Colloquium Thesis Proposal: Laura Mayorga
Aug 28 @ 3:15 pm – 4:15 pm
Colloquium Thesis Proposal: Laura Mayorga @ BX102

Probing Exoplanet Atmospheric Properties from Phase Variations and Polarization

Laura Mayorga, NMSU

The study of exoplanets is evolving past simple transit and Doppler method discovery and characterization. One of the many goals of the upcoming mission WFIRST-AFTA is to directly image giant exoplanets with a coronagraph. We undertake a study to determine the types of exoplanets that missions such as WFIRST will encounter and what instruments these missions require to best characterize giant planet atmospheres. We will first complete a benchmark study of how Jupiter reflects and scatters light as a function of phase angle. We will use Cassini flyby data from late 2000 to measure Jupiter’s phase curve, spherical albedo, and degree of polarization. Using Jupiter as a comparison, we will then study a sample of exoplanet atmosphere models generated to explore the atmospheric parameter space of giant planets and estimate what WFIRST might observe. Our study will provide valuable refinements to Jupiter-like models of planet evolution and atmospheric composition. We will also help inform future missions of what instruments are needed to characterize similar planets and what science goals will further our knowledge of giant worlds in our universe.

Colloquium: Rich Zurek (Host: Jim Murphy)
Jan 22 @ 3:15 pm – 4:15 pm
Colloquium:  Rich Zurek        (Host: Jim Murphy) @ BX102

Evolving Perspectives on the Atmosphere and Climate of Mars

            Dr. Richard Zurek, JPL

            Abstract: The planet Mars has both fascinated and tantalized humankind since the invention of the telescope and now well into the age of exploration from space. The first of three waves of space missions to Mars were flyby spacecraft that returned images of a heavily cratered planet with a thin atmosphere, suggesting Mars was more like the Moon than an older Earth. However, Mariner 9, the first spacecraft to orbit another planet, found vast channel and valley networks carved into its surface, as well as towering volcanoes, suggesting that ancient Mars was once much more Earth-like. Subsequent missions have landed on the planet and new orbiters have probed the planet at ever increasing spatial resolution and spectral coverage. As a result of the latest round of space exploration, Mars is revealed to be a complex, diverse planet— one whose climate has changed dramatically over time from an ancient atmosphere where water was active on its surface to a drier, thinner atmosphere shaped by periodic ice ages, to the present atmosphere where dynamic change continues today.

Dr. Zurek is the Chief Scientist in the Mars Program Office, Project Scientist, MRO.

Colloquium Thesis Proposal: Kathryn Steakley (Host: Jim Murphy)
Jan 29 @ 3:00 pm – 4:00 pm
Colloquium Thesis Proposal:  Kathryn Steakley  (Host: Jim Murphy) @ BX102

Exploring Impact Heating of the Early Martian Climate

Kathryn Steakley, NMSU

ABSTRACT: Geological evidence implies that Mars may have had a more warm and wet environment during the late Noachian / early Hesperian era (3.5–3.8 billion years ago), but climate models struggle to reproduce such warm conditions. Prior studies with one-dimensional atmospheric models indicate that the water and energy from impacts could provide enough greenhouse warming to raise temperatures above the freezing point of liquid water for many years. We will use the NASA Ames Research Center Mars GCM to characterize potential atmospheric changes induced by impactors ranging in diameter from 50 m to 100 km on a range of early Mars surface pressure scenarios (10-mbar, 100-mbar, 300-mbar, 1-bar, 2-bar, 3-bar). Our objectives are 1) to examine the temperature behavior of the early Martian climate following impacts and determine if environmental conditions on its surface could support liquid water for extended periods of time, and 2) to quantify precipitation rates and examine rainfall patterns on a simulated early Martian surface following impacts and determine if this mechanism is possibly responsible for the formation of observed river valley networks on Mars. Examining climate conditions after impacts with a GCM will allow us to test a potential mechanism for heating the early Martian atmosphere, constrain the magnitude and temporal duration of these potential heating events, and provide insight regarding the availability of liquid water on early Mars which is relevant to its past habitability.


Colloquium: Lauren Woolsey
Feb 12 @ 3:15 pm – 4:15 pm
Colloquium:  Lauren Woolsey @ BX102

Magnetic Influences on Coronal Heating and the Solar Wind

Lauren Woolsey, Harvard University



The physical mechanism(s) that generate and accelerate the solar wind have not been conclusively determined after decades of study, though not for lack of possibilities. The long list of proposed processes can be grouped into two main paradigms: 1) models that require the rearranging of magnetic topology through magnetic reconnection in order to release energy and accelerate the wind and 2) models that require the launching of magnetoacoustic and Alfvén waves to propagate along the magnetic field and generate turbulence to heat the corona and accelerate the emanating wind. After a short overview of these paradigms, I will present my ongoing dissertation work that seeks to investigate the latter category of theoretical models and the role that different magnetic field profiles play in the resulting solar wind properties with Alfvén-wave-driven turbulent heating. I will describe the computer modeling in 1D and 3D that I have done of bundles of magnetic field (flux tubes) that are open to the heliosphere, and what our results can tell us about the influences of magnetic field on the solar wind in these flux tubes, including the latest time-dependent modeling that produces bursty, nanoflare-like heating. Additionally, I will present the latest results of our study of chromospheric network jets and the magnetic thresholds we are finding in magnetogram data.

Colloquium: Hwiyun Kim (Host: Rene Walterbos)
Apr 1 @ 3:15 pm – 4:15 pm
Colloquium:  Hwiyun Kim     (Host: Rene Walterbos) @ BX102

High Resolution Spectroscopy with Immersion Grating Infrared Spectrometer (IGRINS)

Hwihyun Kim, KASI/UT Austin


The Immersion Grating Infrared Spectrometer (IGRINS) is a revolutionary instrument that exploits broad spectral coverage at high-resolution (R=45,000) in the near-infrared. IGRINS employs a silicon immersion grating as the primary disperser of the white pupil, and volume-phase holographic gratings cross-disperse the H and K bands onto Teledyne Hawaii-2RG arrays. IGRINS provides simultaneous wavelength coverage from 1.45 – 2.45 microns in a compact cryostat. I will summarize the performance and various science programs of IGRINS since commissioning in Summer 2014. With IGRINS we have observed such as Solar System objects, nearby young stars, star-forming regions like Taurus and Ophiuchus, the Galactic Center, and planetary nebulae.

The second half of my talk will be focused on the study of ionized and neutral gas in an ultracompact HII region Monoceros R2. We obtained the IGRINS spectra of Mon R2 to study the kinematic patterns in the areas where ionized and molecular gases interact. The position-velocity maps from the IGRINS spectra demonstrate that the ionized gases (Brackett and Pfund series, He and Fe emission lines;Δv ≈ 40km/s) flow along the walls of the surrounding clouds. This is consistent with the model by Zhu et al. (2005, 2008). In the PV maps of the H2 emission lines there is no obvious motion (Δv < ~10km/s) of the molecular hydrogen right at the ionization boundary. This implies that the molecular gas is not taking part in the flow as the ionized gas is moving along the cavity walls.