Pizza Lunch: Caitlin Doughty
Oct 17 @ 12:30 pm – 1:30 pm
Pizza Lunch: Caitlin Doughty @ AY 119

Title: Probing the z~6 UVB with Aligned Metal Absorbers

Caitlin Doughty


Pizza Lunch: Caitlin Doughty
Jan 30 @ 12:30 pm – 1:30 pm
Pizza Lunch: Caitlin Doughty @ AY 119

Title: Effect of molecular gas on simulated C II, C IV absorber fractions (598 Talk)

Caitlin Doughty


Joint Physics/Astronomy Colloquium: William Newman
Mar 28 @ 4:00 pm – 5:00 pm
Joint Physics/Astronomy Colloquium: William Newman @ Gardiner Hall 229, Physics. Dept. | Ames | Iowa | United States

Giant Planet Shielding of the Inner Solar System Revisited: Blending Celestial Mechanics with Advanced Computation

Dr. William Newman, UCLA

The Earth has sustained during the last billion years as many as five catastrophic collisions with asteroids and comets which led to widespread species extinctions. Our own atmosphere was literally blown away 4.5 billion years ago by a collision with a Mars-sized impactor. However, collisions with comets originating in the outer solar system accreted much of the present-day atmosphere. Relatively advanced life on our planet is the beneficiary of a number of impact events during Earth’s history which built our atmosphere without destroying a large fraction of terrestrial life. Using very high precision Monte Carlo integration methods to explore the orbital evolution over hundreds of millions of years followed by the application of celestial mechanical techniques, the presentation will explain directly how Earth was shielded by the combined influence of Jupiter and Saturn, assuring that only 1 in 100,000 potential collisions with the Earth will materialize.


Colloquium: Lauren Waszek (Host: Jason Jackiewicz)
Apr 7 @ 3:15 pm – 4:15 pm
Colloquium: Lauren Waszek (Host: Jason Jackiewicz) @ BX102

The growth of Earth’s inner core: a new technique to constrain seismic properties in its outermost layers

Dr. Lauren Waszek, Department of Physics, NMSU

The inner core displays a hemispherical difference in seismic velocity, attenuation, and anisotropy, which is well-established from seismic studies. Recent observations reveal increasingly complex and regional features. However, geodynamical models generally only attempt to explain the basic east-west asymmetry. Regional seismic features, such as depth-dependence anisotropy or variation in hemisphere boundaries, are difficult to reproduce and relatively poorly constrained by seismic data. Processes to generate these complex features are debated.

The structures of the inner core are suggested to be formed as the inner core grows over time. Thus, the most recently-formed outermost layers likely hold the key to understanding the geodynamical mechanisms generating the inner core properties. Current datasets of the uppermost inner core and inner core boundary are limited by uneven data coverage, however. In the very uppermost inner core, seismic waves arrive with similar travel times and interfere, making measurements difficult.

Despite the uneven coverage of current datasets, we can use them to infer a very slow inner core super-rotation. The first ever global tomographical inversion for the inner core allows us to make regional observations, and map the lateral variation in the hemispherical structures. In the uppermost inner core, we have developed a new waveform modeling technique with synthetic data to separate these seismic phases, allowing us to measure the seismic properties in the very uppermost inner core. This, in combination with geodynamical modeling, will help us determine how the inner core hemispheres and other features are generated.







Pizza Lunch: Ken Naiff
Oct 16 @ 12:30 pm – 1:30 pm
Pizza Lunch: Ken Naiff @ AY 119

Dark Sky Images

Ken Naiff

Ken, an retired engineer, is a highly technically skilled and artistic
astrophotographer.  He will be sharing some of his work and elaborating on
the technical methods and processing techniques he applies to obtain his
unique and enhanced images.  You can see Ken’s work at: