Calendar

Sep
20
Tue
Colloquium Thesis Proposal: Ethan Dederick
Sep 20 @ 3:00 pm – 4:00 pm
Colloquium Thesis Proposal: Ethan Dederick @ Science Hall 310

Utilizing Planetary Oscillations to Constrain the Interior Structure of the Jovian Planets

Ethan Dederick

Seismology has been the premier tool of study for understanding the
interior structure of the Earth, the Sun, and even other stars. Yet in this
thesis proposal, we wish to utilize these tools to understand the interior
structure of the Jovian planets, Saturn in particular. Recent observations
of spiral density structures in Saturn’s rings caused by its oscillations
have provided insight into which modes exist within Saturn and at what
frequencies. Utilizing these frequencies to compare to probable mode can-
didates calculated from Saturn models will also us to ascertain the interior
profiles of state variables such as density, sound speed, rotation, etc. Using
these profiles in a Saturn model, coupled with tweaking the interior struc-
ture of the model, i.e. the inclusion of stably stratified regions, should
allow us to explain which modes are responsible for the density structures
in the rings, as well as predict where to look to find more such structures.
In doing so, we will not only have a much greater understanding of Sat-
urn’s interior structure, but will have constructed a method that can also
be applied to Jupiter once observations of its mode frequencies become
available. In addition, we seek to explain if moist convection on Jupiter is
responsible for exciting its modes. We aim to do this by modeling Jupiter
as a 2D harmonic oscillator. By creating a resonance between moist con-
vective storms and Jovian modes, we hope to match the expected mode
energies and surface displacements of Jupiter’s oscillations.

Jan
27
Fri
Colloquium: Bryan Butler (Host: Nancy Chanover)
Jan 27 @ 3:15 pm – 4:15 pm
Colloquium: Bryan Butler (Host: Nancy Chanover) @ BX 102

Observations of Solar System Bodies with the VLA and ALMA

Dr. Bryan Butler, NRAO

Observations of solar system bodies at wavelengths from submm to meter wavelengths provide important and unique information about those bodies. Such observations probe to depths unreachable at other wavelengths – typically of order 10-20 wavelengths for bodies with solid surfaces, and as deep as tens of bars for those with thick atmospheres (the giant planets). In the past five years, two instruments have been commissioned which have revolutionized the ability to make very sensitive, high-resolution observations at these wavelengths: the Karl G. Jansky Very Large Array (VLA) and the Atacama Large Millimeter/Submillimeter Array (ALMA). I will present a discussion of results over the past five years from observations from both the VLA and ALMA. These include observations of the atmospheres of all of the giant planets, the rings of Saturn, and the surfaces of many icy bodies in the outer solar system. I will also present plans for the Next Generation Very Large Array (ngVLA), the next step for millimeter to centimeter wavelength interferometry.

Mar
28
Tue
Joint Physics/Astronomy Colloquium: William Newman
Mar 28 @ 4:00 pm – 5:00 pm
Joint Physics/Astronomy Colloquium: William Newman @ Gardiner Hall 229, Physics. Dept. | Ames | Iowa | United States

Giant Planet Shielding of the Inner Solar System Revisited: Blending Celestial Mechanics with Advanced Computation

Dr. William Newman, UCLA

The Earth has sustained during the last billion years as many as five catastrophic collisions with asteroids and comets which led to widespread species extinctions. Our own atmosphere was literally blown away 4.5 billion years ago by a collision with a Mars-sized impactor. However, collisions with comets originating in the outer solar system accreted much of the present-day atmosphere. Relatively advanced life on our planet is the beneficiary of a number of impact events during Earth’s history which built our atmosphere without destroying a large fraction of terrestrial life. Using very high precision Monte Carlo integration methods to explore the orbital evolution over hundreds of millions of years followed by the application of celestial mechanical techniques, the presentation will explain directly how Earth was shielded by the combined influence of Jupiter and Saturn, assuring that only 1 in 100,000 potential collisions with the Earth will materialize.