Calendar

Apr
8
Fri
Colloquium PhD Defense: Meredith Rawls
Apr 8 @ 3:00 pm – 4:00 pm
Colloquium PhD Defense: Meredith Rawls @ BX102

Red Giants in Eclipsing Binaries as a Benchmark for Asteroseismology

Meredith Rawls, NMSU

Mar
13
Mon
Pizza Lunch: Jean McKeever
Mar 13 @ 12:30 pm – 1:30 pm
Pizza Lunch: Jean McKeever @ AY 119

Red Giants in Eclipsing Binary Systems

Jean McKeever

 

Apr
7
Fri
Colloquium: Lauren Waszek (Host: Jason Jackiewicz)
Apr 7 @ 3:15 pm – 4:15 pm
Colloquium: Lauren Waszek (Host: Jason Jackiewicz) @ BX102

The growth of Earth’s inner core: a new technique to constrain seismic properties in its outermost layers

Dr. Lauren Waszek, Department of Physics, NMSU

The inner core displays a hemispherical difference in seismic velocity, attenuation, and anisotropy, which is well-established from seismic studies. Recent observations reveal increasingly complex and regional features. However, geodynamical models generally only attempt to explain the basic east-west asymmetry. Regional seismic features, such as depth-dependence anisotropy or variation in hemisphere boundaries, are difficult to reproduce and relatively poorly constrained by seismic data. Processes to generate these complex features are debated.

The structures of the inner core are suggested to be formed as the inner core grows over time. Thus, the most recently-formed outermost layers likely hold the key to understanding the geodynamical mechanisms generating the inner core properties. Current datasets of the uppermost inner core and inner core boundary are limited by uneven data coverage, however. In the very uppermost inner core, seismic waves arrive with similar travel times and interfere, making measurements difficult.

Despite the uneven coverage of current datasets, we can use them to infer a very slow inner core super-rotation. The first ever global tomographical inversion for the inner core allows us to make regional observations, and map the lateral variation in the hemispherical structures. In the uppermost inner core, we have developed a new waveform modeling technique with synthetic data to separate these seismic phases, allowing us to measure the seismic properties in the very uppermost inner core. This, in combination with geodynamical modeling, will help us determine how the inner core hemispheres and other features are generated.

 

 

 

 

 

 

Sep
20
Wed
Colloquium PhD Defense: Jean McKeever
Sep 20 @ 3:00 pm – 4:15 pm
Colloquium PhD Defense: Jean McKeever @ Business College 103

Asteroseismology of Red Giants: The Detailed Modeling of Red Giants in Eclipsing Binary Systems

Jean McKeever, NMSU

Asteroseismology is an invaluable tool that allows one to peer into the inside of a star and know its fundamental stellar properties with relative ease. There has been much exploration of solar-like oscillations within red giants with recent advances in technology, leading to new innovations in observing. The Kepler mission, with its 4-year observations of a single patch of sky, has opened the floodgates on asteroseismic studies. Binary star systems are also an invaluable tool for their ability to provide independent constraints on fundamental stellar parameters such as mass and radius. The asteroseismic scaling laws link observables in the light curves of stars to the physical parameters in the star, providing a unique tool to study large populations of stars quite easily. In this work we present our 4-year radial velocity observing program to provide accurate dynamical masses for 16 red giants in eclipsing binary systems. From this we find that asteroseismology overestimates the mass and radius of red giants by 15% and 5% respectively. We further attempt to model the pulsations of a few of these stars using stellar evolution and oscillation codes. The goal is to determine which masses are correct and if there is a physical cause for the discrepancy in asteroseismic masses. We find there are many challenges to modeling evolved stars such as red giants and we address a few of the major concerns. These systems are some of the best studied systems to date and further exploration of their asteroseismic mysteries is inevitable.