Pizza Lunch: Drew Chojnowski
Sep 21 @ 12:30 pm – 1:30 pm
Pizza Lunch: Drew Chojnowski

APOGEE Be stars

Pizza Lunch: Kyle Uckert and Nancy Chanover
Oct 26 @ 12:30 pm – 1:30 pm
Pizza Lunch: Kyle Uckert and Nancy Chanover

Integration of an IR spectrometer with a rock climbing robot

Colloquium: Sergio Rodriguez
Oct 30 @ 3:15 pm – 4:15 pm
Colloquium: Sergio Rodriguez @ BX102

BOSS DR12 survey: Clustering of galaxies and Dark Matter Haloes

Sergio Rodriguez, UAM, Madrid and Cal. Berkeley

BOSS SDSS-III is the largest redshift survey for the large scale structure and a powerful sample for the study of the low redshift Baryonic Acoustic Oscillations. We combine the features of the survey, such as, geometry, angular incompleteness and stellar mass incompleteness, with the BigMultiDark cosmological simulation to do a study of the distribution of galaxies in the dark matter halos. Using this large N-Body simulation and the halo abundance matching technique, we found a remarkably good agreement with the 2-point and 3-point statistics of the data.

Colloquium: Rich Zurek (Host: Jim Murphy)
Jan 22 @ 3:15 pm – 4:15 pm
Colloquium:  Rich Zurek        (Host: Jim Murphy) @ BX102

Evolving Perspectives on the Atmosphere and Climate of Mars

            Dr. Richard Zurek, JPL

            Abstract: The planet Mars has both fascinated and tantalized humankind since the invention of the telescope and now well into the age of exploration from space. The first of three waves of space missions to Mars were flyby spacecraft that returned images of a heavily cratered planet with a thin atmosphere, suggesting Mars was more like the Moon than an older Earth. However, Mariner 9, the first spacecraft to orbit another planet, found vast channel and valley networks carved into its surface, as well as towering volcanoes, suggesting that ancient Mars was once much more Earth-like. Subsequent missions have landed on the planet and new orbiters have probed the planet at ever increasing spatial resolution and spectral coverage. As a result of the latest round of space exploration, Mars is revealed to be a complex, diverse planet— one whose climate has changed dramatically over time from an ancient atmosphere where water was active on its surface to a drier, thinner atmosphere shaped by periodic ice ages, to the present atmosphere where dynamic change continues today.

Dr. Zurek is the Chief Scientist in the Mars Program Office, Project Scientist, MRO.

Colloquium: Gail Zasowski (Host: Drew Chojnowski)
Mar 4 @ 3:15 pm – 4:15 pm
Colloquium:  Gail Zasowski  (Host: Drew Chojnowski) @ BX102

New Tools for Galactic Archaeology from the Milky Way

Gail Zasowski, John Hopkins University

One of the critical components for understanding galaxy evolution is understanding the Milky Way Galaxy itself — its detailed structure and chemodynamical properties, as well as fundamental stellar physics, which we can only study in great detail locally.  This field is currently undergoing a dramatic expansion towards the kinds of large-scale statistical analyses long used by the extragalactic and other communities, thanks in part to an enormous influx of data from space- and ground-based surveys.  I will describe the Milky Way and Local Group in the context of general galaxy evolution and highlight some recent developments in Galactic astrophysics that take advantage of these big data sets and analysis techniques.  In particular, I will focus on two diverse approaches: one to characterize the distribution and dynamics of the carbon-rich, dusty diffuse ISM, and one to map the resolved bulk stellar properties of the inner disk and bulge.  The rapid progress in these areas promises to continue, with the arrival of data sets from missions like SDSS, Gaia, LSST, and WFIRST.

Colloquium PhD Defense: Diane Feuillet
May 31 @ 3:00 pm – 4:00 pm
Colloquium PhD Defense: Diane Feuillet @ Dominici106

Ages and Abundance of Local Stellar Populations

Diane Feuillet, NMSU

Pizza Lunch: Drew Chojnowski
Nov 14 @ 12:30 pm – 1:30 pm
Pizza Lunch: Drew Chojnowski @ AY 119

Title: H-band Spectral Variability of Classical Be Stars

Drew Chojnowski


Colloquium: Thomas Rivinius
Feb 24 @ 3:15 pm – 4:15 pm
Colloquium: Thomas Rivinius

Our Current Understanding of Classical Be Stars

Dr. Thomas Rivinius, Chile, ESO Paranal

I will introduce Be stars as B-type stars with gaseous disks in Keplerian rotation. These disks form by mass ejection from the star itself and their evolution is then governed by viscosity. The observables and their formation in the disk will be discussed, as well as what we know about the central stars: they are the most rapidly rotating non-degenerate stars, they are non-radial pulsators, and they do not show magnetic fields. The pulsation is clearly (phenomenologically) linked to the mass ejection, but the physical mechanism responsible for the ejection and disk formation is not known. Finally, I will discuss several open questions of broader interest, including the (possibly absent) chemical mixing of very rapid rotators and the unexpectedly large viscosity of Be star disks.


Colloquium: Jack Burns (Host: Nancy Chanover)
Mar 2 @ 3:15 pm – 4:15 pm
Colloquium: Jack Burns (Host: Nancy Chanover) @ Domenici Hall Room 106

Cosmology from the Moon: The Dark Ages Radio Explorer (DARE)

Dr. Jack Burns, University of Colorado Boulder

In the New Worlds, New Horizons in Astronomy & Astrophysics Decadal Survey, Cosmic Dawn was singled out as one of the top astrophysics priorities for this decade. Specifically, the Decadal report asked “when and how did the first galaxies form out of cold clumps of hydrogen gas and start to shine—when was our cosmic dawn?” It proposed “astronomers must now search the sky for these infant galaxies and find out how they behaved and interacted with their surroundings.” This is the science objective of DARE – to search for the first stars, galaxies, and black holes via their impact on the intergalactic medium (IGM) as measured by the highly redshifted 21-cm hyperfine transition of neutral hydrogen (HI). DARE will probe redshifts of 11-35 (Dark Ages to Cosmic Dawn) with observed HI frequencies of 40-120 MHz. DARE will observe expected spectral features in the global signal of HI that correspond to stellar ignition (Lyman-α from the first stars coupling with the HI hyperfine transition), X-ray heating/ionization of the IGM from the first accreting black holes, and the beginning of reionization (signal dominated by IGM ionization fraction). These observations will complement those expected from JWST, ALMA, and HERA. We propose to observe these spectral features with a broad-beam dipole antenna along with a wide-band receiver and digital spectrometer. We will place DARE in lunar orbit and take data only above the farside, a location known to be free of human-generated RFI and with a negligible ionosphere. In this talk, I will present the mission concept including initial results from an engineering prototypes which are designed to perform end-to-end validation of the instrument and our calibration techniques. I will also describe our signal extraction tool, using a Markov Chain Monte Carlo technique, which measures the parameterized spectral features in the presence of substantial Galactic and solar system foregrounds.


Pizza Lunch: Karen Kinemuchi
Dec 4 @ 12:30 pm – 1:30 pm
Pizza Lunch: Karen Kinemuchi @ AY 119

Life at Apache Point Observatory