Calendar

Jan
22
Fri
Tombaugh Observatory Open House
Jan 22 @ 7:00 pm – 9:00 pm
Tombaugh Observatory Open House @ Tombaugh Observatory | Las Cruces | New Mexico | United States

Open to the public.

Faculty member: Rene Walterbos

Graduate Students: Kenza Arraki, Drew Chojnowski, Diane Feuillet

 

 

Jan
29
Fri
Colloquium Thesis Proposal: Kathryn Steakley (Host: Jim Murphy)
Jan 29 @ 3:00 pm – 4:00 pm
Colloquium Thesis Proposal:  Kathryn Steakley  (Host: Jim Murphy) @ BX102

Exploring Impact Heating of the Early Martian Climate

Kathryn Steakley, NMSU

ABSTRACT: Geological evidence implies that Mars may have had a more warm and wet environment during the late Noachian / early Hesperian era (3.5–3.8 billion years ago), but climate models struggle to reproduce such warm conditions. Prior studies with one-dimensional atmospheric models indicate that the water and energy from impacts could provide enough greenhouse warming to raise temperatures above the freezing point of liquid water for many years. We will use the NASA Ames Research Center Mars GCM to characterize potential atmospheric changes induced by impactors ranging in diameter from 50 m to 100 km on a range of early Mars surface pressure scenarios (10-mbar, 100-mbar, 300-mbar, 1-bar, 2-bar, 3-bar). Our objectives are 1) to examine the temperature behavior of the early Martian climate following impacts and determine if environmental conditions on its surface could support liquid water for extended periods of time, and 2) to quantify precipitation rates and examine rainfall patterns on a simulated early Martian surface following impacts and determine if this mechanism is possibly responsible for the formation of observed river valley networks on Mars. Examining climate conditions after impacts with a GCM will allow us to test a potential mechanism for heating the early Martian atmosphere, constrain the magnitude and temporal duration of these potential heating events, and provide insight regarding the availability of liquid water on early Mars which is relevant to its past habitability.

 

Feb
12
Fri
Tombaugh Observatory Open House
Feb 12 @ 7:00 pm – 9:00 pm
Tombaugh Observatory Open House @ Tombaugh Observatory | Las Cruces | New Mexico | United States

Open to the public.

Faculty member: Jason Jackiewicz

Graduate Students: Xander Thelen, Caitlin Doughty, Agnar Hall

 

 

Mar
11
Fri
Tombaugh Observatory Open House
Mar 11 @ 8:00 pm – 10:00 pm
Tombaugh Observatory Open House @ Tombaugh Observatory | Las Cruces | New Mexico | United States

Open to the public.

Faculty member: Moire Prescott

Graduate Students: Jeremy Emmett, Gavin Mathes, Gordon MacDonald

 

 

Apr
15
Fri
Tombaugh Observatory Open House
Apr 15 @ 9:00 pm – 11:00 pm
Tombaugh Observatory Open House @ Tombaugh Observatory | Las Cruces | New Mexico | United States

Open to the public.

Faculty member: Chris Churchill

Graduate Students: Carlos Vargas, Sam Schonfeld, Jean McKeever

 

May
13
Fri
Tombaugh Observatory Open House
May 13 @ 9:00 pm – 11:00 pm
Tombaugh Observatory Open House @ Tombaugh Observatory | Las Cruces | New Mexico | United States

Open to the public.

Faculty member: Nancy Chanover

Graduate Students: Jacob VanderVliet, Ethan Dederick, Jean McKeever

 

Sep
9
Fri
Tombaugh Observatory Open House
Sep 9 @ 9:00 pm – 10:00 pm
Tombaugh Observatory Open House @ Tombaugh Observatory | Las Cruces | New Mexico | United States

The NMSU Department of Astronomy will hold an observatory open house at the NMSU campus observatory at 8 p.m.Friday, Sept. 9. Astronomy personnel on hand will be Chris Churchill and graduate assistants Xander Thelen, Trevor Picard and Jacob Vander Vliet.

Guests can view Mars and Saturn together in the evening sky in the constellation of Scorpio. Telescopes will also have the center of the Milky Way Galaxy in view, and in this region there are many beautiful star clusters and globular clusters (tight groups of millions of stars). High in the sky, viewers will see the constellation Vega with its double-double star system and the famous ring nebula, which is the remnants of a dying star much like our own sun. The moon will be in the phase called first quarter and will make a wonderful sight.

Contact the NMSU Astronomy Department at 575-646-4438 with questions. Everyone is welcome to come and spend an evening of stargazing. Admission is free and children are especially welcome to attend.

For information on what is up in September, go here: http://whatsouttonight.com/Resources/2016SepSkyWOT.pdf

Oct
28
Fri
Colloquium: Mark Wardle
Oct 28 @ 3:15 pm – 4:15 pm
Colloquium: Mark Wardle @ Biology Annex 102

Star formation in the vicinity of the supermassive black hole at the Galactic Centre

Dr. Mark Wardle, Macquarie University

The disruptive tidal field near supermassive black holes overcomes the self-gravity of objects that are less dense than the Roche density.  This was once expected to suppress star formation within several parsecs of  Sgr A*, the four million solar mass black hole at the centre of the Galaxy.   It has since become apparent that things are not this simple:  Sgr A* is surrounded by a sub-parsec-scale orbiting disk of massive stars, indicating a star formation event occurred a few million years ago.    And on parsec scales,  star formation seems to be happening now:  there are proplyd candidates and protostellar outflow candidates,  as well as methanol and water masers that in the galactic disk would be regarded as sure-fire signatures of star formation.  In this talk, I shall consider how star formation can occur so close to Sgr A*.

The stellar disk may be created through the partial capture of a molecular cloud as it swept through the inner few parsecs of the galaxy and temporarily engulfed Sgr A*.  This rather naturally creates a disk of gas with the steep surface density profile of the present stellar disk.  The inner 0.04 pc  is so optically thick that it cannot fragment, instead accreting onto Sgr A* in a few million years; meanwhile the outer disk fragments and creates the observed stellar disk.   The isolated young stellar objects found at larger distances, on the other hand,  can be explained by stabilisation of clouds or cloud cores by the high external pressure that permeates the inner Galaxy.   A virial analysis shows that clouds are indeed tidally disrupted within 0.5 pc of Sgr A*, but outside this the external pressure allows self-gravitating clouds to survive, providing the raw material for ongoing star formation.

 

Mar
13
Mon
Pizza Lunch: Jean McKeever
Mar 13 @ 12:30 pm – 1:30 pm
Pizza Lunch: Jean McKeever @ AY 119

Red Giants in Eclipsing Binary Systems

Jean McKeever

 

Apr
2
Mon
Pizza Lunch: Michael Engelhardt (Physics), “The quarks in the proton go round and round …”
Apr 2 @ 12:30 pm – 1:30 pm
Pizza Lunch: Michael Engelhardt (Physics), "The quarks in the proton go round and round ..." @ AY 119

The quarks in the proton go round and round …