration for organic detection using L2MS indicates that IR
spectroscopy may be used to inform the optimal L2MS IR laser wavelength for organic detection. This work suggests that a
suite of instruments, particularly LD-TOF-MS and AOTF IR spectroscopy, has strong biosignature detection potential on a
future robotic platform for investigations of other planetary surfaces or subsurfaces.

Jan
27
Fri
Colloquium: Bryan Butler (Host: Nancy Chanover)
Jan 27 @ 3:15 pm – 4:15 pm
Colloquium: Bryan Butler (Host: Nancy Chanover) @ BX 102

Observations of Solar System Bodies with the VLA and ALMA

Dr. Bryan Butler, NRAO

Observations of solar system bodies at wavelengths from submm to meter wavelengths provide important and unique information about those bodies. Such observations probe to depths unreachable at other wavelengths – typically of order 10-20 wavelengths for bodies with solid surfaces, and as deep as tens of bars for those with thick atmospheres (the giant planets). In the past five years, two instruments have been commissioned which have revolutionized the ability to make very sensitive, high-resolution observations at these wavelengths: the Karl G. Jansky Very Large Array (VLA) and the Atacama Large Millimeter/Submillimeter Array (ALMA). I will present a discussion of results over the past five years from observations from both the VLA and ALMA. These include observations of the atmospheres of all of the giant planets, the rings of Saturn, and the surfaces of many icy bodies in the outer solar system. I will also present plans for the Next Generation Very Large Array (ngVLA), the next step for millimeter to centimeter wavelength interferometry.

Feb
24
Fri
Colloquium: Thomas Rivinius
Feb 24 @ 3:15 pm – 4:15 pm
Colloquium: Thomas Rivinius

Our Current Understanding of Classical Be Stars

Dr. Thomas Rivinius, Chile, ESO Paranal

I will introduce Be stars as B-type stars with gaseous disks in Keplerian rotation. These disks form by mass ejection from the star itself and their evolution is then governed by viscosity. The observables and their formation in the disk will be discussed, as well as what we know about the central stars: they are the most rapidly rotating non-degenerate stars, they are non-radial pulsators, and they do not show magnetic fields. The pulsation is clearly (phenomenologically) linked to the mass ejection, but the physical mechanism responsible for the ejection and disk formation is not known. Finally, I will discuss several open questions of broader interest, including the (possibly absent) chemical mixing of very rapid rotators and the unexpectedly large viscosity of Be star disks.

 

Mar
2
Thu
Colloquium: Jack Burns (Host: Nancy Chanover)
Mar 2 @ 3:15 pm – 4:15 pm
Colloquium: Jack Burns (Host: Nancy Chanover) @ Domenici Hall Room 106

Cosmology from the Moon: The Dark Ages Radio Explorer (DARE)

Dr. Jack Burns, University of Colorado Boulder

In the New Worlds, New Horizons in Astronomy & Astrophysics Decadal Survey, Cosmic Dawn was singled out as one of the top astrophysics priorities for this decade. Specifically, the Decadal report asked “when and how did the first galaxies form out of cold clumps of hydrogen gas and start to shine—when was our cosmic dawn?” It proposed “astronomers must now search the sky for these infant galaxies and find out how they behaved and interacted with their surroundings.” This is the science objective of DARE – to search for the first stars, galaxies, and black holes via their impact on the intergalactic medium (IGM) as measured by the highly redshifted 21-cm hyperfine transition of neutral hydrogen (HI). DARE will probe redshifts of 11-35 (Dark Ages to Cosmic Dawn) with observed HI frequencies of 40-120 MHz. DARE will observe expected spectral features in the global signal of HI that correspond to stellar ignition (Lyman-α from the first stars coupling with the HI hyperfine transition), X-ray heating/ionization of the IGM from the first accreting black holes, and the beginning of reionization (signal dominated by IGM ionization fraction). These observations will complement those expected from JWST, ALMA, and HERA. We propose to observe these spectral features with a broad-beam dipole antenna along with a wide-band receiver and digital spectrometer. We will place DARE in lunar orbit and take data only above the farside, a location known to be free of human-generated RFI and with a negligible ionosphere. In this talk, I will present the mission concept including initial results from an engineering prototypes which are designed to perform end-to-end validation of the instrument and our calibration techniques. I will also describe our signal extraction tool, using a Markov Chain Monte Carlo technique, which measures the parameterized spectral features in the presence of substantial Galactic and solar system foregrounds.

 

Mar
28
Tue
Joint Physics/Astronomy Colloquium: William Newman
Mar 28 @ 4:00 pm – 5:00 pm
Joint Physics/Astronomy Colloquium: William Newman @ Gardiner Hall 229, Physics. Dept. | Ames | Iowa | United States

Giant Planet Shielding of the Inner Solar System Revisited: Blending Celestial Mechanics with Advanced Computation

Dr. William Newman, UCLA

The Earth has sustained during the last billion years as many as five catastrophic collisions with asteroids and comets which led to widespread species extinctions. Our own atmosphere was literally blown away 4.5 billion years ago by a collision with a Mars-sized impactor. However, collisions with comets originating in the outer solar system accreted much of the present-day atmosphere. Relatively advanced life on our planet is the beneficiary of a number of impact events during Earth’s history which built our atmosphere without destroying a large fraction of terrestrial life. Using very high precision Monte Carlo integration methods to explore the orbital evolution over hundreds of millions of years followed by the application of celestial mechanical techniques, the presentation will explain directly how Earth was shielded by the combined influence of Jupiter and Saturn, assuring that only 1 in 100,000 potential collisions with the Earth will materialize.

 

Sep
21
Fri
Colloquium: Dave Thilker (Host: Rene Walterbos)
Sep 21 @ 3:15 pm – 4:15 pm
Colloquium: Dave Thilker (Host: Rene Walterbos) @ BX102

Fresh Perspectives on Star Formation from LEGUS, the Legacy ExtraGalactic Ultraviolet Survey

David Thilker, Johns Hopkins University

The Legacy ExtraGalactic Ultraviolet Survey (LEGUS) was a Cycle 21 Large Treasury HST program which obtained ~parsec resolution NUV- to I-band WFC3 imaging for 50 nearby, representative star-forming Local Volume galaxies, with a primary goal of linking the scales of star formation from the limit of individual stars, to clusters and associations, eventually up through the hierarchy to giant star forming complexes and galaxy-scale morphological features.

I will review the basics of the survey, public data products and science team results pertaining to clusters and the field star hierarchy.  I will then describe work to optimize photometric selection methods for massive main sequence O star candidates and LBV candidates, in the former case establishing a means to statistically constrain the fraction of O stars in very isolated locales.  I will introduce new ideas on how to quantify the complex spatio-temporal nature of hierarchical star formation using multi-scale clustering methods. The first steps of this work have yielded a landmark OB association database for 36 LEGUS target fields (in 28 of the nearest available galaxies), with tracer stellar populations selected and interpreted uniformly.  I will finish with discussion of a pilot HST program to demonstrate remarkably increased survey efficiency of WFC3 UV imaging enabled by use of extra-wide (X) filter bandpasses.  Such efficiency is required as we move beyond LEGUS and begin to rigorously explore low surface brightness star-forming environments where canonical results for the IMF and cluster formation efficiency are increasingly called into question.

 

Oct
4
Fri
Colloquium: Raja GuhaThakurta (Host: Rene Walterbos)
Oct 4 @ 3:15 pm – 4:15 pm
Colloquium: Raja GuhaThakurta (Host: Rene Walterbos) @ BX102

The SPLASH Survey of the Andromeda Galaxy

Raja Guhathurkurta, University of California, Santa Cruz

Our nearest large spiral galaxy neighbor, the Andromeda galaxy (M31),
and its dwarf satellites, offer a panoramic yet detailed view of
galaxy formation and evolution in our astronomical backyard. This
system also serves as an excellent laboratory for the study of stellar
populations because the stars are all practically at the same distance
from us. I will present results from the SPLASH (Spectroscopic and
Photometric Landscape of Andromeda’s Stellar Halo) survey, the
backbone of which was a large Keck DEIMOS spectroscopic survey of
evolved stars in M31. Most of the SPLASH spectroscopic targets in
M31’s disk were selected from the PHAT (Panchromatic Hubble Andromeda
Treasury) survey, a wide-field 6-filter Hubble Space Telescope mosaic
image of a portion of the disk of M31. The talk will cover a range of
science topics including: Local Group dynamics, structure/substructure
and metallicity of M31’s stellar halo, satellite tidal interactions,
disk/halo interface, dynamical heating of the disk, and rare stellar
populations.

Oct
25
Fri
Colloquium: Shun Karato (Host: Jason Jackiewicz)
Oct 25 @ 3:15 pm – 4:15 pm
Colloquium: Shun Karato (Host: Jason Jackiewicz) @ BX102

Solving the Puzzles of the Moon

Shun Karato, Yale University

After 50 years from the first landing of men on the Moon, about 380 kg of samples were collected by the Apollo mission. Chemical analyses of these samples together with a theory of planetary formation led to a “giant impact” paradigm (in mid 1970s). In this paradigm, the Moon was formed in the later stage of Earth formation (not the very late stage, though), when the proto-Earth was hit by an impactor with a modest size (~ Mars size) at an oblique angle. Such an impact is a natural consequence of planetary formation from a proto-planetary nebula. This collision may have kicked out mantle materials from the proto-Earth to form the Moon. This model explains mostly rocky composition of the Moon and the large angular momentum of the Earth-Moon system. High temperatures caused by an impact likely removed much of the volatile components such as water.

However, two recent geochemical observations cast doubt about the validity of such a paradigm. They include (i) not-so-dry Moon suggested from the analysis of basaltic inclusions in olivine, and (ii) the high degree of similarities in many isotopes. The first observation is obviously counter-intuitive, but the second one is also hard to reconcile with the standard model of a giant impact, because many models show that a giant impact produces the Moon mostly from the impactor. In this presentation, I will show how one can solve these puzzles by a combination of physics/chemistry of materials with some basic physics of a giant impact.

Nov
8
Fri
Colloquium: Jacob Vander Vliet (Host: Chris Churchill)
Nov 8 @ 3:15 pm – 4:15 pm
Colloquium: Jacob Vander Vliet (Host: Chris Churchill) @ BX102

Galaxy Evolution in a Computer Box, or “How to turn a PhD on Theoretical Galaxy Evolution into a Scientific Programming Career with NASA”

Jacob Vander Vliet, NASA/SOFIA

I graduated from NMSU in 2017 with a PhD entitled “Observing the Baryon Cycle in Hydrodynamic Cosmological Simulations”.  I am happy to discuss the journey I took from primarily scientific interest in this problem to a primarily programming and computational interest in this problem.  One of the major outcomes of my dissertation was to build pipeline software for analysis of the hydrodynamic simulations using the “quasar absorption line technique from which we study the circumgalactic medium in the simulations in order to learn about the so-called baryon cycle.  Following graduation, I continued on as a “research assistant” at NMSU, and then landed a job with NASA at Stratospheric Observatory for Infrared Astronomy (SOFIA) and a scientific programmer.  I will discuss the type of science done at SOFIA and the virtues and differences of a non-academic position out of graduate school.

Nov
22
Fri
Colloquium: Rixin Li (Host: Wladimir Lyra)
Nov 22 @ 3:15 pm – 4:15 pm
Colloquium: Rixin Li (Host: Wladimir Lyra) @ BX102

Simulating Planetesimal Formation in the Kuiper Belt and Beyond

Rixin Li, University of Arizona

A critical step in planet formation is to build super-km-sized planetesimals in protoplanetary disks. The origin and demographics of planetesimals are crucial to understanding the Solar System, circumstellar disks, and exoplanets. I will overview the current status of planetesimal formation theory. Specifically, I will present our recent simulations of planetesimal formation by the streaming instability, a mechanism to aerodynamically concentrate pebbles in protoplanetary disks. I will then discuss the connections between our numerical models and recent astronomical observations and Solar System explorations. I will explain why all planetesimals likely formed as binaries.