Calendar

Feb
5
Fri
Colloquium: Steve Finkelstein (Host: Kristian Finlator)
Feb 5 @ 3:15 pm – 4:15 pm
Colloquium:  Steve Finkelstein   (Host: Kristian Finlator) @ BX102

Galaxy Evolution during the Epoch of Reionization

 Steve Finkelstein,  University of Texas at Austin

 

                       Abstract: The advent of the Wide Field Camera 3 on the Hubble Space Telescope has heralded a new era in our ability to study the earliest phases of galaxy formation and evolution.  The number of candidates for galaxies now known at redshifts greater than six has grown to be in the thousands.  This allows us to move beyond mere counting of galaxies, to endeavor to understand the detailed physics regulating the growth of galaxies.  I will review the recent progress our group in Texas has made in this arena using the exquisite datasets from the CANDELS and Frontier Fields programs.  Specifically, our detailed new measurements of both the evolution of the stellar mass function and rest-frame UV luminosity function now allow us to probe the effect of feedback on low-mass galaxies, the star-formation efficiency in high-mass galaxies, and the contribution of galaxies to the reionization of the universe.  Our most recent result comes from the Frontier Fields, where we have used an advanced technique to remove the light from the cluster galaxies to uncover z > 6 galaxies as faint as M_UV=-13.  Our updated luminosity functions show no sign of a turnover down to these extremely faint levels, providing the first empirical test of reionization models which require such faint galaxies, and is in modest tension with simulations which predict a turnover at brighter levels.   I will also discuss our spectroscopic followup efforts, which have yielded two of the four highest redshift confirmed galaxies, and also provide further insight into reionization, by the scattering of Lyman alpha emission by neutral gas in the intergalactic medium.  I will conclude with a look ahead to the problems we can expect to tackle with ALMA, JWST, and even more future facilities.

Mar
11
Fri
Colloquium Thesis Proposal: Alexander Thelen (Host: Nancy Chanover)
Mar 11 @ 2:00 pm – 3:00 pm
Colloquium Thesis Proposal:  Alexander Thelen  (Host: Nancy Chanover) @ BX102

The Chemical History and Evolution of Titan’s Atmosphere as Revealed by ALMA

 Alexander Thelen, NMSU

Saturn’s largest moon, Titan, possesses a substantial atmosphere containing significant minorities of nitrile and hydrocarbon species, predominantly due to the photodissociation of the major gases, N2 and CH4. Titan’s methane cycle, liquid lakes, and complex organic chemistry make it an intriguing target through its similarities to Earth and the allure of its astrobiological potential. Though the existence of heavy nitrile species – such as CH3C3N, HC5N, and C3H7CN – has been inferred through Cassini Ion and Neutral Mass Spectrometer (INMS) data, confirmation of these species has yet to be made spectroscopically. Other hydrocarbon species, such as C3H4 and C3H8 have been detected using Voyager’s Infrared Spectrometer (IRIS; Maguire et al., 1981) and later mapped by the Composite Infrared Spectrometer (CIRS; Nixon et al., 2013) onboard Cassini, but abundance constraints for these species in the mesosphere is poor. To fully understand the production of these species and their spatial distribution in Titan’s atmosphere, vertical abundance profiles must be produced to use with current photochemical models. Utilizing early science calibration images of Titan obtained with the Atacama Large Millimeter/Submillimeter Array (ALMA), Cordiner et al. (2014; 2015) determined the vertical distribution of various nitriles and hydrocarbons in Titan’s atmosphere, including at least one previously undetected molecule – C2H5CN. For my dissertation project, I will calibrate and model sub-millimeter emissions from molecules in Titan’s atmosphere, and quantify variations in the spatial distribution of various species throughout its seasonal cycle by utilizing high resolution ALMA data.  The main goals of this project are as follows:
1. To search for previously undetected molecules in Titan’s atmosphere through analysis of the existing public ALMA data, and/or through ALMA proposals of my own;
2. Constrain abundance profiles of detected molecular species, and provide upper abundance limits for those we cannot detect;
3. Map the spatial distribution of detected species in order to improve our understanding of Titan’s atmospheric transport and circulation;
4. Determine how these spatial distributions change over Titan’s seasonal cycle by utilizing multiple years of public ALMA data.
The majority of this work will employ the Non-linear Optimal Estimator for MultivariatE Spectral analySIS (NEMESIS) software package, developed by Oxford University (Irwin et al., 2008), to retrieve abundance and temperature information through radiative transfer models. These results will allow us to investigate the chemical evolution and history of Titan’s rich, pre-biotic atmosphere by providing valuable abundance measurements and constraints to molecular photochemical and dynamical models. We will compare our results with measurements made by the Cassini spacecraft, thereby enhancing the scientific return from both orbiter and ALMA datasets. The increased inventory of complex, organic molecules observable with ALMA’s sub-mm frequency range and high spatial resolution may also yield detections of species fundamental to the formation of living organisms, such as amino acids. Thus, by informing photochemical and dynamical models and increasing our known inventory of complex molecular species, we will also assess Titan’s potential habitability.