Calendar

Nov
9
Mon
Pizza Lunch: Karen Kinemuchi
Nov 9 @ 12:30 pm – 1:30 pm
Pizza Lunch: Karen Kinemuchi

High-precision studies of RR Lyrae Stars

Feb
29
Mon
Pizza Lunch: James McAteer
Feb 29 @ 12:30 pm – 1:30 pm
Pizza Lunch: James McAteer @ AY 119

In Life, 2 things are inevitable

 

Oct
28
Fri
Colloquium: Mark Wardle
Oct 28 @ 3:15 pm – 4:15 pm
Colloquium: Mark Wardle @ Biology Annex 102

Star formation in the vicinity of the supermassive black hole at the Galactic Centre

Dr. Mark Wardle, Macquarie University

The disruptive tidal field near supermassive black holes overcomes the self-gravity of objects that are less dense than the Roche density.  This was once expected to suppress star formation within several parsecs of  Sgr A*, the four million solar mass black hole at the centre of the Galaxy.   It has since become apparent that things are not this simple:  Sgr A* is surrounded by a sub-parsec-scale orbiting disk of massive stars, indicating a star formation event occurred a few million years ago.    And on parsec scales,  star formation seems to be happening now:  there are proplyd candidates and protostellar outflow candidates,  as well as methanol and water masers that in the galactic disk would be regarded as sure-fire signatures of star formation.  In this talk, I shall consider how star formation can occur so close to Sgr A*.

The stellar disk may be created through the partial capture of a molecular cloud as it swept through the inner few parsecs of the galaxy and temporarily engulfed Sgr A*.  This rather naturally creates a disk of gas with the steep surface density profile of the present stellar disk.  The inner 0.04 pc  is so optically thick that it cannot fragment, instead accreting onto Sgr A* in a few million years; meanwhile the outer disk fragments and creates the observed stellar disk.   The isolated young stellar objects found at larger distances, on the other hand,  can be explained by stabilisation of clouds or cloud cores by the high external pressure that permeates the inner Galaxy.   A virial analysis shows that clouds are indeed tidally disrupted within 0.5 pc of Sgr A*, but outside this the external pressure allows self-gravitating clouds to survive, providing the raw material for ongoing star formation.

 

Nov
11
Fri
Colloquium: Amy Simon (Host: Nancy Chanover)
Nov 11 @ 3:15 pm – 4:15 pm
Colloquium: Amy Simon (Host: Nancy Chanover) @ Biology Annex 102

Outer Planets Update

Dr. Amy Simon, NASA

The Hubble Outer Planet Atmospheres Legacy (OPAL) program is a yearly program for observing each of the outer planets over two full rotations. Observations began with Uranus in 2014, adding Neptune and Jupiter in 2015 (Saturn will be included in 2018, after the end of the Cassini mission). These observations have provided interesting new discoveries in their own right, but are also now being combined with observations from a number of facilities, including NASA’s IRTF, Keck, the VLA, as well as the Kepler and Spitzer missions to further expand the breadth of science they contain.  This talk will cover the latest observations for each of these planets and what we are learning from these data sets.

 

Mar
28
Wed
Colloquium PhD Thesis Defense: Ethan Dederick
Mar 28 @ 3:15 pm – 4:15 pm
Colloquium PhD Thesis Defense: Ethan Dederick @ Science Hall 109

Seismic Inferences of Gas Giant Planets: Excitation & Interiors

Ethan Dederick, NMSU

Seismology has been the premier tool of study for understanding the interior structure of the Earth, the Sun, and even other stars. In this thesis we develop the framework for the first ever seismic inversion of a rapidly rotating gas giant planet. We extensively test this framework to ensure that the inversions are robust and operate within a linear regime. This framework is then applied to Saturn to solve for its interior density and sound speed profiles to better constrain its interior structure. This is done by incorporating observations of its mode frequencies derived from Linblad and Vertical Resonances in Saturn’s C-ring. We find that although the accuracy of the inversions is mitigated by the limited number of observed modes, we find that Saturn’s core density must be at least 8.97 +/- 0.01 g cm^{-3} below r/R_S = 0.3352 and its sound speed must be greater than 54.09 +/- 0.01 km s^{-1} below r/R_S = 0.2237. These new constraints can aid the development of accurate equations of state and thus help determine the composition in Saturn’s core. In addition, we investigate mode excitation and whether the \kappa-Mechanism can excite modes on Jupiter. While we find that the \kappa-Mechanism does not play a role in Jovian mode excitation, we discover a different opacity driven mechanism, The Radiative Suppression Mechanism, that can excite modes in hot giant planets orbiting extremely close to their host stars if they receive a stellar flux greater than 10^9~erg cm^{-2} s^{-1}. Finally, we investigate whether moist convection is responsible for exciting Jovian modes. Mode driving can occur if, on average, one cloud column with a 1-km radius exists per 6423 km^2 or if ~43 storms with 200 columns, each with a radius of 25 km, erupt per day. While this seems unlikely given current observations, moist convection does have enough thermal energy to drive Jovian oscillations, should it be available to them.