Calendar

May
12
Thu
Colloquium PhD Defense: Kenz Arraki
May 12 @ 3:00 pm – 4:00 pm
Colloquium PhD Defense: Kenz Arraki @ Dominici106

Evolution of Dwarf Galaxy Properties in Local Group Environments

Kenz Arraki, NMSU

May
13
Fri
PDS Atmospheres Node meeting
May 13 @ 8:30 am – 9:30 am
Tombaugh Observatory Open House
May 13 @ 9:00 pm – 11:00 pm
Tombaugh Observatory Open House @ Tombaugh Observatory | Las Cruces | New Mexico | United States

Open to the public.

Faculty member: Nancy Chanover

Graduate Students: Jacob VanderVliet, Ethan Dederick, Jean McKeever

 

May
31
Tue
Colloquium PhD Defense: Diane Feuillet
May 31 @ 3:00 pm – 4:00 pm
Colloquium PhD Defense: Diane Feuillet @ Dominici106

Ages and Abundance of Local Stellar Populations

Diane Feuillet, NMSU

Sep
9
Fri
Colloquium Thesis Proposal: Lauren Kahre
Sep 9 @ 3:15 pm – 4:15 pm
Colloquium Thesis Proposal: Lauren Kahre @ Biology Annex 102

Extinction mapping with LEGUS

Lauren Kahre

The study of star formation and galaxy evolution in nearby galaxies depends on obtaining accurate stellar photometry in those galaxies. However, dust in the galaxies hinders our ability to obtain accurate stellar photometry, particularly in star-forming galaxies that have the highest concentrations of dust. This proposal presents a thesis project to develop a method for generating extragalactic extinction maps using photometry of massive stars from the Hubble Space Telescope. This photometry spans nearly 50 galaxies observed by the Legacy Extragalactic Ultraviolet Survey (LEGUS). The derived extinction maps can be used to correct other stars and Halpha maps (from the Halpha LEGUS) for extinction, and will be used to constrain changes in the dust-to-gas ratio across the galaxy sample and in different star formation rate, metallicity and morphological environments. Previous studies have found links between galaxy metallicty and the dust-to-gas mass ratio. The relationship between these two quantities can be used to constrain chemical evolution models.

Selected galaxies will also be compared to IR-derived dust maps for comparison to recent M31 results from Dalcanton et al. (2015) which found a minimum factor of 2 inconsistency between their extinction-derived maps and emission-derived maps from Draine et al. (2014).

Tombaugh Observatory Open House
Sep 9 @ 9:00 pm – 10:00 pm
Tombaugh Observatory Open House @ Tombaugh Observatory | Las Cruces | New Mexico | United States

The NMSU Department of Astronomy will hold an observatory open house at the NMSU campus observatory at 8 p.m.Friday, Sept. 9. Astronomy personnel on hand will be Chris Churchill and graduate assistants Xander Thelen, Trevor Picard and Jacob Vander Vliet.

Guests can view Mars and Saturn together in the evening sky in the constellation of Scorpio. Telescopes will also have the center of the Milky Way Galaxy in view, and in this region there are many beautiful star clusters and globular clusters (tight groups of millions of stars). High in the sky, viewers will see the constellation Vega with its double-double star system and the famous ring nebula, which is the remnants of a dying star much like our own sun. The moon will be in the phase called first quarter and will make a wonderful sight.

Contact the NMSU Astronomy Department at 575-646-4438 with questions. Everyone is welcome to come and spend an evening of stargazing. Admission is free and children are especially welcome to attend.

For information on what is up in September, go here: http://whatsouttonight.com/Resources/2016SepSkyWOT.pdf

Sep
20
Tue
Colloquium Thesis Proposal: Ethan Dederick
Sep 20 @ 3:00 pm – 4:00 pm
Colloquium Thesis Proposal: Ethan Dederick @ Science Hall 310

Utilizing Planetary Oscillations to Constrain the Interior Structure of the Jovian Planets

Ethan Dederick

Seismology has been the premier tool of study for understanding the
interior structure of the Earth, the Sun, and even other stars. Yet in this
thesis proposal, we wish to utilize these tools to understand the interior
structure of the Jovian planets, Saturn in particular. Recent observations
of spiral density structures in Saturn’s rings caused by its oscillations
have provided insight into which modes exist within Saturn and at what
frequencies. Utilizing these frequencies to compare to probable mode can-
didates calculated from Saturn models will also us to ascertain the interior
profiles of state variables such as density, sound speed, rotation, etc. Using
these profiles in a Saturn model, coupled with tweaking the interior struc-
ture of the model, i.e. the inclusion of stably stratified regions, should
allow us to explain which modes are responsible for the density structures
in the rings, as well as predict where to look to find more such structures.
In doing so, we will not only have a much greater understanding of Sat-
urn’s interior structure, but will have constructed a method that can also
be applied to Jupiter once observations of its mode frequencies become
available. In addition, we seek to explain if moist convection on Jupiter is
responsible for exciting its modes. We aim to do this by modeling Jupiter
as a 2D harmonic oscillator. By creating a resonance between moist con-
vective storms and Jovian modes, we hope to match the expected mode
energies and surface displacements of Jupiter’s oscillations.

Jan
27
Fri
Colloquium: Bryan Butler (Host: Nancy Chanover)
Jan 27 @ 3:15 pm – 4:15 pm
Colloquium: Bryan Butler (Host: Nancy Chanover) @ BX 102

Observations of Solar System Bodies with the VLA and ALMA

Dr. Bryan Butler, NRAO

Observations of solar system bodies at wavelengths from submm to meter wavelengths provide important and unique information about those bodies. Such observations probe to depths unreachable at other wavelengths – typically of order 10-20 wavelengths for bodies with solid surfaces, and as deep as tens of bars for those with thick atmospheres (the giant planets). In the past five years, two instruments have been commissioned which have revolutionized the ability to make very sensitive, high-resolution observations at these wavelengths: the Karl G. Jansky Very Large Array (VLA) and the Atacama Large Millimeter/Submillimeter Array (ALMA). I will present a discussion of results over the past five years from observations from both the VLA and ALMA. These include observations of the atmospheres of all of the giant planets, the rings of Saturn, and the surfaces of many icy bodies in the outer solar system. I will also present plans for the Next Generation Very Large Array (ngVLA), the next step for millimeter to centimeter wavelength interferometry.

Mar
28
Tue
Joint Physics/Astronomy Colloquium: William Newman
Mar 28 @ 4:00 pm – 5:00 pm
Joint Physics/Astronomy Colloquium: William Newman @ Gardiner Hall 229, Physics. Dept. | Ames | Iowa | United States

Giant Planet Shielding of the Inner Solar System Revisited: Blending Celestial Mechanics with Advanced Computation

Dr. William Newman, UCLA

The Earth has sustained during the last billion years as many as five catastrophic collisions with asteroids and comets which led to widespread species extinctions. Our own atmosphere was literally blown away 4.5 billion years ago by a collision with a Mars-sized impactor. However, collisions with comets originating in the outer solar system accreted much of the present-day atmosphere. Relatively advanced life on our planet is the beneficiary of a number of impact events during Earth’s history which built our atmosphere without destroying a large fraction of terrestrial life. Using very high precision Monte Carlo integration methods to explore the orbital evolution over hundreds of millions of years followed by the application of celestial mechanical techniques, the presentation will explain directly how Earth was shielded by the combined influence of Jupiter and Saturn, assuring that only 1 in 100,000 potential collisions with the Earth will materialize.

 

Dec
4
Mon
Pizza Lunch: Karen Kinemuchi
Dec 4 @ 12:30 pm – 1:30 pm
Pizza Lunch: Karen Kinemuchi @ AY 119

Life at Apache Point Observatory