Calendar

Feb
12
Fri
Colloquium: Lauren Woolsey
Feb 12 @ 3:15 pm – 4:15 pm
Colloquium:  Lauren Woolsey @ BX102

Magnetic Influences on Coronal Heating and the Solar Wind

Lauren Woolsey, Harvard University

 

Abstract

The physical mechanism(s) that generate and accelerate the solar wind have not been conclusively determined after decades of study, though not for lack of possibilities. The long list of proposed processes can be grouped into two main paradigms: 1) models that require the rearranging of magnetic topology through magnetic reconnection in order to release energy and accelerate the wind and 2) models that require the launching of magnetoacoustic and Alfvén waves to propagate along the magnetic field and generate turbulence to heat the corona and accelerate the emanating wind. After a short overview of these paradigms, I will present my ongoing dissertation work that seeks to investigate the latter category of theoretical models and the role that different magnetic field profiles play in the resulting solar wind properties with Alfvén-wave-driven turbulent heating. I will describe the computer modeling in 1D and 3D that I have done of bundles of magnetic field (flux tubes) that are open to the heliosphere, and what our results can tell us about the influences of magnetic field on the solar wind in these flux tubes, including the latest time-dependent modeling that produces bursty, nanoflare-like heating. Additionally, I will present the latest results of our study of chromospheric network jets and the magnetic thresholds we are finding in magnetogram data.

Apr
8
Fri
Colloquium PhD Defense: Meredith Rawls
Apr 8 @ 3:00 pm – 4:00 pm
Colloquium PhD Defense: Meredith Rawls @ BX102

Red Giants in Eclipsing Binaries as a Benchmark for Asteroseismology

Meredith Rawls, NMSU

Oct
28
Fri
Colloquium: Mark Wardle
Oct 28 @ 3:15 pm – 4:15 pm
Colloquium: Mark Wardle @ Biology Annex 102

Star formation in the vicinity of the supermassive black hole at the Galactic Centre

Dr. Mark Wardle, Macquarie University

The disruptive tidal field near supermassive black holes overcomes the self-gravity of objects that are less dense than the Roche density.  This was once expected to suppress star formation within several parsecs of  Sgr A*, the four million solar mass black hole at the centre of the Galaxy.   It has since become apparent that things are not this simple:  Sgr A* is surrounded by a sub-parsec-scale orbiting disk of massive stars, indicating a star formation event occurred a few million years ago.    And on parsec scales,  star formation seems to be happening now:  there are proplyd candidates and protostellar outflow candidates,  as well as methanol and water masers that in the galactic disk would be regarded as sure-fire signatures of star formation.  In this talk, I shall consider how star formation can occur so close to Sgr A*.

The stellar disk may be created through the partial capture of a molecular cloud as it swept through the inner few parsecs of the galaxy and temporarily engulfed Sgr A*.  This rather naturally creates a disk of gas with the steep surface density profile of the present stellar disk.  The inner 0.04 pc  is so optically thick that it cannot fragment, instead accreting onto Sgr A* in a few million years; meanwhile the outer disk fragments and creates the observed stellar disk.   The isolated young stellar objects found at larger distances, on the other hand,  can be explained by stabilisation of clouds or cloud cores by the high external pressure that permeates the inner Galaxy.   A virial analysis shows that clouds are indeed tidally disrupted within 0.5 pc of Sgr A*, but outside this the external pressure allows self-gravitating clouds to survive, providing the raw material for ongoing star formation.

 

Mar
13
Mon
Pizza Lunch: Jean McKeever
Mar 13 @ 12:30 pm – 1:30 pm
Pizza Lunch: Jean McKeever @ AY 119

Red Giants in Eclipsing Binary Systems

Jean McKeever

 

Sep
20
Wed
Colloquium PhD Defense: Jean McKeever
Sep 20 @ 3:00 pm – 4:15 pm
Colloquium PhD Defense: Jean McKeever @ Business College 103

Asteroseismology of Red Giants: The Detailed Modeling of Red Giants in Eclipsing Binary Systems

Jean McKeever, NMSU

Asteroseismology is an invaluable tool that allows one to peer into the inside of a star and know its fundamental stellar properties with relative ease. There has been much exploration of solar-like oscillations within red giants with recent advances in technology, leading to new innovations in observing. The Kepler mission, with its 4-year observations of a single patch of sky, has opened the floodgates on asteroseismic studies. Binary star systems are also an invaluable tool for their ability to provide independent constraints on fundamental stellar parameters such as mass and radius. The asteroseismic scaling laws link observables in the light curves of stars to the physical parameters in the star, providing a unique tool to study large populations of stars quite easily. In this work we present our 4-year radial velocity observing program to provide accurate dynamical masses for 16 red giants in eclipsing binary systems. From this we find that asteroseismology overestimates the mass and radius of red giants by 15% and 5% respectively. We further attempt to model the pulsations of a few of these stars using stellar evolution and oscillation codes. The goal is to determine which masses are correct and if there is a physical cause for the discrepancy in asteroseismic masses. We find there are many challenges to modeling evolved stars such as red giants and we address a few of the major concerns. These systems are some of the best studied systems to date and further exploration of their asteroseismic mysteries is inevitable.

 

Mar
28
Wed
Colloquium PhD Thesis Defense: Ethan Dederick
Mar 28 @ 3:15 pm – 4:15 pm
Colloquium PhD Thesis Defense: Ethan Dederick @ Science Hall 109

Seismic Inferences of Gas Giant Planets: Excitation & Interiors

Ethan Dederick, NMSU

Seismology has been the premier tool of study for understanding the interior structure of the Earth, the Sun, and even other stars. In this thesis we develop the framework for the first ever seismic inversion of a rapidly rotating gas giant planet. We extensively test this framework to ensure that the inversions are robust and operate within a linear regime. This framework is then applied to Saturn to solve for its interior density and sound speed profiles to better constrain its interior structure. This is done by incorporating observations of its mode frequencies derived from Linblad and Vertical Resonances in Saturn’s C-ring. We find that although the accuracy of the inversions is mitigated by the limited number of observed modes, we find that Saturn’s core density must be at least 8.97 +/- 0.01 g cm^{-3} below r/R_S = 0.3352 and its sound speed must be greater than 54.09 +/- 0.01 km s^{-1} below r/R_S = 0.2237. These new constraints can aid the development of accurate equations of state and thus help determine the composition in Saturn’s core. In addition, we investigate mode excitation and whether the \kappa-Mechanism can excite modes on Jupiter. While we find that the \kappa-Mechanism does not play a role in Jovian mode excitation, we discover a different opacity driven mechanism, The Radiative Suppression Mechanism, that can excite modes in hot giant planets orbiting extremely close to their host stars if they receive a stellar flux greater than 10^9~erg cm^{-2} s^{-1}. Finally, we investigate whether moist convection is responsible for exciting Jovian modes. Mode driving can occur if, on average, one cloud column with a 1-km radius exists per 6423 km^2 or if ~43 storms with 200 columns, each with a radius of 25 km, erupt per day. While this seems unlikely given current observations, moist convection does have enough thermal energy to drive Jovian oscillations, should it be available to them.

Mar
29
Thu
Colloquium (Joint with Physics): Jim Fuller (Host: Ethan Dederick)
Mar 29 @ 4:00 pm – 5:00 pm
Colloquium (Joint with Physics): Jim Fuller (Host: Ethan Dederick) @ Gardiner Hall 230

Surprising Impacts of Gravity Waves

Jim Fuller, Caltech

Gravity waves are low frequency fluid oscillations restored by buoyancy forces in planetary and stellar interiors. Despite their ubiquity, the importance of gravity waves in evolutionary processes and asteroseismology has only recently been appreciated. For instance, Kepler asteroseismic data has revealed gravity modes in thousands of red giant stars, providing unprecedented measurements of core structure and rotation. I will show how gravity modes (or lack thereof) can also reveal strong magnetic fields in the cores of red giants, and I will demonstrate that strong fields appear to be common within “retired” A stars but are absent in their lower-mass counterparts. In the late phase evolution of massive stars approaching core-collapse, vigorous convection excites gravity waves that can redistribute huge amounts of energy within the star. I will present preliminary models of this process, showing how wave energy redistribution can drive outbursts and enhanced mass loss in the final years of massive star evolution, with important consequences for the appearance of subsequent supernovae.
Oct
8
Mon
Pizza lunch: Patrick Gaulme
Oct 8 @ 12:30 pm – 1:30 pm
Pizza lunch: Patrick Gaulme @ AY 119

Red giants, eclipsing binaries, and asteroseismology.

Patrick Gaulme, Max Planck Institute for Solar System Research