Calendar

Apr
25
Mon
Pizza Lunch: Jeremy Emmett 598
Apr 25 @ 12:30 pm – 1:30 pm
Pizza Lunch: Jeremy Emmett 598 @ AY 119

Title: Jeremy Emmett 598

Name

 

Apr
29
Fri
Colloquium: Betsy Mills (Host: Moire Prescott)
Apr 29 @ 3:15 pm – 4:15 pm
Colloquium:  Betsy Mills (Host: Moire Prescott) @ BX102

Do star formation laws break in the center of the Galaxy?

Betsy Mills, University of Arizona

I will review our understanding of molecular gas conditions in the central 500 parsecs of the Milky Way, and summarize recent studies that find that the Galactic center deviates from universal star formation relations. It is suggested that the amount of star formation in the Galactic center is less than expected, given the quantity of dense gas in this region. However, in order to conclude that the Galactic center truly breaks these ‘laws’ of star formation, two possibilities must be ruled out: that our indicators in this region could underestimate the amount of star formation, and that prior observations could have overestimated the amount of dense gas. I will analyze new evidence for ongoing star formation in the Galactic center and present new measurements of the gas densities in the Galactic center that show it to be less dense than originally thought. However, I will ultimately argue that the average density of the gas is less relevant to explaining the dearth of star formation than the fraction of gas at each density.

 

May
2
Mon
Pizza Lunch: Agnar Hall 598
May 2 @ 12:30 pm – 1:30 pm
May
9
Mon
Pizza Lunch: Laurel Farris 598
May 9 @ 12:30 pm – 1:30 pm
Pizza Lunch: Laurel Farris 598

Laurel Farris 598

May
12
Thu
Colloquium PhD Defense: Kenz Arraki
May 12 @ 3:00 pm – 4:00 pm
Colloquium PhD Defense: Kenz Arraki @ Dominici106

Evolution of Dwarf Galaxy Properties in Local Group Environments

Kenz Arraki, NMSU

May
13
Fri
Tombaugh Observatory Open House
May 13 @ 9:00 pm – 11:00 pm
Tombaugh Observatory Open House @ Tombaugh Observatory | Las Cruces | New Mexico | United States

Open to the public.

Faculty member: Nancy Chanover

Graduate Students: Jacob VanderVliet, Ethan Dederick, Jean McKeever

 

May
31
Tue
Colloquium PhD Defense: Diane Feuillet
May 31 @ 3:00 pm – 4:00 pm
Colloquium PhD Defense: Diane Feuillet @ Dominici106

Ages and Abundance of Local Stellar Populations

Diane Feuillet, NMSU

Sep
9
Fri
Tombaugh Observatory Open House
Sep 9 @ 9:00 pm – 10:00 pm
Tombaugh Observatory Open House @ Tombaugh Observatory | Las Cruces | New Mexico | United States

The NMSU Department of Astronomy will hold an observatory open house at the NMSU campus observatory at 8 p.m.Friday, Sept. 9. Astronomy personnel on hand will be Chris Churchill and graduate assistants Xander Thelen, Trevor Picard and Jacob Vander Vliet.

Guests can view Mars and Saturn together in the evening sky in the constellation of Scorpio. Telescopes will also have the center of the Milky Way Galaxy in view, and in this region there are many beautiful star clusters and globular clusters (tight groups of millions of stars). High in the sky, viewers will see the constellation Vega with its double-double star system and the famous ring nebula, which is the remnants of a dying star much like our own sun. The moon will be in the phase called first quarter and will make a wonderful sight.

Contact the NMSU Astronomy Department at 575-646-4438 with questions. Everyone is welcome to come and spend an evening of stargazing. Admission is free and children are especially welcome to attend.

For information on what is up in September, go here: http://whatsouttonight.com/Resources/2016SepSkyWOT.pdf

Jan
27
Fri
Colloquium: Bryan Butler (Host: Nancy Chanover)
Jan 27 @ 3:15 pm – 4:15 pm
Colloquium: Bryan Butler (Host: Nancy Chanover) @ BX 102

Observations of Solar System Bodies with the VLA and ALMA

Dr. Bryan Butler, NRAO

Observations of solar system bodies at wavelengths from submm to meter wavelengths provide important and unique information about those bodies. Such observations probe to depths unreachable at other wavelengths – typically of order 10-20 wavelengths for bodies with solid surfaces, and as deep as tens of bars for those with thick atmospheres (the giant planets). In the past five years, two instruments have been commissioned which have revolutionized the ability to make very sensitive, high-resolution observations at these wavelengths: the Karl G. Jansky Very Large Array (VLA) and the Atacama Large Millimeter/Submillimeter Array (ALMA). I will present a discussion of results over the past five years from observations from both the VLA and ALMA. These include observations of the atmospheres of all of the giant planets, the rings of Saturn, and the surfaces of many icy bodies in the outer solar system. I will also present plans for the Next Generation Very Large Array (ngVLA), the next step for millimeter to centimeter wavelength interferometry.

Mar
28
Tue
Joint Physics/Astronomy Colloquium: William Newman
Mar 28 @ 4:00 pm – 5:00 pm
Joint Physics/Astronomy Colloquium: William Newman @ Gardiner Hall 229, Physics. Dept. | Ames | Iowa | United States

Giant Planet Shielding of the Inner Solar System Revisited: Blending Celestial Mechanics with Advanced Computation

Dr. William Newman, UCLA

The Earth has sustained during the last billion years as many as five catastrophic collisions with asteroids and comets which led to widespread species extinctions. Our own atmosphere was literally blown away 4.5 billion years ago by a collision with a Mars-sized impactor. However, collisions with comets originating in the outer solar system accreted much of the present-day atmosphere. Relatively advanced life on our planet is the beneficiary of a number of impact events during Earth’s history which built our atmosphere without destroying a large fraction of terrestrial life. Using very high precision Monte Carlo integration methods to explore the orbital evolution over hundreds of millions of years followed by the application of celestial mechanical techniques, the presentation will explain directly how Earth was shielded by the combined influence of Jupiter and Saturn, assuring that only 1 in 100,000 potential collisions with the Earth will materialize.