
Simulations of the interstellar medium at high redshift: What does [CII] trace?
Dr. Karen Olsen, Arizona State University
We are in an exciting era were simulations on large, cosmological scales meet modeling of the interstellar medium (ISM) on sub-parsec scales. This gives us a way to predict and interpret observations of the ISM, and in particular the star-forming gas, in high-redshift galaxies, useful for ongoing and future ALMA/VLA projects.
In this talk, I will walk you though the current state of simulations targeting the the fine structure line of [CII] at 158 microns, which has now been observed in several z>6 galaxies. [CII] can arise throughout the interstellar medium (ISM), but the brightness of the [CII] line depends strongly on local environment within a galaxy, meaning that the ISM phase dominating the [CII] emission can depend on galaxy type. This complicates the use of [CII] as a tracer of either SFR or ISM mass and calls for detailed modeling following the different ways in which [CII] can be excited.
I will present SÍGAME (Simulator of GAlaxy Millimeter/submillimeter emission) – a novel method for predicting the origin and strength of line emission from galaxies. Our method combines data from cosmological simulations with sub-grid physics that carefully calculates local radiation field strength, pressure, and ionizational/thermal balance. Preliminary results will be shown from recent modeling of [CII] emission from z~6 star-forming galaxies with SÍGAME. We find strong potential for using the total [CII] luminosity to derive the ISM and molecular gas mass of galaxies during the Epoch of Reionization (EoR).

Asteroseismology of Red Giants: The Detailed Modeling of Red Giants in Eclipsing Binary Systems
Jean McKeever, NMSU
Asteroseismology is an invaluable tool that allows one to peer into the inside of a star and know its fundamental stellar properties with relative ease. There has been much exploration of solar-like oscillations within red giants with recent advances in technology, leading to new innovations in observing. The Kepler mission, with its 4-year observations of a single patch of sky, has opened the floodgates on asteroseismic studies. Binary star systems are also an invaluable tool for their ability to provide independent constraints on fundamental stellar parameters such as mass and radius. The asteroseismic scaling laws link observables in the light curves of stars to the physical parameters in the star, providing a unique tool to study large populations of stars quite easily. In this work we present our 4-year radial velocity observing program to provide accurate dynamical masses for 16 red giants in eclipsing binary systems. From this we find that asteroseismology overestimates the mass and radius of red giants by 15% and 5% respectively. We further attempt to model the pulsations of a few of these stars using stellar evolution and oscillation codes. The goal is to determine which masses are correct and if there is a physical cause for the discrepancy in asteroseismic masses. We find there are many challenges to modeling evolved stars such as red giants and we address a few of the major concerns. These systems are some of the best studied systems to date and further exploration of their asteroseismic mysteries is inevitable.

Characterizing the oscillatory response of the chromosphere during solar flares
Laurel Farris; NMSU Astronomy Department
Quasi-periodic pulsations (QPPs) are observed in the emission of solar flares over a wide range of wavelengths,
particularly in the radio and hard x-ray regimes where non-thermal emission dominates. These pulsations are
considered to be an intrinsic feature of flares, yet the exact mechanism that triggers them remains unclear.
There have been reports of an increase in the oscillatory power at 3-minute periods (the local acoustic
cutoff frequency) in the solar chromosphere associated with flaring events. I propose to investigate the
chromospheric response to flares by inspecting the spatial and temporal onset and evolution of the 3-minute
oscillatory power, along with any QPP patterns that may appear in chromospheric emission. The analysis
will be extended to multiple flares, and will include time before, during, and after the main event. To test
initial methods, the target of interest was the well-studied 2011 February 15 X-class flare. Data from two
instruments on board the Solar Dynamics Observatory (SDO) were used in the preliminary study, including
continuum images from the Helioseismic and Magnetic Imager (HMI) and UV images at 1600 and 1700
Angstroms from the Atmospheric Imaging Assembly (AIA). Later, spectroscopic data from the Interface
Region Imaging Spectrometer (IRIS) will be used to examine velocity patterns in addition to intensity.

The Circumstellar Disks and Binary Companions of Be Stars
Drew Chojnowski, NMSU
Tremendous progress has been made over the past two decades toward understanding Be stars, but a number of key aspects of them remain enigmatic. The unsolved mysteries include identification of the mechanism responsible for disk formation, the reason this mechanism occasionally turns off or on unexpectedly, the source of viscosity in the circumstellar disks, and the cause of slowly precessing density perturbations in the disks of many or most Be stars. On a deeper level, the origin of Be stars’ near-critical rotation is unknown, with one possible explanation being spin-up due to interaction with a binary companion. A better understanding of these stars is needed, with a particular focus on high-mass binaries being warranted in the age of gravitational wave astronomy. In this dissertation, I will extend the knowledge and understanding of Be stars through a series of three projects. First, I will present and describe the largest ever homogeneous, spectroscopic sample of Be stars to date. I will then focus on investigation of a rare class of Be stars found in binary systems with hot, low mass companions. The second project will present detailed characterization and modeling of HD~55606, a newly discovered member of this class. Finally, I will discuss the results of spectroscopic monitoring of seven newly discovered systems and establish or place limits on the orbital parameters of the binary components.