Calendar

Apr
8
Fri
Colloquium PhD Defense: Meredith Rawls
Apr 8 @ 3:00 pm – 4:00 pm
Colloquium PhD Defense: Meredith Rawls @ BX102

Red Giants in Eclipsing Binaries as a Benchmark for Asteroseismology

Meredith Rawls, NMSU

May
31
Tue
Colloquium PhD Defense: Diane Feuillet
May 31 @ 3:00 pm – 4:00 pm
Colloquium PhD Defense: Diane Feuillet @ Dominici106

Ages and Abundance of Local Stellar Populations

Diane Feuillet, NMSU

Nov
11
Fri
Colloquium: Amy Simon (Host: Nancy Chanover)
Nov 11 @ 3:15 pm – 4:15 pm
Colloquium: Amy Simon (Host: Nancy Chanover) @ Biology Annex 102

Outer Planets Update

Dr. Amy Simon, NASA

The Hubble Outer Planet Atmospheres Legacy (OPAL) program is a yearly program for observing each of the outer planets over two full rotations. Observations began with Uranus in 2014, adding Neptune and Jupiter in 2015 (Saturn will be included in 2018, after the end of the Cassini mission). These observations have provided interesting new discoveries in their own right, but are also now being combined with observations from a number of facilities, including NASA’s IRTF, Keck, the VLA, as well as the Kepler and Spitzer missions to further expand the breadth of science they contain.  This talk will cover the latest observations for each of these planets and what we are learning from these data sets.

 

Jan
27
Fri
Colloquium: Bryan Butler (Host: Nancy Chanover)
Jan 27 @ 3:15 pm – 4:15 pm
Colloquium: Bryan Butler (Host: Nancy Chanover) @ BX 102

Observations of Solar System Bodies with the VLA and ALMA

Dr. Bryan Butler, NRAO

Observations of solar system bodies at wavelengths from submm to meter wavelengths provide important and unique information about those bodies. Such observations probe to depths unreachable at other wavelengths – typically of order 10-20 wavelengths for bodies with solid surfaces, and as deep as tens of bars for those with thick atmospheres (the giant planets). In the past five years, two instruments have been commissioned which have revolutionized the ability to make very sensitive, high-resolution observations at these wavelengths: the Karl G. Jansky Very Large Array (VLA) and the Atacama Large Millimeter/Submillimeter Array (ALMA). I will present a discussion of results over the past five years from observations from both the VLA and ALMA. These include observations of the atmospheres of all of the giant planets, the rings of Saturn, and the surfaces of many icy bodies in the outer solar system. I will also present plans for the Next Generation Very Large Array (ngVLA), the next step for millimeter to centimeter wavelength interferometry.

Mar
28
Tue
Joint Physics/Astronomy Colloquium: William Newman
Mar 28 @ 4:00 pm – 5:00 pm
Joint Physics/Astronomy Colloquium: William Newman @ Gardiner Hall 229, Physics. Dept. | Ames | Iowa | United States

Giant Planet Shielding of the Inner Solar System Revisited: Blending Celestial Mechanics with Advanced Computation

Dr. William Newman, UCLA

The Earth has sustained during the last billion years as many as five catastrophic collisions with asteroids and comets which led to widespread species extinctions. Our own atmosphere was literally blown away 4.5 billion years ago by a collision with a Mars-sized impactor. However, collisions with comets originating in the outer solar system accreted much of the present-day atmosphere. Relatively advanced life on our planet is the beneficiary of a number of impact events during Earth’s history which built our atmosphere without destroying a large fraction of terrestrial life. Using very high precision Monte Carlo integration methods to explore the orbital evolution over hundreds of millions of years followed by the application of celestial mechanical techniques, the presentation will explain directly how Earth was shielded by the combined influence of Jupiter and Saturn, assuring that only 1 in 100,000 potential collisions with the Earth will materialize.

 

Sep
1
Fri
Colloquium: Isak Wold (Host: Moire Prescott)
Sep 1 @ 3:15 pm – 4:15 pm
Colloquium: Isak Wold (Host: Moire Prescott) @ BX102

A Faint Flux-Limited LAE Sample at z = 0.3

Isak Wold, UT Austin

Observational surveys of Lya emitters (LAEs) have proven to be an efficient method to identify and study large numbers of galaxies over a wide redshift range. To understand what types of galaxies are selected in LAE surveys – and how this evolves with redshift – it is important to establish a low-redshift reference sample that can be directly compared to high-redshift samples.  The lowest redshift where a direct Lya survey is currently possible is at a redshift of z~0.3 via the Galaxy Evolution Explorer (GALEX ) FUV grism data. Using the z~0.3 GALEX sample as an anchor point, it has been suggested that at low redshifts high equivalent width (EW) LAEs become less prevalent and that the amount of escaping Lya emission declines rapidly.  A number of explanations for these trends have been suggested including increasing dust content, increasing neutral column density, and/or increasing metallicity of star-forming galaxies at lower redshifts. However, the published z~0.3 GALEX sample is pre-selected from bright NUV objects.  Thus, objects with strong Lya emission but faint continuum (high-EW LAEs) could be missed.  In this talk, I will present my efforts to re-reduce the deepest archival GALEX FUV grism data and obtain a sample that is not biased against high-EW LAEs.  I will discuss the implications of this new sample on the evolutionary trends listed above.

Sep
20
Wed
Colloquium PhD Defense: Jean McKeever
Sep 20 @ 3:00 pm – 4:15 pm
Colloquium PhD Defense: Jean McKeever @ Business College 103

Asteroseismology of Red Giants: The Detailed Modeling of Red Giants in Eclipsing Binary Systems

Jean McKeever, NMSU

Asteroseismology is an invaluable tool that allows one to peer into the inside of a star and know its fundamental stellar properties with relative ease. There has been much exploration of solar-like oscillations within red giants with recent advances in technology, leading to new innovations in observing. The Kepler mission, with its 4-year observations of a single patch of sky, has opened the floodgates on asteroseismic studies. Binary star systems are also an invaluable tool for their ability to provide independent constraints on fundamental stellar parameters such as mass and radius. The asteroseismic scaling laws link observables in the light curves of stars to the physical parameters in the star, providing a unique tool to study large populations of stars quite easily. In this work we present our 4-year radial velocity observing program to provide accurate dynamical masses for 16 red giants in eclipsing binary systems. From this we find that asteroseismology overestimates the mass and radius of red giants by 15% and 5% respectively. We further attempt to model the pulsations of a few of these stars using stellar evolution and oscillation codes. The goal is to determine which masses are correct and if there is a physical cause for the discrepancy in asteroseismic masses. We find there are many challenges to modeling evolved stars such as red giants and we address a few of the major concerns. These systems are some of the best studied systems to date and further exploration of their asteroseismic mysteries is inevitable.

 

Dec
4
Mon
Pizza Lunch: Karen Kinemuchi
Dec 4 @ 12:30 pm – 1:30 pm
Pizza Lunch: Karen Kinemuchi @ AY 119

Life at Apache Point Observatory

Jan
24
Wed
Colloquium Thesis Proposal: Laurel Farris
Jan 24 @ 2:30 pm – 3:30 pm
Colloquium Thesis Proposal: Laurel Farris @ Science Hall, Room 110

Characterizing the oscillatory response of the chromosphere during solar flares

Laurel Farris; NMSU Astronomy Department

Quasi-periodic pulsations (QPPs) are observed in the emission of solar flares over a wide range of wavelengths,

particularly in the radio and hard x-ray regimes where non-thermal emission dominates. These pulsations are

considered to be an intrinsic feature of flares, yet the exact mechanism that triggers them remains unclear.

There have been reports of an increase in the oscillatory power at 3-minute periods (the local acoustic

cutoff frequency) in the solar chromosphere associated with flaring events. I propose to investigate the

chromospheric response to flares by inspecting the spatial and temporal onset and evolution of the 3-minute

oscillatory power, along with any QPP patterns that may appear in chromospheric emission. The analysis

will be extended to multiple flares, and will include time before, during, and after the main event. To test

initial methods, the target of interest was the well-studied 2011 February 15 X-class flare. Data from two

instruments on board the Solar Dynamics Observatory (SDO) were used in the preliminary study, including

continuum images from the Helioseismic and Magnetic Imager (HMI) and UV images at 1600 and 1700

Angstroms from the Atmospheric Imaging Assembly (AIA). Later, spectroscopic data from the Interface

Region Imaging Spectrometer (IRIS) will be used to examine velocity patterns in addition to intensity.

Mar
15
Thu
Colloquium Thesis Proposal: Drew Chojnowski
Mar 15 @ 3:15 pm – 4:15 pm
Colloquium Thesis Proposal: Drew Chojnowski @ Domenici Hall 102

The Circumstellar Disks and Binary Companions of Be Stars

Drew Chojnowski, NMSU

Tremendous progress has been made over the past two decades toward understanding Be stars, but a number of key aspects of them remain enigmatic. The unsolved mysteries include identification of the mechanism responsible for disk formation, the reason this mechanism occasionally turns off or on unexpectedly, the source of viscosity in the circumstellar disks, and the cause of slowly precessing density perturbations in the disks of many or most Be stars. On a deeper level, the origin of Be stars’ near-critical rotation is unknown, with one possible explanation being spin-up due to interaction with a binary companion. A better understanding of these stars is needed, with a particular focus on high-mass binaries being warranted in the age of gravitational wave astronomy. In this dissertation, I will extend the knowledge and understanding of Be stars through a series of three projects. First, I will present and describe the largest ever homogeneous, spectroscopic sample of Be stars to date. I will then focus on investigation of a rare class of Be stars found in binary systems with hot, low mass companions. The second project will present detailed characterization and modeling of HD~55606, a newly discovered member of this class. Finally, I will discuss the results of spectroscopic monitoring of seven newly discovered systems and establish or place limits on the orbital parameters of the binary components.