
New Tools for Galactic Archaeology from the Milky Way
Gail Zasowski, John Hopkins University
One of the critical components for understanding galaxy evolution is understanding the Milky Way Galaxy itself — its detailed structure and chemodynamical properties, as well as fundamental stellar physics, which we can only study in great detail locally. This field is currently undergoing a dramatic expansion towards the kinds of large-scale statistical analyses long used by the extragalactic and other communities, thanks in part to an enormous influx of data from space- and ground-based surveys. I will describe the Milky Way and Local Group in the context of general galaxy evolution and highlight some recent developments in Galactic astrophysics that take advantage of these big data sets and analysis techniques. In particular, I will focus on two diverse approaches: one to characterize the distribution and dynamics of the carbon-rich, dusty diffuse ISM, and one to map the resolved bulk stellar properties of the inner disk and bulge. The rapid progress in these areas promises to continue, with the arrival of data sets from missions like SDSS, Gaia, LSST, and WFIRST.

Do star formation laws break in the center of the Galaxy?
Betsy Mills, University of Arizona
I will review our understanding of molecular gas conditions in the central 500 parsecs of the Milky Way, and summarize recent studies that find that the Galactic center deviates from universal star formation relations. It is suggested that the amount of star formation in the Galactic center is less than expected, given the quantity of dense gas in this region. However, in order to conclude that the Galactic center truly breaks these ‘laws’ of star formation, two possibilities must be ruled out: that our indicators in this region could underestimate the amount of star formation, and that prior observations could have overestimated the amount of dense gas. I will analyze new evidence for ongoing star formation in the Galactic center and present new measurements of the gas densities in the Galactic center that show it to be less dense than originally thought. However, I will ultimately argue that the average density of the gas is less relevant to explaining the dearth of star formation than the fraction of gas at each density.

The NMSU Department of Astronomy will hold an observatory open house at the NMSU campus observatory at 8 p.m.Friday, Sept. 9. Astronomy personnel on hand will be Chris Churchill and graduate assistants Xander Thelen, Trevor Picard and Jacob Vander Vliet.
Guests can view Mars and Saturn together in the evening sky in the constellation of Scorpio. Telescopes will also have the center of the Milky Way Galaxy in view, and in this region there are many beautiful star clusters and globular clusters (tight groups of millions of stars). High in the sky, viewers will see the constellation Vega with its double-double star system and the famous ring nebula, which is the remnants of a dying star much like our own sun. The moon will be in the phase called first quarter and will make a wonderful sight.
Contact the NMSU Astronomy Department at 575-646-4438 with questions. Everyone is welcome to come and spend an evening of stargazing. Admission is free and children are especially welcome to attend.
For information on what is up in September, go here: http://whatsouttonight.com/Resources/2016SepSkyWOT.pdf