Calendar

Oct
30
Fri
Colloquium: Sergio Rodriguez
Oct 30 @ 3:15 pm – 4:15 pm
Colloquium: Sergio Rodriguez @ BX102

BOSS DR12 survey: Clustering of galaxies and Dark Matter Haloes

Sergio Rodriguez, UAM, Madrid and Cal. Berkeley

BOSS SDSS-III is the largest redshift survey for the large scale structure and a powerful sample for the study of the low redshift Baryonic Acoustic Oscillations. We combine the features of the survey, such as, geometry, angular incompleteness and stellar mass incompleteness, with the BigMultiDark cosmological simulation to do a study of the distribution of galaxies in the dark matter halos. Using this large N-Body simulation and the halo abundance matching technique, we found a remarkably good agreement with the 2-point and 3-point statistics of the data.

Mar
11
Fri
Colloquium Thesis Proposal: Alexander Thelen (Host: Nancy Chanover)
Mar 11 @ 2:00 pm – 3:00 pm
Colloquium Thesis Proposal:  Alexander Thelen  (Host: Nancy Chanover) @ BX102

The Chemical History and Evolution of Titan’s Atmosphere as Revealed by ALMA

 Alexander Thelen, NMSU

Saturn’s largest moon, Titan, possesses a substantial atmosphere containing significant minorities of nitrile and hydrocarbon species, predominantly due to the photodissociation of the major gases, N2 and CH4. Titan’s methane cycle, liquid lakes, and complex organic chemistry make it an intriguing target through its similarities to Earth and the allure of its astrobiological potential. Though the existence of heavy nitrile species – such as CH3C3N, HC5N, and C3H7CN – has been inferred through Cassini Ion and Neutral Mass Spectrometer (INMS) data, confirmation of these species has yet to be made spectroscopically. Other hydrocarbon species, such as C3H4 and C3H8 have been detected using Voyager’s Infrared Spectrometer (IRIS; Maguire et al., 1981) and later mapped by the Composite Infrared Spectrometer (CIRS; Nixon et al., 2013) onboard Cassini, but abundance constraints for these species in the mesosphere is poor. To fully understand the production of these species and their spatial distribution in Titan’s atmosphere, vertical abundance profiles must be produced to use with current photochemical models. Utilizing early science calibration images of Titan obtained with the Atacama Large Millimeter/Submillimeter Array (ALMA), Cordiner et al. (2014; 2015) determined the vertical distribution of various nitriles and hydrocarbons in Titan’s atmosphere, including at least one previously undetected molecule – C2H5CN. For my dissertation project, I will calibrate and model sub-millimeter emissions from molecules in Titan’s atmosphere, and quantify variations in the spatial distribution of various species throughout its seasonal cycle by utilizing high resolution ALMA data.  The main goals of this project are as follows:
1. To search for previously undetected molecules in Titan’s atmosphere through analysis of the existing public ALMA data, and/or through ALMA proposals of my own;
2. Constrain abundance profiles of detected molecular species, and provide upper abundance limits for those we cannot detect;
3. Map the spatial distribution of detected species in order to improve our understanding of Titan’s atmospheric transport and circulation;
4. Determine how these spatial distributions change over Titan’s seasonal cycle by utilizing multiple years of public ALMA data.
The majority of this work will employ the Non-linear Optimal Estimator for MultivariatE Spectral analySIS (NEMESIS) software package, developed by Oxford University (Irwin et al., 2008), to retrieve abundance and temperature information through radiative transfer models. These results will allow us to investigate the chemical evolution and history of Titan’s rich, pre-biotic atmosphere by providing valuable abundance measurements and constraints to molecular photochemical and dynamical models. We will compare our results with measurements made by the Cassini spacecraft, thereby enhancing the scientific return from both orbiter and ALMA datasets. The increased inventory of complex, organic molecules observable with ALMA’s sub-mm frequency range and high spatial resolution may also yield detections of species fundamental to the formation of living organisms, such as amino acids. Thus, by informing photochemical and dynamical models and increasing our known inventory of complex molecular species, we will also assess Titan’s potential habitability.

Aug
26
Fri
Colloquium PhD Defense: Kyle Uckert
Aug 26 @ 3:15 pm – 4:15 pm
Colloquium PhD Defense: Kyle Uckert @ BX102

Characterization of Biosignatures within Geologic Samples Analyzed using a Suite of in situ Techniques

Kyle Uckert, NMSU   

Abstract:
I investigated the biosignature detection capabilities of several in situ techniques to evaluate their potential to
detect the presence of extant or extinct life on other planetary surfaces. These instruments included: a laser desorption
time-of- flight mass spectrometer (LD-TOF-MS), an acousto-optic tunable filter (AOTF) infrared (IR) point spectrometer, a
laser-induced breakdown spectrometer (LIBS), X-ray diffraction (XRD)/X-ray fluorescence (XRF), and scanning electron
microscopy (SEM)/energy dispersive X-Ray spectroscopy (EDS). I measured the IR reflectance spectra of several speleothems
in caves in situ to detect the presence of biomineralization. Microorganisms (such as those that may exist on other solar
system bodies) mediate redox reactions to obtain energy for growth and reproduction, producing minerals such as
carbonates, metal oxides, and sulfates as waste products. Microbes occasionally become entombed in their mineral
excrement, essentially acting as a nucleation site for further crystal growth. This process produces minerals with a
crystal lattice distinct from geologic precipitation, detectable with IR reflectance spectroscopy. Using a suite of
samples collected from three subterranean environments, along with statistical analyses including principal component
analysis, I measured subsurface biosignatures associated with these biomineralization effects, including the presence of
trace elements, morphological characteristics, organic molecules, and amorphous crystal structures.

I also explored the optimization of a two-step LD-TOF-MS (L2MS) for the detection of organic molecules and other
biosignatures. I focused my efforts on characterizing the L2MS desorption IR laser wavelength dependence on organic
detection sensitivity in an effort to optimize the detection of high mass (≤100 Da) organic peaks. I analyzed samples
with an IR reflectance spectrometer and an L2MS with a tunable desorption IR laser whose wavelength range (2.7 – 3.45
microns) overlaps that of our IR spectrometer (1.6 – 3.6 microns), and discovered a IR resonance enhancement effect. A
correlation between the maximum IR absorption of organic functional group and mineral vibrational transitions – inferred
from the IR spectrum – and the optimal IR laser configuration for organic detection using L2MS indicates that IR
spectroscopy may be used to inform the optimal L2MS IR laser wavelength for organic detection. This work suggests that a
suite of instruments, particularly LD-TOF-MS and AOTF IR spectroscopy, has strong biosignature detection potential on a
future robotic platform for investigations of other planetary surfaces or subsurfaces.

Sep
20
Tue
Colloquium Thesis Proposal: Ethan Dederick
Sep 20 @ 3:00 pm – 4:00 pm
Colloquium Thesis Proposal: Ethan Dederick @ Science Hall 310

Utilizing Planetary Oscillations to Constrain the Interior Structure of the Jovian Planets

Ethan Dederick

Seismology has been the premier tool of study for understanding the
interior structure of the Earth, the Sun, and even other stars. Yet in this
thesis proposal, we wish to utilize these tools to understand the interior
structure of the Jovian planets, Saturn in particular. Recent observations
of spiral density structures in Saturn’s rings caused by its oscillations
have provided insight into which modes exist within Saturn and at what
frequencies. Utilizing these frequencies to compare to probable mode can-
didates calculated from Saturn models will also us to ascertain the interior
profiles of state variables such as density, sound speed, rotation, etc. Using
these profiles in a Saturn model, coupled with tweaking the interior struc-
ture of the model, i.e. the inclusion of stably stratified regions, should
allow us to explain which modes are responsible for the density structures
in the rings, as well as predict where to look to find more such structures.
In doing so, we will not only have a much greater understanding of Sat-
urn’s interior structure, but will have constructed a method that can also
be applied to Jupiter once observations of its mode frequencies become
available. In addition, we seek to explain if moist convection on Jupiter is
responsible for exciting its modes. We aim to do this by modeling Jupiter
as a 2D harmonic oscillator. By creating a resonance between moist con-
vective storms and Jovian modes, we hope to match the expected mode
energies and surface displacements of Jupiter’s oscillations.