Calendar

Oct
30
Fri
Colloquium: Sergio Rodriguez
Oct 30 @ 3:15 pm – 4:15 pm
Colloquium: Sergio Rodriguez @ BX102

BOSS DR12 survey: Clustering of galaxies and Dark Matter Haloes

Sergio Rodriguez, UAM, Madrid and Cal. Berkeley

BOSS SDSS-III is the largest redshift survey for the large scale structure and a powerful sample for the study of the low redshift Baryonic Acoustic Oscillations. We combine the features of the survey, such as, geometry, angular incompleteness and stellar mass incompleteness, with the BigMultiDark cosmological simulation to do a study of the distribution of galaxies in the dark matter halos. Using this large N-Body simulation and the halo abundance matching technique, we found a remarkably good agreement with the 2-point and 3-point statistics of the data.

Mar
4
Fri
Colloquium: Gail Zasowski (Host: Drew Chojnowski)
Mar 4 @ 3:15 pm – 4:15 pm
Colloquium:  Gail Zasowski  (Host: Drew Chojnowski) @ BX102

New Tools for Galactic Archaeology from the Milky Way

Gail Zasowski, John Hopkins University

One of the critical components for understanding galaxy evolution is understanding the Milky Way Galaxy itself — its detailed structure and chemodynamical properties, as well as fundamental stellar physics, which we can only study in great detail locally.  This field is currently undergoing a dramatic expansion towards the kinds of large-scale statistical analyses long used by the extragalactic and other communities, thanks in part to an enormous influx of data from space- and ground-based surveys.  I will describe the Milky Way and Local Group in the context of general galaxy evolution and highlight some recent developments in Galactic astrophysics that take advantage of these big data sets and analysis techniques.  In particular, I will focus on two diverse approaches: one to characterize the distribution and dynamics of the carbon-rich, dusty diffuse ISM, and one to map the resolved bulk stellar properties of the inner disk and bulge.  The rapid progress in these areas promises to continue, with the arrival of data sets from missions like SDSS, Gaia, LSST, and WFIRST.

Apr
8
Fri
Colloquium PhD Defense: Meredith Rawls
Apr 8 @ 3:00 pm – 4:00 pm
Colloquium PhD Defense: Meredith Rawls @ BX102

Red Giants in Eclipsing Binaries as a Benchmark for Asteroseismology

Meredith Rawls, NMSU

May
31
Tue
Colloquium PhD Defense: Diane Feuillet
May 31 @ 3:00 pm – 4:00 pm
Colloquium PhD Defense: Diane Feuillet @ Dominici106

Ages and Abundance of Local Stellar Populations

Diane Feuillet, NMSU

Mar
13
Mon
Pizza Lunch: Jean McKeever
Mar 13 @ 12:30 pm – 1:30 pm
Pizza Lunch: Jean McKeever @ AY 119

Red Giants in Eclipsing Binary Systems

Jean McKeever

 

Sep
20
Wed
Colloquium PhD Defense: Jean McKeever
Sep 20 @ 3:00 pm – 4:15 pm
Colloquium PhD Defense: Jean McKeever @ Business College 103

Asteroseismology of Red Giants: The Detailed Modeling of Red Giants in Eclipsing Binary Systems

Jean McKeever, NMSU

Asteroseismology is an invaluable tool that allows one to peer into the inside of a star and know its fundamental stellar properties with relative ease. There has been much exploration of solar-like oscillations within red giants with recent advances in technology, leading to new innovations in observing. The Kepler mission, with its 4-year observations of a single patch of sky, has opened the floodgates on asteroseismic studies. Binary star systems are also an invaluable tool for their ability to provide independent constraints on fundamental stellar parameters such as mass and radius. The asteroseismic scaling laws link observables in the light curves of stars to the physical parameters in the star, providing a unique tool to study large populations of stars quite easily. In this work we present our 4-year radial velocity observing program to provide accurate dynamical masses for 16 red giants in eclipsing binary systems. From this we find that asteroseismology overestimates the mass and radius of red giants by 15% and 5% respectively. We further attempt to model the pulsations of a few of these stars using stellar evolution and oscillation codes. The goal is to determine which masses are correct and if there is a physical cause for the discrepancy in asteroseismic masses. We find there are many challenges to modeling evolved stars such as red giants and we address a few of the major concerns. These systems are some of the best studied systems to date and further exploration of their asteroseismic mysteries is inevitable.

 

Dec
4
Mon
Pizza Lunch: Karen Kinemuchi
Dec 4 @ 12:30 pm – 1:30 pm
Pizza Lunch: Karen Kinemuchi @ AY 119

Life at Apache Point Observatory