Colloquium: Rich Zurek (Host: Jim Murphy)
Jan 22 @ 3:15 pm – 4:15 pm
Colloquium:  Rich Zurek        (Host: Jim Murphy) @ BX102

Evolving Perspectives on the Atmosphere and Climate of Mars

            Dr. Richard Zurek, JPL

            Abstract: The planet Mars has both fascinated and tantalized humankind since the invention of the telescope and now well into the age of exploration from space. The first of three waves of space missions to Mars were flyby spacecraft that returned images of a heavily cratered planet with a thin atmosphere, suggesting Mars was more like the Moon than an older Earth. However, Mariner 9, the first spacecraft to orbit another planet, found vast channel and valley networks carved into its surface, as well as towering volcanoes, suggesting that ancient Mars was once much more Earth-like. Subsequent missions have landed on the planet and new orbiters have probed the planet at ever increasing spatial resolution and spectral coverage. As a result of the latest round of space exploration, Mars is revealed to be a complex, diverse planet— one whose climate has changed dramatically over time from an ancient atmosphere where water was active on its surface to a drier, thinner atmosphere shaped by periodic ice ages, to the present atmosphere where dynamic change continues today.

Dr. Zurek is the Chief Scientist in the Mars Program Office, Project Scientist, MRO.

Pizza Lunch: Caitlin Doughty
Oct 17 @ 12:30 pm – 1:30 pm
Pizza Lunch: Caitlin Doughty @ AY 119

Title: Probing the z~6 UVB with Aligned Metal Absorbers

Caitlin Doughty


Pizza Lunch: Caitlin Doughty
Jan 30 @ 12:30 pm – 1:30 pm
Pizza Lunch: Caitlin Doughty @ AY 119

Title: Effect of molecular gas on simulated C II, C IV absorber fractions (598 Talk)

Caitlin Doughty


Colloquium: Lauren Waszek (Host: Jason Jackiewicz)
Apr 7 @ 3:15 pm – 4:15 pm
Colloquium: Lauren Waszek (Host: Jason Jackiewicz) @ BX102

The growth of Earth’s inner core: a new technique to constrain seismic properties in its outermost layers

Dr. Lauren Waszek, Department of Physics, NMSU

The inner core displays a hemispherical difference in seismic velocity, attenuation, and anisotropy, which is well-established from seismic studies. Recent observations reveal increasingly complex and regional features. However, geodynamical models generally only attempt to explain the basic east-west asymmetry. Regional seismic features, such as depth-dependence anisotropy or variation in hemisphere boundaries, are difficult to reproduce and relatively poorly constrained by seismic data. Processes to generate these complex features are debated.

The structures of the inner core are suggested to be formed as the inner core grows over time. Thus, the most recently-formed outermost layers likely hold the key to understanding the geodynamical mechanisms generating the inner core properties. Current datasets of the uppermost inner core and inner core boundary are limited by uneven data coverage, however. In the very uppermost inner core, seismic waves arrive with similar travel times and interfere, making measurements difficult.

Despite the uneven coverage of current datasets, we can use them to infer a very slow inner core super-rotation. The first ever global tomographical inversion for the inner core allows us to make regional observations, and map the lateral variation in the hemispherical structures. In the uppermost inner core, we have developed a new waveform modeling technique with synthetic data to separate these seismic phases, allowing us to measure the seismic properties in the very uppermost inner core. This, in combination with geodynamical modeling, will help us determine how the inner core hemispheres and other features are generated.







Pizza Lunch: Ken Naiff
Oct 16 @ 12:30 pm – 1:30 pm
Pizza Lunch: Ken Naiff @ AY 119

Dark Sky Images

Ken Naiff

Ken, an retired engineer, is a highly technically skilled and artistic
astrophotographer.  He will be sharing some of his work and elaborating on
the technical methods and processing techniques he applies to obtain his
unique and enhanced images.  You can see Ken’s work at: