Calendar

Mar
11
Fri
Colloquium Thesis Proposal: Alexander Thelen (Host: Nancy Chanover)
Mar 11 @ 2:00 pm – 3:00 pm
Colloquium Thesis Proposal:  Alexander Thelen  (Host: Nancy Chanover) @ BX102

The Chemical History and Evolution of Titan’s Atmosphere as Revealed by ALMA

 Alexander Thelen, NMSU

Saturn’s largest moon, Titan, possesses a substantial atmosphere containing significant minorities of nitrile and hydrocarbon species, predominantly due to the photodissociation of the major gases, N2 and CH4. Titan’s methane cycle, liquid lakes, and complex organic chemistry make it an intriguing target through its similarities to Earth and the allure of its astrobiological potential. Though the existence of heavy nitrile species – such as CH3C3N, HC5N, and C3H7CN – has been inferred through Cassini Ion and Neutral Mass Spectrometer (INMS) data, confirmation of these species has yet to be made spectroscopically. Other hydrocarbon species, such as C3H4 and C3H8 have been detected using Voyager’s Infrared Spectrometer (IRIS; Maguire et al., 1981) and later mapped by the Composite Infrared Spectrometer (CIRS; Nixon et al., 2013) onboard Cassini, but abundance constraints for these species in the mesosphere is poor. To fully understand the production of these species and their spatial distribution in Titan’s atmosphere, vertical abundance profiles must be produced to use with current photochemical models. Utilizing early science calibration images of Titan obtained with the Atacama Large Millimeter/Submillimeter Array (ALMA), Cordiner et al. (2014; 2015) determined the vertical distribution of various nitriles and hydrocarbons in Titan’s atmosphere, including at least one previously undetected molecule – C2H5CN. For my dissertation project, I will calibrate and model sub-millimeter emissions from molecules in Titan’s atmosphere, and quantify variations in the spatial distribution of various species throughout its seasonal cycle by utilizing high resolution ALMA data.  The main goals of this project are as follows:
1. To search for previously undetected molecules in Titan’s atmosphere through analysis of the existing public ALMA data, and/or through ALMA proposals of my own;
2. Constrain abundance profiles of detected molecular species, and provide upper abundance limits for those we cannot detect;
3. Map the spatial distribution of detected species in order to improve our understanding of Titan’s atmospheric transport and circulation;
4. Determine how these spatial distributions change over Titan’s seasonal cycle by utilizing multiple years of public ALMA data.
The majority of this work will employ the Non-linear Optimal Estimator for MultivariatE Spectral analySIS (NEMESIS) software package, developed by Oxford University (Irwin et al., 2008), to retrieve abundance and temperature information through radiative transfer models. These results will allow us to investigate the chemical evolution and history of Titan’s rich, pre-biotic atmosphere by providing valuable abundance measurements and constraints to molecular photochemical and dynamical models. We will compare our results with measurements made by the Cassini spacecraft, thereby enhancing the scientific return from both orbiter and ALMA datasets. The increased inventory of complex, organic molecules observable with ALMA’s sub-mm frequency range and high spatial resolution may also yield detections of species fundamental to the formation of living organisms, such as amino acids. Thus, by informing photochemical and dynamical models and increasing our known inventory of complex molecular species, we will also assess Titan’s potential habitability.

May
12
Thu
Colloquium PhD Defense: Kenz Arraki
May 12 @ 3:00 pm – 4:00 pm
Colloquium PhD Defense: Kenz Arraki @ Dominici106

Evolution of Dwarf Galaxy Properties in Local Group Environments

Kenz Arraki, NMSU

May
31
Tue
Colloquium PhD Defense: Diane Feuillet
May 31 @ 3:00 pm – 4:00 pm
Colloquium PhD Defense: Diane Feuillet @ Dominici106

Ages and Abundance of Local Stellar Populations

Diane Feuillet, NMSU

Mar
2
Thu
Colloquium: Jack Burns (Host: Nancy Chanover)
Mar 2 @ 3:15 pm – 4:15 pm
Colloquium: Jack Burns (Host: Nancy Chanover) @ Domenici Hall Room 106

Cosmology from the Moon: The Dark Ages Radio Explorer (DARE)

Dr. Jack Burns, University of Colorado Boulder

In the New Worlds, New Horizons in Astronomy & Astrophysics Decadal Survey, Cosmic Dawn was singled out as one of the top astrophysics priorities for this decade. Specifically, the Decadal report asked “when and how did the first galaxies form out of cold clumps of hydrogen gas and start to shine—when was our cosmic dawn?” It proposed “astronomers must now search the sky for these infant galaxies and find out how they behaved and interacted with their surroundings.” This is the science objective of DARE – to search for the first stars, galaxies, and black holes via their impact on the intergalactic medium (IGM) as measured by the highly redshifted 21-cm hyperfine transition of neutral hydrogen (HI). DARE will probe redshifts of 11-35 (Dark Ages to Cosmic Dawn) with observed HI frequencies of 40-120 MHz. DARE will observe expected spectral features in the global signal of HI that correspond to stellar ignition (Lyman-α from the first stars coupling with the HI hyperfine transition), X-ray heating/ionization of the IGM from the first accreting black holes, and the beginning of reionization (signal dominated by IGM ionization fraction). These observations will complement those expected from JWST, ALMA, and HERA. We propose to observe these spectral features with a broad-beam dipole antenna along with a wide-band receiver and digital spectrometer. We will place DARE in lunar orbit and take data only above the farside, a location known to be free of human-generated RFI and with a negligible ionosphere. In this talk, I will present the mission concept including initial results from an engineering prototypes which are designed to perform end-to-end validation of the instrument and our calibration techniques. I will also describe our signal extraction tool, using a Markov Chain Monte Carlo technique, which measures the parameterized spectral features in the presence of substantial Galactic and solar system foregrounds.

 

Jun
27
Tue
Colloquium PhD Defense: Laura Mayorga
Jun 27 @ 2:30 pm – 3:30 pm
Colloquium PhD Defense: Laura Mayorga @ Domenici Hall 102

The Orbital and Planetary Phase Variations of Jupiter-Sized Planets: Characterizing Present and Future Giants

Laura Mayorga, NMSU

It is commonly said that exoplanet science is 100 years behind planetary science. While we may be able to travel to an exoplanet in the future, inferring the properties of exoplanets currently relies on extracting as much information as possible from a limited dataset. In order to further our ability to characterize, classify, and understand exoplanets as both a population and as individuals, this thesis makes use of multiple types of observations and simulations.

Firstly, direct-imaging is a technique long used in planetary science and is only now becoming feasible for exoplanet characterization. We present our results from analyzing Jupiter’s phase curve with Cassini/ISS to instruct the community in the complexity of exoplanet atmospheres and the need for further model development. The planet yields from future missions may be overestimated by today’s models. We also discuss the need for optimal bandpasses to best differentiate between planet classes.

Secondly, photometric surveys are still the best way of conducting population surveys of exoplanets. In particular, the Kepler dataset remains one of the highest precision photometric datasets and many planetary candidates remain to be characterized. We present techniques by which more information, such as a planet’s mass, can be extracted from a transit light curve without expensive ground- or space-based follow-up observations.

Finally, radial-velocity observations have revealed that many of the larger “planets” may actually be brown dwarfs. To understand the distinction between a brown dwarf and an exoplanet or a star, we have developed a simple, semi-analytic viscous disk model to study brown dwarf evolutionary history. We present the rudimentary framework and discuss its performance compared to more detailed numerical simulations as well as how additional physics and development can determine the potential observational characteristics that will differentiate between various formation scenarios.

Exoplanet science has already uncovered a plethora of previously unconsidered phenomenon. To increase our understanding of our own planet, as well as the other various possible end cases, will require a closer inspection of our own solar system, the nuanced details of exoplanet data, refined simulations, and laboratory astrophysics.

Jul
3
Mon
Colloquium PhD Defense: Nigel Mathes
Jul 3 @ 2:00 pm – 3:00 pm
Colloquium PhD Defense: Nigel Mathes

The Vulture Survey of MgII and CIV Absorbers: Feasting on the Bones of Spectra Left to Die

Nigel Mathes, NMSU

Abstract:

We present detailed measurements of the absorption properties and redshift evolution of MgII and CIV absorbers as measured in archival spectra from the UVES spectrograph at the Very Large Telescope (VLT/UVES) and the HIRES spectrograph at the Keck Telescope (Keck/HIRES) to equivalent width detection limits below 0.01 angstroms. This survey examines 860 high resolution spectra from various archival data sets representing 700 unique sightlines, allowing for detections of intervening MgII absorbers spanning redshifts 0.1 < z < 2.6 and intervening CIV absorbers spanning redshifts 1 < z < 5. We employ an accurate, automated approach to line detection which consistently detects redshifted absorption doublets. We observe three distinct epochs of evolution in the circumgalactic medium (CGM) as traced by MgII and CIV absorbers. At high redshifts, from 3 < z < 5, galaxies rapidly build up a metal enriched halo where, despite significant evolution in the ionizing background, the production of metals through star formation driven outflows dominates observed trends increasing the number of observed absorbers per redshift path length towards z = 3. At mid redshifts, from 2 < z < 3, a large cosmic increase in the global star formation rate drives large numbers of high column density outflows into the halos of galaxies. At this time, metal line absorption of all species is increased above all other epochs. At low redshifts, for z < 2, the universe becomes more quiescent in both star formation and ionizing background. Weak, low column density MgII absorbers proliferate, while strong MgII absorbers likely fragment or re-accrete onto their host galaxy. Strong CIV absorbers, at this time, still increase in number per absorption path, while their weaker counterparts begin to disappear. MgII and CIV absorbers appear to originate in star formation driven outflows, but their different evolutionary properties imply they represent two physically distinct phases of gas. These two phases comprise the CGM and contribute separately to the cycle of baryons into and out of galaxies.

Sep
20
Wed
Colloquium PhD Defense: Jean McKeever
Sep 20 @ 3:00 pm – 4:15 pm
Colloquium PhD Defense: Jean McKeever @ Business College 103

Asteroseismology of Red Giants: The Detailed Modeling of Red Giants in Eclipsing Binary Systems

Jean McKeever, NMSU

Asteroseismology is an invaluable tool that allows one to peer into the inside of a star and know its fundamental stellar properties with relative ease. There has been much exploration of solar-like oscillations within red giants with recent advances in technology, leading to new innovations in observing. The Kepler mission, with its 4-year observations of a single patch of sky, has opened the floodgates on asteroseismic studies. Binary star systems are also an invaluable tool for their ability to provide independent constraints on fundamental stellar parameters such as mass and radius. The asteroseismic scaling laws link observables in the light curves of stars to the physical parameters in the star, providing a unique tool to study large populations of stars quite easily. In this work we present our 4-year radial velocity observing program to provide accurate dynamical masses for 16 red giants in eclipsing binary systems. From this we find that asteroseismology overestimates the mass and radius of red giants by 15% and 5% respectively. We further attempt to model the pulsations of a few of these stars using stellar evolution and oscillation codes. The goal is to determine which masses are correct and if there is a physical cause for the discrepancy in asteroseismic masses. We find there are many challenges to modeling evolved stars such as red giants and we address a few of the major concerns. These systems are some of the best studied systems to date and further exploration of their asteroseismic mysteries is inevitable.

 

Mar
28
Wed
Colloquium PhD Thesis Defense: Ethan Dederick
Mar 28 @ 3:15 pm – 4:15 pm
Colloquium PhD Thesis Defense: Ethan Dederick @ Science Hall 109

Seismic Inferences of Gas Giant Planets: Excitation & Interiors

Ethan Dederick, NMSU

Seismology has been the premier tool of study for understanding the interior structure of the Earth, the Sun, and even other stars. In this thesis we develop the framework for the first ever seismic inversion of a rapidly rotating gas giant planet. We extensively test this framework to ensure that the inversions are robust and operate within a linear regime. This framework is then applied to Saturn to solve for its interior density and sound speed profiles to better constrain its interior structure. This is done by incorporating observations of its mode frequencies derived from Linblad and Vertical Resonances in Saturn’s C-ring. We find that although the accuracy of the inversions is mitigated by the limited number of observed modes, we find that Saturn’s core density must be at least 8.97 +/- 0.01 g cm^{-3} below r/R_S = 0.3352 and its sound speed must be greater than 54.09 +/- 0.01 km s^{-1} below r/R_S = 0.2237. These new constraints can aid the development of accurate equations of state and thus help determine the composition in Saturn’s core. In addition, we investigate mode excitation and whether the \kappa-Mechanism can excite modes on Jupiter. While we find that the \kappa-Mechanism does not play a role in Jovian mode excitation, we discover a different opacity driven mechanism, The Radiative Suppression Mechanism, that can excite modes in hot giant planets orbiting extremely close to their host stars if they receive a stellar flux greater than 10^9~erg cm^{-2} s^{-1}. Finally, we investigate whether moist convection is responsible for exciting Jovian modes. Mode driving can occur if, on average, one cloud column with a 1-km radius exists per 6423 km^2 or if ~43 storms with 200 columns, each with a radius of 25 km, erupt per day. While this seems unlikely given current observations, moist convection does have enough thermal energy to drive Jovian oscillations, should it be available to them.