Calendar

Sep
28
Mon
Pizza Lunch: Ethan Dederick
Sep 28 @ 12:30 pm – 1:30 pm
Pizza Lunch: Ethan Dederick

Mars One: Current State & Future Plans

Oct
30
Fri
Colloquium: Sergio Rodriguez
Oct 30 @ 3:15 pm – 4:15 pm
Colloquium: Sergio Rodriguez @ BX102

BOSS DR12 survey: Clustering of galaxies and Dark Matter Haloes

Sergio Rodriguez, UAM, Madrid and Cal. Berkeley

BOSS SDSS-III is the largest redshift survey for the large scale structure and a powerful sample for the study of the low redshift Baryonic Acoustic Oscillations. We combine the features of the survey, such as, geometry, angular incompleteness and stellar mass incompleteness, with the BigMultiDark cosmological simulation to do a study of the distribution of galaxies in the dark matter halos. Using this large N-Body simulation and the halo abundance matching technique, we found a remarkably good agreement with the 2-point and 3-point statistics of the data.

Jan
22
Fri
Colloquium: Rich Zurek (Host: Jim Murphy)
Jan 22 @ 3:15 pm – 4:15 pm
Colloquium:  Rich Zurek        (Host: Jim Murphy) @ BX102

Evolving Perspectives on the Atmosphere and Climate of Mars

            Dr. Richard Zurek, JPL

            Abstract: The planet Mars has both fascinated and tantalized humankind since the invention of the telescope and now well into the age of exploration from space. The first of three waves of space missions to Mars were flyby spacecraft that returned images of a heavily cratered planet with a thin atmosphere, suggesting Mars was more like the Moon than an older Earth. However, Mariner 9, the first spacecraft to orbit another planet, found vast channel and valley networks carved into its surface, as well as towering volcanoes, suggesting that ancient Mars was once much more Earth-like. Subsequent missions have landed on the planet and new orbiters have probed the planet at ever increasing spatial resolution and spectral coverage. As a result of the latest round of space exploration, Mars is revealed to be a complex, diverse planet— one whose climate has changed dramatically over time from an ancient atmosphere where water was active on its surface to a drier, thinner atmosphere shaped by periodic ice ages, to the present atmosphere where dynamic change continues today.

Dr. Zurek is the Chief Scientist in the Mars Program Office, Project Scientist, MRO.

Jan
29
Fri
Colloquium Thesis Proposal: Kathryn Steakley (Host: Jim Murphy)
Jan 29 @ 3:00 pm – 4:00 pm
Colloquium Thesis Proposal:  Kathryn Steakley  (Host: Jim Murphy) @ BX102

Exploring Impact Heating of the Early Martian Climate

Kathryn Steakley, NMSU

ABSTRACT: Geological evidence implies that Mars may have had a more warm and wet environment during the late Noachian / early Hesperian era (3.5–3.8 billion years ago), but climate models struggle to reproduce such warm conditions. Prior studies with one-dimensional atmospheric models indicate that the water and energy from impacts could provide enough greenhouse warming to raise temperatures above the freezing point of liquid water for many years. We will use the NASA Ames Research Center Mars GCM to characterize potential atmospheric changes induced by impactors ranging in diameter from 50 m to 100 km on a range of early Mars surface pressure scenarios (10-mbar, 100-mbar, 300-mbar, 1-bar, 2-bar, 3-bar). Our objectives are 1) to examine the temperature behavior of the early Martian climate following impacts and determine if environmental conditions on its surface could support liquid water for extended periods of time, and 2) to quantify precipitation rates and examine rainfall patterns on a simulated early Martian surface following impacts and determine if this mechanism is possibly responsible for the formation of observed river valley networks on Mars. Examining climate conditions after impacts with a GCM will allow us to test a potential mechanism for heating the early Martian atmosphere, constrain the magnitude and temporal duration of these potential heating events, and provide insight regarding the availability of liquid water on early Mars which is relevant to its past habitability.

 

Nov
18
Fri
Colloquium: Karen Olsen
Nov 18 @ 3:15 pm – 4:15 pm
Colloquium: Karen Olsen @ Biology Annex 102

Simulations of the interstellar medium at high redshift: What does [CII] trace?

Dr. Karen Olsen, Arizona State University

We are in an exciting era were simulations on large, cosmological scales meet modeling of the interstellar medium (ISM) on sub-parsec scales. This gives us a way to predict and interpret observations of the ISM, and in particular the star-forming gas, in high-redshift galaxies, useful for ongoing and future ALMA/VLA projects.

In this talk, I will walk you though the current state of simulations targeting the the fine structure line of [CII] at 158 microns, which has now been observed in several z>6 galaxies. [CII] can arise throughout the interstellar medium (ISM), but the brightness of the [CII] line depends strongly on local environment within a galaxy, meaning that the ISM phase dominating the [CII] emission can depend on galaxy type. This complicates the use of [CII] as a tracer of either SFR or ISM mass and calls for detailed modeling following the different ways in which [CII] can be excited.

I will present SÍGAME (Simulator of GAlaxy Millimeter/submillimeter emission) – a novel method for predicting the origin and strength of line emission from galaxies. Our method combines data from cosmological simulations with sub-grid physics that carefully calculates local radiation field strength, pressure, and ionizational/thermal balance. Preliminary results will be shown from recent modeling of [CII] emission from z~6 star-forming galaxies with SÍGAME. We find strong potential for using the total [CII] luminosity to derive the ISM and molecular gas mass of galaxies during the Epoch of Reionization (EoR).

 

Sep
8
Fri
Colloquium: Travis Metcalfe (Host: Jason Jackiewicz)
Sep 8 @ 3:15 pm – 4:15 pm
Colloquium: Travis Metcalfe (Host: Jason Jackiewicz) @ BX102

The Magnetic Mid-life Crisis of the Sun

Dr. Travis Metcalfe, Space Sciences Institute

After decades of effort, the solar activity cycle is exceptionally well characterized but it remains poorly understood. Pioneering work at the Mount Wilson Observatory demonstrated that other sun-like stars also show regular activity cycles, and suggested two possible relationships between the rotation rate and the length of the cycle. Neither of these relationships correctly describe the properties of the Sun, a peculiarity that demands explanation. Recent discoveries have started to shed light on this issue, suggesting that the Sun’s rotation rate and magnetic field are currently in a transitional phase that occurs in all middle-aged stars. We have recently identified the manifestation of this magnetic transition in the best available data on stellar cycles. The results suggest that the solar cycle may be growing longer on stellar evolutionary timescales, and that the cycle might disappear sometime in the next 0.8-2.4 Gyr. Future tests of this hypothesis will come from ground-based activity monitoring of Kepler targets that span the magnetic transition, and from asteroseismology with the TESS mission to determine precise masses and ages for bright stars with known cycles.