Calendar

Oct
9
Fri
Colloquium: Ben Weiner
Oct 9 @ 3:15 pm – 4:15 pm
Colloquium:  Ben Weiner @ BX102

Searching for Dwarf Satellites around Milky Way – Analog Galaxies with the SAGA survey

Ben Weiner, Steward Observatory

Dwarf satellites of massive galaxies are a probe of many issues in galaxy evolution and cosmology, including the nature of low-mass galaxies, star formation at early times, accretion into halos, and the abundance of low-mass dark matter halos. Much attention has been devoted to the number and nature of Milky Way and M31 dwarf satellites, especially the “missing satellites problem.” However, we know very little about dwarf satellites outside the Local Group below the mass of the LMC, and we don’t know if the MW and M31 satellite systems are typical. The SAGA (Satellites Around Galactic Analogs) survey collaboration aims to address this with both observational and theoretical studies of satellite abundances and properties around Milky Way analog central galaxies. I will present results from our MMT/Hectospec wide field spectroscopic surveys for satellites. We have surveyed the fields of several nearby galaxies that are similar to the Milky Way to detect and spectroscopically confirm dwarf satellites.  We find a range of numbers of satellites, suggesting that there is a significant variance in halo histories.  We also find that not all dwarf systems resemble the Milky Way and M31 systems. I will discuss these results and some of the implications on the life cycle of satellites that we can infer from satellite abundances and properties, including their images and spectra.

 

Mar
4
Fri
Colloquium: Gail Zasowski (Host: Drew Chojnowski)
Mar 4 @ 3:15 pm – 4:15 pm
Colloquium:  Gail Zasowski  (Host: Drew Chojnowski) @ BX102

New Tools for Galactic Archaeology from the Milky Way

Gail Zasowski, John Hopkins University

One of the critical components for understanding galaxy evolution is understanding the Milky Way Galaxy itself — its detailed structure and chemodynamical properties, as well as fundamental stellar physics, which we can only study in great detail locally.  This field is currently undergoing a dramatic expansion towards the kinds of large-scale statistical analyses long used by the extragalactic and other communities, thanks in part to an enormous influx of data from space- and ground-based surveys.  I will describe the Milky Way and Local Group in the context of general galaxy evolution and highlight some recent developments in Galactic astrophysics that take advantage of these big data sets and analysis techniques.  In particular, I will focus on two diverse approaches: one to characterize the distribution and dynamics of the carbon-rich, dusty diffuse ISM, and one to map the resolved bulk stellar properties of the inner disk and bulge.  The rapid progress in these areas promises to continue, with the arrival of data sets from missions like SDSS, Gaia, LSST, and WFIRST.

Apr
29
Fri
Colloquium: Betsy Mills (Host: Moire Prescott)
Apr 29 @ 3:15 pm – 4:15 pm
Colloquium:  Betsy Mills (Host: Moire Prescott) @ BX102

Do star formation laws break in the center of the Galaxy?

Betsy Mills, University of Arizona

I will review our understanding of molecular gas conditions in the central 500 parsecs of the Milky Way, and summarize recent studies that find that the Galactic center deviates from universal star formation relations. It is suggested that the amount of star formation in the Galactic center is less than expected, given the quantity of dense gas in this region. However, in order to conclude that the Galactic center truly breaks these ‘laws’ of star formation, two possibilities must be ruled out: that our indicators in this region could underestimate the amount of star formation, and that prior observations could have overestimated the amount of dense gas. I will analyze new evidence for ongoing star formation in the Galactic center and present new measurements of the gas densities in the Galactic center that show it to be less dense than originally thought. However, I will ultimately argue that the average density of the gas is less relevant to explaining the dearth of star formation than the fraction of gas at each density.

 

Aug
26
Fri
Colloquium PhD Defense: Kyle Uckert
Aug 26 @ 3:15 pm – 4:15 pm
Colloquium PhD Defense: Kyle Uckert @ BX102

Characterization of Biosignatures within Geologic Samples Analyzed using a Suite of in situ Techniques

Kyle Uckert, NMSU   

Abstract:
I investigated the biosignature detection capabilities of several in situ techniques to evaluate their potential to
detect the presence of extant or extinct life on other planetary surfaces. These instruments included: a laser desorption
time-of- flight mass spectrometer (LD-TOF-MS), an acousto-optic tunable filter (AOTF) infrared (IR) point spectrometer, a
laser-induced breakdown spectrometer (LIBS), X-ray diffraction (XRD)/X-ray fluorescence (XRF), and scanning electron
microscopy (SEM)/energy dispersive X-Ray spectroscopy (EDS). I measured the IR reflectance spectra of several speleothems
in caves in situ to detect the presence of biomineralization. Microorganisms (such as those that may exist on other solar
system bodies) mediate redox reactions to obtain energy for growth and reproduction, producing minerals such as
carbonates, metal oxides, and sulfates as waste products. Microbes occasionally become entombed in their mineral
excrement, essentially acting as a nucleation site for further crystal growth. This process produces minerals with a
crystal lattice distinct from geologic precipitation, detectable with IR reflectance spectroscopy. Using a suite of
samples collected from three subterranean environments, along with statistical analyses including principal component
analysis, I measured subsurface biosignatures associated with these biomineralization effects, including the presence of
trace elements, morphological characteristics, organic molecules, and amorphous crystal structures.

I also explored the optimization of a two-step LD-TOF-MS (L2MS) for the detection of organic molecules and other
biosignatures. I focused my efforts on characterizing the L2MS desorption IR laser wavelength dependence on organic
detection sensitivity in an effort to optimize the detection of high mass (≤100 Da) organic peaks. I analyzed samples
with an IR reflectance spectrometer and an L2MS with a tunable desorption IR laser whose wavelength range (2.7 – 3.45
microns) overlaps that of our IR spectrometer (1.6 – 3.6 microns), and discovered a IR resonance enhancement effect. A
correlation between the maximum IR absorption of organic functional group and mineral vibrational transitions – inferred
from the IR spectrum – and the optimal IR laser configuration for organic detection using L2MS indicates that IR
spectroscopy may be used to inform the optimal L2MS IR laser wavelength for organic detection. This work suggests that a
suite of instruments, particularly LD-TOF-MS and AOTF IR spectroscopy, has strong biosignature detection potential on a
future robotic platform for investigations of other planetary surfaces or subsurfaces.

Sep
9
Fri
Colloquium Thesis Proposal: Lauren Kahre
Sep 9 @ 3:15 pm – 4:15 pm
Colloquium Thesis Proposal: Lauren Kahre @ Biology Annex 102

Extinction mapping with LEGUS

Lauren Kahre

The study of star formation and galaxy evolution in nearby galaxies depends on obtaining accurate stellar photometry in those galaxies. However, dust in the galaxies hinders our ability to obtain accurate stellar photometry, particularly in star-forming galaxies that have the highest concentrations of dust. This proposal presents a thesis project to develop a method for generating extragalactic extinction maps using photometry of massive stars from the Hubble Space Telescope. This photometry spans nearly 50 galaxies observed by the Legacy Extragalactic Ultraviolet Survey (LEGUS). The derived extinction maps can be used to correct other stars and Halpha maps (from the Halpha LEGUS) for extinction, and will be used to constrain changes in the dust-to-gas ratio across the galaxy sample and in different star formation rate, metallicity and morphological environments. Previous studies have found links between galaxy metallicty and the dust-to-gas mass ratio. The relationship between these two quantities can be used to constrain chemical evolution models.

Selected galaxies will also be compared to IR-derived dust maps for comparison to recent M31 results from Dalcanton et al. (2015) which found a minimum factor of 2 inconsistency between their extinction-derived maps and emission-derived maps from Draine et al. (2014).

Oct
10
Mon
Pizza Lunch: Laura Mayorga
Oct 10 @ 12:30 pm – 1:30 pm
Pizza Lunch: Laura Mayorga @ AY 119

Title: Proto-BD disks and the Kavli Summer Program in Astrophysics

Laura Mayorga

 

Oct
28
Fri
Colloquium: Mark Wardle
Oct 28 @ 3:15 pm – 4:15 pm
Colloquium: Mark Wardle @ Biology Annex 102

Star formation in the vicinity of the supermassive black hole at the Galactic Centre

Dr. Mark Wardle, Macquarie University

The disruptive tidal field near supermassive black holes overcomes the self-gravity of objects that are less dense than the Roche density.  This was once expected to suppress star formation within several parsecs of  Sgr A*, the four million solar mass black hole at the centre of the Galaxy.   It has since become apparent that things are not this simple:  Sgr A* is surrounded by a sub-parsec-scale orbiting disk of massive stars, indicating a star formation event occurred a few million years ago.    And on parsec scales,  star formation seems to be happening now:  there are proplyd candidates and protostellar outflow candidates,  as well as methanol and water masers that in the galactic disk would be regarded as sure-fire signatures of star formation.  In this talk, I shall consider how star formation can occur so close to Sgr A*.

The stellar disk may be created through the partial capture of a molecular cloud as it swept through the inner few parsecs of the galaxy and temporarily engulfed Sgr A*.  This rather naturally creates a disk of gas with the steep surface density profile of the present stellar disk.  The inner 0.04 pc  is so optically thick that it cannot fragment, instead accreting onto Sgr A* in a few million years; meanwhile the outer disk fragments and creates the observed stellar disk.   The isolated young stellar objects found at larger distances, on the other hand,  can be explained by stabilisation of clouds or cloud cores by the high external pressure that permeates the inner Galaxy.   A virial analysis shows that clouds are indeed tidally disrupted within 0.5 pc of Sgr A*, but outside this the external pressure allows self-gravitating clouds to survive, providing the raw material for ongoing star formation.

 

Nov
18
Fri
Colloquium: Karen Olsen
Nov 18 @ 3:15 pm – 4:15 pm
Colloquium: Karen Olsen @ Biology Annex 102

Simulations of the interstellar medium at high redshift: What does [CII] trace?

Dr. Karen Olsen, Arizona State University

We are in an exciting era were simulations on large, cosmological scales meet modeling of the interstellar medium (ISM) on sub-parsec scales. This gives us a way to predict and interpret observations of the ISM, and in particular the star-forming gas, in high-redshift galaxies, useful for ongoing and future ALMA/VLA projects.

In this talk, I will walk you though the current state of simulations targeting the the fine structure line of [CII] at 158 microns, which has now been observed in several z>6 galaxies. [CII] can arise throughout the interstellar medium (ISM), but the brightness of the [CII] line depends strongly on local environment within a galaxy, meaning that the ISM phase dominating the [CII] emission can depend on galaxy type. This complicates the use of [CII] as a tracer of either SFR or ISM mass and calls for detailed modeling following the different ways in which [CII] can be excited.

I will present SÍGAME (Simulator of GAlaxy Millimeter/submillimeter emission) – a novel method for predicting the origin and strength of line emission from galaxies. Our method combines data from cosmological simulations with sub-grid physics that carefully calculates local radiation field strength, pressure, and ionizational/thermal balance. Preliminary results will be shown from recent modeling of [CII] emission from z~6 star-forming galaxies with SÍGAME. We find strong potential for using the total [CII] luminosity to derive the ISM and molecular gas mass of galaxies during the Epoch of Reionization (EoR).