Colloquium Thesis Proposal: Laura Mayorga
Aug 28 @ 3:15 pm – 4:15 pm
Colloquium Thesis Proposal: Laura Mayorga @ BX102

Probing Exoplanet Atmospheric Properties from Phase Variations and Polarization

Laura Mayorga, NMSU

The study of exoplanets is evolving past simple transit and Doppler method discovery and characterization. One of the many goals of the upcoming mission WFIRST-AFTA is to directly image giant exoplanets with a coronagraph. We undertake a study to determine the types of exoplanets that missions such as WFIRST will encounter and what instruments these missions require to best characterize giant planet atmospheres. We will first complete a benchmark study of how Jupiter reflects and scatters light as a function of phase angle. We will use Cassini flyby data from late 2000 to measure Jupiter’s phase curve, spherical albedo, and degree of polarization. Using Jupiter as a comparison, we will then study a sample of exoplanet atmosphere models generated to explore the atmospheric parameter space of giant planets and estimate what WFIRST might observe. Our study will provide valuable refinements to Jupiter-like models of planet evolution and atmospheric composition. We will also help inform future missions of what instruments are needed to characterize similar planets and what science goals will further our knowledge of giant worlds in our universe.

Colloquium: Lauren Woolsey
Feb 12 @ 3:15 pm – 4:15 pm
Colloquium:  Lauren Woolsey @ BX102

Magnetic Influences on Coronal Heating and the Solar Wind

Lauren Woolsey, Harvard University



The physical mechanism(s) that generate and accelerate the solar wind have not been conclusively determined after decades of study, though not for lack of possibilities. The long list of proposed processes can be grouped into two main paradigms: 1) models that require the rearranging of magnetic topology through magnetic reconnection in order to release energy and accelerate the wind and 2) models that require the launching of magnetoacoustic and Alfvén waves to propagate along the magnetic field and generate turbulence to heat the corona and accelerate the emanating wind. After a short overview of these paradigms, I will present my ongoing dissertation work that seeks to investigate the latter category of theoretical models and the role that different magnetic field profiles play in the resulting solar wind properties with Alfvén-wave-driven turbulent heating. I will describe the computer modeling in 1D and 3D that I have done of bundles of magnetic field (flux tubes) that are open to the heliosphere, and what our results can tell us about the influences of magnetic field on the solar wind in these flux tubes, including the latest time-dependent modeling that produces bursty, nanoflare-like heating. Additionally, I will present the latest results of our study of chromospheric network jets and the magnetic thresholds we are finding in magnetogram data.

Colloquium Thesis Proposal: Laurel Farris
Jan 24 @ 2:30 pm – 3:30 pm
Colloquium Thesis Proposal: Laurel Farris @ Science Hall, Room 110

Characterizing the oscillatory response of the chromosphere during solar flares

Laurel Farris; NMSU Astronomy Department

Quasi-periodic pulsations (QPPs) are observed in the emission of solar flares over a wide range of wavelengths,

particularly in the radio and hard x-ray regimes where non-thermal emission dominates. These pulsations are

considered to be an intrinsic feature of flares, yet the exact mechanism that triggers them remains unclear.

There have been reports of an increase in the oscillatory power at 3-minute periods (the local acoustic

cutoff frequency) in the solar chromosphere associated with flaring events. I propose to investigate the

chromospheric response to flares by inspecting the spatial and temporal onset and evolution of the 3-minute

oscillatory power, along with any QPP patterns that may appear in chromospheric emission. The analysis

will be extended to multiple flares, and will include time before, during, and after the main event. To test

initial methods, the target of interest was the well-studied 2011 February 15 X-class flare. Data from two

instruments on board the Solar Dynamics Observatory (SDO) were used in the preliminary study, including

continuum images from the Helioseismic and Magnetic Imager (HMI) and UV images at 1600 and 1700

Angstroms from the Atmospheric Imaging Assembly (AIA). Later, spectroscopic data from the Interface

Region Imaging Spectrometer (IRIS) will be used to examine velocity patterns in addition to intensity.