Pizza Lunch: Drew Chojnowski
Sep 21 @ 12:30 pm – 1:30 pm
Pizza Lunch: Drew Chojnowski

APOGEE Be stars

Pizza Lunch: Kyle Uckert and Nancy Chanover
Oct 26 @ 12:30 pm – 1:30 pm
Pizza Lunch: Kyle Uckert and Nancy Chanover

Integration of an IR spectrometer with a rock climbing robot

Colloquium: Rich Zurek (Host: Jim Murphy)
Jan 22 @ 3:15 pm – 4:15 pm
Colloquium:  Rich Zurek        (Host: Jim Murphy) @ BX102

Evolving Perspectives on the Atmosphere and Climate of Mars

            Dr. Richard Zurek, JPL

            Abstract: The planet Mars has both fascinated and tantalized humankind since the invention of the telescope and now well into the age of exploration from space. The first of three waves of space missions to Mars were flyby spacecraft that returned images of a heavily cratered planet with a thin atmosphere, suggesting Mars was more like the Moon than an older Earth. However, Mariner 9, the first spacecraft to orbit another planet, found vast channel and valley networks carved into its surface, as well as towering volcanoes, suggesting that ancient Mars was once much more Earth-like. Subsequent missions have landed on the planet and new orbiters have probed the planet at ever increasing spatial resolution and spectral coverage. As a result of the latest round of space exploration, Mars is revealed to be a complex, diverse planet— one whose climate has changed dramatically over time from an ancient atmosphere where water was active on its surface to a drier, thinner atmosphere shaped by periodic ice ages, to the present atmosphere where dynamic change continues today.

Dr. Zurek is the Chief Scientist in the Mars Program Office, Project Scientist, MRO.

Colloquium: Lauren Woolsey
Feb 12 @ 3:15 pm – 4:15 pm
Colloquium:  Lauren Woolsey @ BX102

Magnetic Influences on Coronal Heating and the Solar Wind

Lauren Woolsey, Harvard University



The physical mechanism(s) that generate and accelerate the solar wind have not been conclusively determined after decades of study, though not for lack of possibilities. The long list of proposed processes can be grouped into two main paradigms: 1) models that require the rearranging of magnetic topology through magnetic reconnection in order to release energy and accelerate the wind and 2) models that require the launching of magnetoacoustic and Alfvén waves to propagate along the magnetic field and generate turbulence to heat the corona and accelerate the emanating wind. After a short overview of these paradigms, I will present my ongoing dissertation work that seeks to investigate the latter category of theoretical models and the role that different magnetic field profiles play in the resulting solar wind properties with Alfvén-wave-driven turbulent heating. I will describe the computer modeling in 1D and 3D that I have done of bundles of magnetic field (flux tubes) that are open to the heliosphere, and what our results can tell us about the influences of magnetic field on the solar wind in these flux tubes, including the latest time-dependent modeling that produces bursty, nanoflare-like heating. Additionally, I will present the latest results of our study of chromospheric network jets and the magnetic thresholds we are finding in magnetogram data.

Pizza Lunch: Drew Chojnowski
Nov 14 @ 12:30 pm – 1:30 pm
Pizza Lunch: Drew Chojnowski @ AY 119

Title: H-band Spectral Variability of Classical Be Stars

Drew Chojnowski


Colloquium: Thomas Rivinius
Feb 24 @ 3:15 pm – 4:15 pm
Colloquium: Thomas Rivinius

Our Current Understanding of Classical Be Stars

Dr. Thomas Rivinius, Chile, ESO Paranal

I will introduce Be stars as B-type stars with gaseous disks in Keplerian rotation. These disks form by mass ejection from the star itself and their evolution is then governed by viscosity. The observables and their formation in the disk will be discussed, as well as what we know about the central stars: they are the most rapidly rotating non-degenerate stars, they are non-radial pulsators, and they do not show magnetic fields. The pulsation is clearly (phenomenologically) linked to the mass ejection, but the physical mechanism responsible for the ejection and disk formation is not known. Finally, I will discuss several open questions of broader interest, including the (possibly absent) chemical mixing of very rapid rotators and the unexpectedly large viscosity of Be star disks.


Colloquium: Jack Burns (Host: Nancy Chanover)
Mar 2 @ 3:15 pm – 4:15 pm
Colloquium: Jack Burns (Host: Nancy Chanover) @ Domenici Hall Room 106

Cosmology from the Moon: The Dark Ages Radio Explorer (DARE)

Dr. Jack Burns, University of Colorado Boulder

In the New Worlds, New Horizons in Astronomy & Astrophysics Decadal Survey, Cosmic Dawn was singled out as one of the top astrophysics priorities for this decade. Specifically, the Decadal report asked “when and how did the first galaxies form out of cold clumps of hydrogen gas and start to shine—when was our cosmic dawn?” It proposed “astronomers must now search the sky for these infant galaxies and find out how they behaved and interacted with their surroundings.” This is the science objective of DARE – to search for the first stars, galaxies, and black holes via their impact on the intergalactic medium (IGM) as measured by the highly redshifted 21-cm hyperfine transition of neutral hydrogen (HI). DARE will probe redshifts of 11-35 (Dark Ages to Cosmic Dawn) with observed HI frequencies of 40-120 MHz. DARE will observe expected spectral features in the global signal of HI that correspond to stellar ignition (Lyman-α from the first stars coupling with the HI hyperfine transition), X-ray heating/ionization of the IGM from the first accreting black holes, and the beginning of reionization (signal dominated by IGM ionization fraction). These observations will complement those expected from JWST, ALMA, and HERA. We propose to observe these spectral features with a broad-beam dipole antenna along with a wide-band receiver and digital spectrometer. We will place DARE in lunar orbit and take data only above the farside, a location known to be free of human-generated RFI and with a negligible ionosphere. In this talk, I will present the mission concept including initial results from an engineering prototypes which are designed to perform end-to-end validation of the instrument and our calibration techniques. I will also describe our signal extraction tool, using a Markov Chain Monte Carlo technique, which measures the parameterized spectral features in the presence of substantial Galactic and solar system foregrounds.