Calendar

Apr
2
Mon
Pizza Lunch: Michael Engelhardt (Physics), “The quarks in the proton go round and round …”
Apr 2 @ 12:30 pm – 1:30 pm
Pizza Lunch: Michael Engelhardt (Physics), "The quarks in the proton go round and round ..." @ AY 119

The quarks in the proton go round and round …

Apr
13
Fri
Colloquium Thesis Proposal: Emma Dahl
Apr 13 @ 3:15 pm – 4:15 pm
Colloquium Thesis Proposal: Emma Dahl @ BX102

Colloquium Title

Emma Dahl, NMSU

Abstract text

May
9
Wed
Colloquium Thesis Proposal: Caitlin Doughty
May 9 @ 2:15 pm – 3:15 pm
Colloquium Thesis Proposal: Caitlin Doughty @ Science Hall 107

Metal Absorption in the Circumgalactic Medium During the Epoch of Reionization

Caitlin Doughty, NMSU

The characteristics of metal absorption arising from the circumgalactic medium of galaxies have been demonstrated to be related to conditions in the galaxy which sourced them, as well as to the ambient ultraviolet background. I propose a three- pronged thesis in order to better understand and utilize these relationships. First, I will explore whether the spectral energy distributions of binary stars, incorporated into a custom version of GADGET-3, can explain the discrepancy between observed and simulated absorber statistics. Second, I will study the relationship between neu- tral oxygen absorbers and the neutral hydrogen fraction in simulated quasar sight- lines and relate the results to observations of neutral oxygen at z ≥ 4.0. Third, I will study the relationships between the emissive properties of galaxies, stemming from their nebular gas, and the metal absorbers which they source. Taken as a whole, this thesis will improve the ability of cosmological simulations to reproduce realistic metal absorption, probe the local progress and topology of reionization, and under- stand what emissive galaxy traits we expect at z > 5 based on observations of metal absorbers.

Sep
21
Fri
Colloquium: Dave Thilker (Host: Rene Walterbos)
Sep 21 @ 3:15 pm – 4:15 pm
Colloquium: Dave Thilker (Host: Rene Walterbos) @ BX102

Fresh Perspectives on Star Formation from LEGUS, the Legacy ExtraGalactic Ultraviolet Survey

David Thilker, Johns Hopkins University

The Legacy ExtraGalactic Ultraviolet Survey (LEGUS) was a Cycle 21 Large Treasury HST program which obtained ~parsec resolution NUV- to I-band WFC3 imaging for 50 nearby, representative star-forming Local Volume galaxies, with a primary goal of linking the scales of star formation from the limit of individual stars, to clusters and associations, eventually up through the hierarchy to giant star forming complexes and galaxy-scale morphological features.

I will review the basics of the survey, public data products and science team results pertaining to clusters and the field star hierarchy.  I will then describe work to optimize photometric selection methods for massive main sequence O star candidates and LBV candidates, in the former case establishing a means to statistically constrain the fraction of O stars in very isolated locales.  I will introduce new ideas on how to quantify the complex spatio-temporal nature of hierarchical star formation using multi-scale clustering methods. The first steps of this work have yielded a landmark OB association database for 36 LEGUS target fields (in 28 of the nearest available galaxies), with tracer stellar populations selected and interpreted uniformly.  I will finish with discussion of a pilot HST program to demonstrate remarkably increased survey efficiency of WFC3 UV imaging enabled by use of extra-wide (X) filter bandpasses.  Such efficiency is required as we move beyond LEGUS and begin to rigorously explore low surface brightness star-forming environments where canonical results for the IMF and cluster formation efficiency are increasingly called into question.

 

Sep
12
Thu
Colloquium Thesis Proposal: Rachel Marra
Sep 12 @ 1:30 pm – 2:30 pm
Colloquium Thesis Proposal: Rachel Marra @ Jett Hall 210

An Observer’s Examination of the Circumgalactic Medium using Cosmological Simulations

Rachel Marra, NMSU

A significant aspect to understanding galaxy evolution is having an understanding of the intricacies involving the inflow and outflow of baryons onto a galaxy. Gas needs to accrete onto the galaxy in order for star formation to occur, while stellar winds, supernovae, and radiation pressure result in the outflow of gas from the galaxy. The diffuse region around the galaxy that has gas from interstellar medium (ISM) inflows and intergalactic medium (IGM) outflows interacting is the circumgalactic medium (CGM). Studying the CGM will help us learn about the baryon cycle and give us a better understanding of galactic evolution.

The primary method to studying the CGM is through absorption, as the density is too low to detect emission. Studying these absorption features allows us to learn about the physical properties of the gas giving rise to the absorption. Other than through observations, cosmological simulations play a large role in how we learn about the CGM of galaxies. Using MOCKSPEC, the Quasar Absorption Line Analysis Pipeline, to create mock quasar sightlines through the VELA simulation suite of galaxies, we use the absorption features seen in the sightlines to study the CGM in the simulations. While there are many ions that are used to study the CGM, we focus on OVI.

We intend to study how effective our methods are for studying the CGM with both observations and simulations. The covering fraction of OVI for a sample of observed galaxies will be compared with the covering fraction that is found from a selection of LOS that probe simulated, Milky-Way type galaxies. This tells us if the simulations can reproduce the observations, and if they do not, we can gain insights as to why the simulations do not match observed data. We will also investigate if the metallicity calculated from an observed absorption feature reflects the actual metallicity of the probed gas by using mock sightlines through simulations. Additionally, we will do a comparison of different methodologies used to study the CGM in simulations, to determine if using mock quasar sightlines is a more realistic and accurate method to compare to observed data.

Oct
4
Fri
Colloquium: Raja GuhaThakurta (Host: Rene Walterbos)
Oct 4 @ 3:15 pm – 4:15 pm
Colloquium: Raja GuhaThakurta (Host: Rene Walterbos) @ BX102

The SPLASH Survey of the Andromeda Galaxy

Raja Guhathurkurta, University of California, Santa Cruz

Our nearest large spiral galaxy neighbor, the Andromeda galaxy (M31),
and its dwarf satellites, offer a panoramic yet detailed view of
galaxy formation and evolution in our astronomical backyard. This
system also serves as an excellent laboratory for the study of stellar
populations because the stars are all practically at the same distance
from us. I will present results from the SPLASH (Spectroscopic and
Photometric Landscape of Andromeda’s Stellar Halo) survey, the
backbone of which was a large Keck DEIMOS spectroscopic survey of
evolved stars in M31. Most of the SPLASH spectroscopic targets in
M31’s disk were selected from the PHAT (Panchromatic Hubble Andromeda
Treasury) survey, a wide-field 6-filter Hubble Space Telescope mosaic
image of a portion of the disk of M31. The talk will cover a range of
science topics including: Local Group dynamics, structure/substructure
and metallicity of M31’s stellar halo, satellite tidal interactions,
disk/halo interface, dynamical heating of the disk, and rare stellar
populations.

Oct
25
Fri
Colloquium: Shun Karato (Host: Jason Jackiewicz)
Oct 25 @ 3:15 pm – 4:15 pm
Colloquium: Shun Karato (Host: Jason Jackiewicz) @ BX102

Solving the Puzzles of the Moon

Shun Karato, Yale University

After 50 years from the first landing of men on the Moon, about 380 kg of samples were collected by the Apollo mission. Chemical analyses of these samples together with a theory of planetary formation led to a “giant impact” paradigm (in mid 1970s). In this paradigm, the Moon was formed in the later stage of Earth formation (not the very late stage, though), when the proto-Earth was hit by an impactor with a modest size (~ Mars size) at an oblique angle. Such an impact is a natural consequence of planetary formation from a proto-planetary nebula. This collision may have kicked out mantle materials from the proto-Earth to form the Moon. This model explains mostly rocky composition of the Moon and the large angular momentum of the Earth-Moon system. High temperatures caused by an impact likely removed much of the volatile components such as water.

However, two recent geochemical observations cast doubt about the validity of such a paradigm. They include (i) not-so-dry Moon suggested from the analysis of basaltic inclusions in olivine, and (ii) the high degree of similarities in many isotopes. The first observation is obviously counter-intuitive, but the second one is also hard to reconcile with the standard model of a giant impact, because many models show that a giant impact produces the Moon mostly from the impactor. In this presentation, I will show how one can solve these puzzles by a combination of physics/chemistry of materials with some basic physics of a giant impact.

Nov
8
Fri
Colloquium: Jacob Vander Vliet (Host: Chris Churchill)
Nov 8 @ 3:15 pm – 4:15 pm
Colloquium: Jacob Vander Vliet (Host: Chris Churchill) @ BX102

Galaxy Evolution in a Computer Box, or “How to turn a PhD on Theoretical Galaxy Evolution into a Scientific Programming Career with NASA”

Jacob Vander Vliet, NASA/SOFIA

I graduated from NMSU in 2017 with a PhD entitled “Observing the Baryon Cycle in Hydrodynamic Cosmological Simulations”.  I am happy to discuss the journey I took from primarily scientific interest in this problem to a primarily programming and computational interest in this problem.  One of the major outcomes of my dissertation was to build pipeline software for analysis of the hydrodynamic simulations using the “quasar absorption line technique from which we study the circumgalactic medium in the simulations in order to learn about the so-called baryon cycle.  Following graduation, I continued on as a “research assistant” at NMSU, and then landed a job with NASA at Stratospheric Observatory for Infrared Astronomy (SOFIA) and a scientific programmer.  I will discuss the type of science done at SOFIA and the virtues and differences of a non-academic position out of graduate school.

Nov
22
Fri
Colloquium: Rixin Li (Host: Wladimir Lyra)
Nov 22 @ 3:15 pm – 4:15 pm
Colloquium: Rixin Li (Host: Wladimir Lyra) @ BX102

Simulating Planetesimal Formation in the Kuiper Belt and Beyond

Rixin Li, University of Arizona

A critical step in planet formation is to build super-km-sized planetesimals in protoplanetary disks. The origin and demographics of planetesimals are crucial to understanding the Solar System, circumstellar disks, and exoplanets. I will overview the current status of planetesimal formation theory. Specifically, I will present our recent simulations of planetesimal formation by the streaming instability, a mechanism to aerodynamically concentrate pebbles in protoplanetary disks. I will then discuss the connections between our numerical models and recent astronomical observations and Solar System explorations. I will explain why all planetesimals likely formed as binaries.

Feb
26
Wed
Colloquium Thesis Proposal: Sean Sellers
Feb 26 @ 3:30 pm – 4:30 pm
Colloquium Thesis Proposal: Sean Sellers @ Domenici Hall 006

A Multi-Wavelength Study of the Evolution of Solar Flares

Sean Sellers, NMSU