Calendar

Dec
4
Fri
Colloquium: Brian Jackson
Dec 4 @ 3:15 pm – 4:15 pm
Colloquium:  Brian Jackson @ BX102

On the Edge: Exoplanets with Orbital Periods Shorter Than a Peter Jackson Movie

Brian Jackson, Boise State Univeristy

From wispy gas giants to tiny rocky bodies, exoplanets with orbital periods of several days and less challenge theories of planet formation and evolution. Recent searches have found small rocky planets with orbits reaching almost down to their host stars’ surfaces, including an iron-rich Mars-sized body with an orbital period of only four hours. So close to their host stars that some of them are actively disintegrating, these objects’ origins remain unclear, and even formation models that allow significant migration have trouble accounting for their very short periods. Some are members of multi-planet system and may have been driven inward via secular excitation and tidal damping by their sibling planets. Others may be the fossil cores of former gas giants whose atmospheres were stripped by tides.

In this presentation, I’ll discuss the work of our Short-Period Planets Group (SuPerPiG), focused on finding and understanding this surprising new class of exoplanets. We are sifting data from the reincarnated Kepler Mission, K2, to search for additional short-period planets and have found several new candidates. We are also modeling the tidal decay and disruption of close-in gaseous planets to determine how we could identify their remnants, and preliminary results suggest the cores have a distinctive mass-period relationship that may be apparent in the observed population. Whatever their origins, short-period planets are particularly amenable to discovery and detailed follow-up by ongoing and future surveys, including the TESS mission.

Jan
24
Wed
Colloquium Thesis Proposal: Laurel Farris
Jan 24 @ 2:30 pm – 3:30 pm
Colloquium Thesis Proposal: Laurel Farris @ Science Hall, Room 110

Characterizing the oscillatory response of the chromosphere during solar flares

Laurel Farris; NMSU Astronomy Department

Quasi-periodic pulsations (QPPs) are observed in the emission of solar flares over a wide range of wavelengths,

particularly in the radio and hard x-ray regimes where non-thermal emission dominates. These pulsations are

considered to be an intrinsic feature of flares, yet the exact mechanism that triggers them remains unclear.

There have been reports of an increase in the oscillatory power at 3-minute periods (the local acoustic

cutoff frequency) in the solar chromosphere associated with flaring events. I propose to investigate the

chromospheric response to flares by inspecting the spatial and temporal onset and evolution of the 3-minute

oscillatory power, along with any QPP patterns that may appear in chromospheric emission. The analysis

will be extended to multiple flares, and will include time before, during, and after the main event. To test

initial methods, the target of interest was the well-studied 2011 February 15 X-class flare. Data from two

instruments on board the Solar Dynamics Observatory (SDO) were used in the preliminary study, including

continuum images from the Helioseismic and Magnetic Imager (HMI) and UV images at 1600 and 1700

Angstroms from the Atmospheric Imaging Assembly (AIA). Later, spectroscopic data from the Interface

Region Imaging Spectrometer (IRIS) will be used to examine velocity patterns in addition to intensity.

Jan
26
Fri
Colloquium: Zheng Cai (Host: Kristian Finlator)
Jan 26 @ 3:15 pm – 4:15 pm
Colloquium: Zheng Cai (Host: Kristian Finlator) @ BX102

Colloquium Title

Colloquium Speaker Name, Affiliation

Abstract text

Feb
5
Mon
PDS Atmospheres Node meeting
Feb 5 @ 3:00 pm – 4:00 pm
Feb
12
Mon
Planetary Group meeting
Feb 12 @ 3:00 pm – 4:00 pm