Calendar

Sep
20
Tue
Colloquium Thesis Proposal: Ethan Dederick
Sep 20 @ 3:00 pm – 4:00 pm
Colloquium Thesis Proposal: Ethan Dederick @ Science Hall 310

Utilizing Planetary Oscillations to Constrain the Interior Structure of the Jovian Planets

Ethan Dederick

Seismology has been the premier tool of study for understanding the
interior structure of the Earth, the Sun, and even other stars. Yet in this
thesis proposal, we wish to utilize these tools to understand the interior
structure of the Jovian planets, Saturn in particular. Recent observations
of spiral density structures in Saturn’s rings caused by its oscillations
have provided insight into which modes exist within Saturn and at what
frequencies. Utilizing these frequencies to compare to probable mode can-
didates calculated from Saturn models will also us to ascertain the interior
profiles of state variables such as density, sound speed, rotation, etc. Using
these profiles in a Saturn model, coupled with tweaking the interior struc-
ture of the model, i.e. the inclusion of stably stratified regions, should
allow us to explain which modes are responsible for the density structures
in the rings, as well as predict where to look to find more such structures.
In doing so, we will not only have a much greater understanding of Sat-
urn’s interior structure, but will have constructed a method that can also
be applied to Jupiter once observations of its mode frequencies become
available. In addition, we seek to explain if moist convection on Jupiter is
responsible for exciting its modes. We aim to do this by modeling Jupiter
as a 2D harmonic oscillator. By creating a resonance between moist con-
vective storms and Jovian modes, we hope to match the expected mode
energies and surface displacements of Jupiter’s oscillations.

Feb
17
Fri
Colloquium: Michael Boylan-Kolchin
Feb 17 @ 3:15 pm – 4:15 pm
Colloquium: Michael Boylan-Kolchin @ BX 102

Near-field Cosmology: Big Science from Small Galaxies

Dr. M. Boylan-Kolchin, UT Austin

The local Universe provides a unique and powerful way to explore galaxy formation and cosmological physics. Through measurements of the abundances, kinematics, and chemical composition of nearby systems that can be studied in exquisite detail, we can learn about the initial spectrum of cosmological density fluctuations, galaxy formation, dark matter physics, and processes at cosmic dawn that might otherwise remain unobservable. I will summarize some of the new and surprising results in this rapidly-changing subject of “near-field cosmology” and discuss how these results are driving advances in both astronomy and particle physics.

Feb
20
Mon
Pizza Lunch: Stephanie Ho
Feb 20 @ 12:30 pm – 1:30 pm
Pizza Lunch: Stephanie Ho @ AY 119

Quasars Probing Galaxies: Signatures of Gas Accretion at z~0.2

Stephanie Ho, Univ. California Santa Barbara

 

Mar
2
Thu
Colloquium: Jack Burns (Host: Nancy Chanover)
Mar 2 @ 3:15 pm – 4:15 pm
Colloquium: Jack Burns (Host: Nancy Chanover) @ Domenici Hall Room 106

Cosmology from the Moon: The Dark Ages Radio Explorer (DARE)

Dr. Jack Burns, University of Colorado Boulder

In the New Worlds, New Horizons in Astronomy & Astrophysics Decadal Survey, Cosmic Dawn was singled out as one of the top astrophysics priorities for this decade. Specifically, the Decadal report asked “when and how did the first galaxies form out of cold clumps of hydrogen gas and start to shine—when was our cosmic dawn?” It proposed “astronomers must now search the sky for these infant galaxies and find out how they behaved and interacted with their surroundings.” This is the science objective of DARE – to search for the first stars, galaxies, and black holes via their impact on the intergalactic medium (IGM) as measured by the highly redshifted 21-cm hyperfine transition of neutral hydrogen (HI). DARE will probe redshifts of 11-35 (Dark Ages to Cosmic Dawn) with observed HI frequencies of 40-120 MHz. DARE will observe expected spectral features in the global signal of HI that correspond to stellar ignition (Lyman-α from the first stars coupling with the HI hyperfine transition), X-ray heating/ionization of the IGM from the first accreting black holes, and the beginning of reionization (signal dominated by IGM ionization fraction). These observations will complement those expected from JWST, ALMA, and HERA. We propose to observe these spectral features with a broad-beam dipole antenna along with a wide-band receiver and digital spectrometer. We will place DARE in lunar orbit and take data only above the farside, a location known to be free of human-generated RFI and with a negligible ionosphere. In this talk, I will present the mission concept including initial results from an engineering prototypes which are designed to perform end-to-end validation of the instrument and our calibration techniques. I will also describe our signal extraction tool, using a Markov Chain Monte Carlo technique, which measures the parameterized spectral features in the presence of substantial Galactic and solar system foregrounds.

 

Mar
6
Mon
Pizza Lunch: F.X. Schmider
Mar 6 @ 12:30 pm – 1:30 pm
Pizza Lunch: F.X. Schmider

JIVE/JOVIAL, a network for Jupiter’s seismology and atmosphere dynamics

F.X. Schmider, Observatoire de la Cote d’Azur

Mar
31
Fri
Colloquium PhD Defense: Sean Markert
Mar 31 @ 3:15 pm – 4:15 pm
Colloquium PhD Defense: Sean Markert

THE SIGNAL OF WEAK GRAVITATIONAL LENSING FROM GALAXY
GROUPS AND CLUSTERS,

Dr. S. Markert, NMSU

 

The weak gravitational lensing of galaxy clusters is a valuable tool. The deflection of light around a lens is solely dependent on the underlying distribution of foreground mass, and independent of tracers of mass such as the mass to light ratio and kinematics. As a direct probe of mass, weak lensing serves as an independent calibration of mass-observable relationships. These massive clusters are objects of great interest to astronomers, as their abundance is dependent on the conditions of the early universe, and accurate counts of clusters serve as a test of cosmological model. Upcoming surveys, such as LSST and DES, promise to push the limit of observable weak lensing, detecting clusters and sources at higher redshift than has ever been detected before. This makes accurate counts of clusters of a given mass and redshift, and proper calibration of mass-observable relationships, vital to cosmological studies.
We used M> 10 13.5 h −1 M ⊙ halos from the MultiDark Planck simulation at z∼0.5 to study the behavior of the reduced shear in clusters. We generated 2D maps of convergence and shear the halos using the GLAMER lensing library. Using these maps, we simulated observations of randomly placed background sources, and generate azimuthal averages of the shear. This reduced shear profile, and the true reduced shear profile of the halo, is fit using analytical solutions for shear of the NFW, Einasto, and truncated NFW density profile. The masses of these density profiles are then compared to the total halo masses from the halo catalogs.
We find that fits to the reduced shear for halos extending past ≈ 2 h −1 Mpc are fits to the noise of large scale structure along the line of sight. This noise is largely in the 45 ◦ rotated component to the reduced tangential shear, and is a breakdown in the approximation of g tan ≈g tot required for density profile fitting of clusters. If fits are constrained to a projected radii of < 2 h −1 Mpc, we see massively improved fits insensitive to the amount of structure present along the line of sight.

May
5
Fri
Colloquium PhD Defense: Jacob Vander Vliet
May 5 @ 3:15 pm – 4:15 pm
Colloquium PhD Defense: Jacob Vander Vliet @ Domenici Hall 106

Observing the Baryon Cycle in Hydrodynamic Cosmological Simulations

Jacob Vander Vliet, NMSU

An understanding of galaxy evolution requires an understanding of the flow of baryons in and out of a galaxy. The accretion of baryons is required for galaxies to form stars, while stars eject baryons out of the galaxy through stellar feedback mechanisms such as supernovae, stellar winds, and radiation pressure. The interplay between outflowing and infalling material form the circumgalactic medium (CGM). Hydrodynamic simulations provide understanding in the connection between stellar feedback and the distribution and kinematics of baryons in the CGM. To compare simulations and observations properly the simulated CGM must be observed in the same manner as the real CGM. I have developed the Mockspec code to generate synthetic quasar absorption line observations of the CGM in cosmological hydrodynamic simulations. Mockspec generates synthetic spectra based on the phase, metallicity, and kinematics of CGM gas and mimics instrumental effects. Mockspec includes automatic analysis of the spectra and identifies the gas responsible for the absorption. Mockspec was applied to simulations of dwarf galaxies at low redshift to examine the observable effect different feedback models have on the CGM. While the different feedback models had strong effects on the galaxy, they all produced a similar CGM that failed match observations. Mockspec was applied to the VELA simulation suite of high redshift, high mass galaxies to examine the variance of the CGM across different galaxies in different environments. The observable CGM showed little variation between the different galaxies and almost no evolution from z=4 to z=1. The VELAs were not able to generate a CGM to match the observations. The properties of cells responsible for the absorption were compared to the derived properties from Voigt Profile decomposition. VP modeling was found to accurately describe the HI and MgII absorbing gas but failed for high ionization species such as CIV and OVI, which do not arise in the assumed coherent structures.  The technique of mock QAL is useful for testing the accuracy of the simulated CGM and for verifying observational techniques, but not for differentiating between feedback prescriptions in dwarf galaxies.

 

Jul
3
Mon
Colloquium PhD Defense: Nigel Mathes
Jul 3 @ 2:00 pm – 3:00 pm
Colloquium PhD Defense: Nigel Mathes

The Vulture Survey of MgII and CIV Absorbers: Feasting on the Bones of Spectra Left to Die

Nigel Mathes, NMSU

Abstract:

We present detailed measurements of the absorption properties and redshift evolution of MgII and CIV absorbers as measured in archival spectra from the UVES spectrograph at the Very Large Telescope (VLT/UVES) and the HIRES spectrograph at the Keck Telescope (Keck/HIRES) to equivalent width detection limits below 0.01 angstroms. This survey examines 860 high resolution spectra from various archival data sets representing 700 unique sightlines, allowing for detections of intervening MgII absorbers spanning redshifts 0.1 < z < 2.6 and intervening CIV absorbers spanning redshifts 1 < z < 5. We employ an accurate, automated approach to line detection which consistently detects redshifted absorption doublets. We observe three distinct epochs of evolution in the circumgalactic medium (CGM) as traced by MgII and CIV absorbers. At high redshifts, from 3 < z < 5, galaxies rapidly build up a metal enriched halo where, despite significant evolution in the ionizing background, the production of metals through star formation driven outflows dominates observed trends increasing the number of observed absorbers per redshift path length towards z = 3. At mid redshifts, from 2 < z < 3, a large cosmic increase in the global star formation rate drives large numbers of high column density outflows into the halos of galaxies. At this time, metal line absorption of all species is increased above all other epochs. At low redshifts, for z < 2, the universe becomes more quiescent in both star formation and ionizing background. Weak, low column density MgII absorbers proliferate, while strong MgII absorbers likely fragment or re-accrete onto their host galaxy. Strong CIV absorbers, at this time, still increase in number per absorption path, while their weaker counterparts begin to disappear. MgII and CIV absorbers appear to originate in star formation driven outflows, but their different evolutionary properties imply they represent two physically distinct phases of gas. These two phases comprise the CGM and contribute separately to the cycle of baryons into and out of galaxies.

Nov
9
Thu
Special Pizza Lunch: Jane Rigby
Nov 9 @ 1:00 pm – 2:00 pm
Special Pizza Lunch: Jane Rigby @ AY 119

Galaxy Evolution in High Definition Via Gravitational Lensing

Dr. Jane Rigby

Deputy Project Scientist for JWST, NASA Goddard Space Flight Center

Abstract: In hundreds of known cases, “gravitational lenses” have deflected, distorted, and amplified images of galaxies or quasars behind them.  As such, gravitational lensing is a way to “cheat” at studying how galaxies evolve:  lensing can magnify galaxies by factors of 10–100 times, transforming them from objects we can barely detect to bright objects we can study in detail.   For such rare objects, we are studying how galaxies formed stars at redshifts of 1–4, the epoch when most of the Universe’s stars were formed. For lensed galaxies, we can obtained spectral diagnostics that are currently unavailable for the distant universe, but will become routine with next-generation telescopes.

In particular, I’ll discuss MEGaSaURA, The Magellan Evolution of Galaxies Spectroscopic and Ultraviolet Reference Atlas, which comprises high signal-to-noise, medium spectral resolution (R~3300) spectra of 15 extremely bright gravitationally lensed galaxies at redshifts of 1.6<z<3.6.   The sample, drawn from the SDSS Giant Arcs Survey, are many of the brightest lensed galaxies known.  The MEGaSaURA spectra reveal a wealth of spectral diagnostics: absorption from the outflowing wind; nebular emission lines that will be key diagnostics for JWST, GMT, and TMT; and photospheric absorption lines and P Cygni profiles from the massive stars that power the outflow.

Nov
13
Mon
Pizza Lunch: James Lewis
Nov 13 @ 12:30 pm – 1:30 pm
Pizza Lunch: James Lewis @ AY 119

Multivariate Analysis of the CGM