Pizza Lunch: Drew Chojnowski
Sep 21 @ 12:30 pm – 1:30 pm
Pizza Lunch: Drew Chojnowski

APOGEE Be stars

Colloquium: Hwiyun Kim (Host: Rene Walterbos)
Apr 1 @ 3:15 pm – 4:15 pm
Colloquium:  Hwiyun Kim     (Host: Rene Walterbos) @ BX102

High Resolution Spectroscopy with Immersion Grating Infrared Spectrometer (IGRINS)

Hwihyun Kim, KASI/UT Austin


The Immersion Grating Infrared Spectrometer (IGRINS) is a revolutionary instrument that exploits broad spectral coverage at high-resolution (R=45,000) in the near-infrared. IGRINS employs a silicon immersion grating as the primary disperser of the white pupil, and volume-phase holographic gratings cross-disperse the H and K bands onto Teledyne Hawaii-2RG arrays. IGRINS provides simultaneous wavelength coverage from 1.45 – 2.45 microns in a compact cryostat. I will summarize the performance and various science programs of IGRINS since commissioning in Summer 2014. With IGRINS we have observed such as Solar System objects, nearby young stars, star-forming regions like Taurus and Ophiuchus, the Galactic Center, and planetary nebulae.

The second half of my talk will be focused on the study of ionized and neutral gas in an ultracompact HII region Monoceros R2. We obtained the IGRINS spectra of Mon R2 to study the kinematic patterns in the areas where ionized and molecular gases interact. The position-velocity maps from the IGRINS spectra demonstrate that the ionized gases (Brackett and Pfund series, He and Fe emission lines;Δv ≈ 40km/s) flow along the walls of the surrounding clouds. This is consistent with the model by Zhu et al. (2005, 2008). In the PV maps of the H2 emission lines there is no obvious motion (Δv < ~10km/s) of the molecular hydrogen right at the ionization boundary. This implies that the molecular gas is not taking part in the flow as the ionized gas is moving along the cavity walls.

Pizza Lunch: Drew Chojnowski
Nov 14 @ 12:30 pm – 1:30 pm
Pizza Lunch: Drew Chojnowski @ AY 119

Title: H-band Spectral Variability of Classical Be Stars

Drew Chojnowski


Colloquium: Thomas Rivinius
Feb 24 @ 3:15 pm – 4:15 pm
Colloquium: Thomas Rivinius

Our Current Understanding of Classical Be Stars

Dr. Thomas Rivinius, Chile, ESO Paranal

I will introduce Be stars as B-type stars with gaseous disks in Keplerian rotation. These disks form by mass ejection from the star itself and their evolution is then governed by viscosity. The observables and their formation in the disk will be discussed, as well as what we know about the central stars: they are the most rapidly rotating non-degenerate stars, they are non-radial pulsators, and they do not show magnetic fields. The pulsation is clearly (phenomenologically) linked to the mass ejection, but the physical mechanism responsible for the ejection and disk formation is not known. Finally, I will discuss several open questions of broader interest, including the (possibly absent) chemical mixing of very rapid rotators and the unexpectedly large viscosity of Be star disks.