Calendar

Oct
30
Fri
Colloquium: Sergio Rodriguez
Oct 30 @ 3:15 pm – 4:15 pm
Colloquium: Sergio Rodriguez @ BX102

BOSS DR12 survey: Clustering of galaxies and Dark Matter Haloes

Sergio Rodriguez, UAM, Madrid and Cal. Berkeley

BOSS SDSS-III is the largest redshift survey for the large scale structure and a powerful sample for the study of the low redshift Baryonic Acoustic Oscillations. We combine the features of the survey, such as, geometry, angular incompleteness and stellar mass incompleteness, with the BigMultiDark cosmological simulation to do a study of the distribution of galaxies in the dark matter halos. Using this large N-Body simulation and the halo abundance matching technique, we found a remarkably good agreement with the 2-point and 3-point statistics of the data.

Nov
6
Fri
Colloquium: John Wisniewski
Nov 6 @ 3:15 pm – 4:15 pm
Colloquium:  John Wisniewski @ BX102

Diagnosing the SEEDS of Planet Formation

John Wisniewski, University of Oklahoma

Circumstellar disks provide a useful astrophysical diagnostic of the formation and early evolution of exoplanets. It is commonly believed that young protoplanetary disks serve as the birthplace of planets, while older debris disks can provide insight into the architecture of exoplanetary systems. In this talk, I will discuss how one can use high contrast imaging techniques to spatially resolve nearby circumstellar disk systems, and how this imagery can be used to search for evidence of recently formed planetary bodies. I will focus on results from the Strategic Exploration of Exoplanets and Disks with Subaru (SEEDS) project, as well as some ongoing follow-up work.

Nov
9
Mon
Pizza Lunch: Karen Kinemuchi
Nov 9 @ 12:30 pm – 1:30 pm
Pizza Lunch: Karen Kinemuchi

High-precision studies of RR Lyrae Stars

Nov
16
Mon
Pizza Lunch: Moire Prescott
Nov 16 @ 12:30 pm – 1:30 pm
Pizza Lunch: Moire Prescott

Galaxy Nurseries in Lya Nebulae

Nov
20
Fri
Tombaugh Observatory Open House
Nov 20 @ 7:00 pm – 9:00 pm
Tombaugh Observatory Open House @ Tombaugh Observatory

Open to the public.

Faculty member: James McAteer

Graduate Students: Nigel Mathes, Emma Dahl, Laura Mayorga

 

 

Nov
30
Mon
Pizza Lunch: Ethan Dederick
Nov 30 @ 12:30 pm – 1:30 pm
Pizza Lunch: Ethan Dederick

598 Research

Dec
4
Fri
Colloquium: Brian Jackson
Dec 4 @ 3:15 pm – 4:15 pm
Colloquium:  Brian Jackson @ BX102

On the Edge: Exoplanets with Orbital Periods Shorter Than a Peter Jackson Movie

Brian Jackson, Boise State Univeristy

From wispy gas giants to tiny rocky bodies, exoplanets with orbital periods of several days and less challenge theories of planet formation and evolution. Recent searches have found small rocky planets with orbits reaching almost down to their host stars’ surfaces, including an iron-rich Mars-sized body with an orbital period of only four hours. So close to their host stars that some of them are actively disintegrating, these objects’ origins remain unclear, and even formation models that allow significant migration have trouble accounting for their very short periods. Some are members of multi-planet system and may have been driven inward via secular excitation and tidal damping by their sibling planets. Others may be the fossil cores of former gas giants whose atmospheres were stripped by tides.

In this presentation, I’ll discuss the work of our Short-Period Planets Group (SuPerPiG), focused on finding and understanding this surprising new class of exoplanets. We are sifting data from the reincarnated Kepler Mission, K2, to search for additional short-period planets and have found several new candidates. We are also modeling the tidal decay and disruption of close-in gaseous planets to determine how we could identify their remnants, and preliminary results suggest the cores have a distinctive mass-period relationship that may be apparent in the observed population. Whatever their origins, short-period planets are particularly amenable to discovery and detailed follow-up by ongoing and future surveys, including the TESS mission.

Tombaugh Observatory Open House
Dec 4 @ 7:00 pm – 9:00 pm
Tombaugh Observatory Open House @ Tombaugh Observatory

Open to the public.

Faculty member: James Murphy

Graduate Students: Jacob Vander Vliet, Kyle Uckert

 

 

Dec
7
Mon
Pizza Lunch: Chunming Zhu
Dec 7 @ 12:30 pm – 1:30 pm
Pizza Lunch: Chunming Zhu

TBD

Mar
11
Fri
Colloquium Thesis Proposal: Alexander Thelen (Host: Nancy Chanover)
Mar 11 @ 2:00 pm – 3:00 pm
Colloquium Thesis Proposal:  Alexander Thelen  (Host: Nancy Chanover) @ BX102

The Chemical History and Evolution of Titan’s Atmosphere as Revealed by ALMA

 Alexander Thelen, NMSU

Saturn’s largest moon, Titan, possesses a substantial atmosphere containing significant minorities of nitrile and hydrocarbon species, predominantly due to the photodissociation of the major gases, N2 and CH4. Titan’s methane cycle, liquid lakes, and complex organic chemistry make it an intriguing target through its similarities to Earth and the allure of its astrobiological potential. Though the existence of heavy nitrile species – such as CH3C3N, HC5N, and C3H7CN – has been inferred through Cassini Ion and Neutral Mass Spectrometer (INMS) data, confirmation of these species has yet to be made spectroscopically. Other hydrocarbon species, such as C3H4 and C3H8 have been detected using Voyager’s Infrared Spectrometer (IRIS; Maguire et al., 1981) and later mapped by the Composite Infrared Spectrometer (CIRS; Nixon et al., 2013) onboard Cassini, but abundance constraints for these species in the mesosphere is poor. To fully understand the production of these species and their spatial distribution in Titan’s atmosphere, vertical abundance profiles must be produced to use with current photochemical models. Utilizing early science calibration images of Titan obtained with the Atacama Large Millimeter/Submillimeter Array (ALMA), Cordiner et al. (2014; 2015) determined the vertical distribution of various nitriles and hydrocarbons in Titan’s atmosphere, including at least one previously undetected molecule – C2H5CN. For my dissertation project, I will calibrate and model sub-millimeter emissions from molecules in Titan’s atmosphere, and quantify variations in the spatial distribution of various species throughout its seasonal cycle by utilizing high resolution ALMA data.  The main goals of this project are as follows:
1. To search for previously undetected molecules in Titan’s atmosphere through analysis of the existing public ALMA data, and/or through ALMA proposals of my own;
2. Constrain abundance profiles of detected molecular species, and provide upper abundance limits for those we cannot detect;
3. Map the spatial distribution of detected species in order to improve our understanding of Titan’s atmospheric transport and circulation;
4. Determine how these spatial distributions change over Titan’s seasonal cycle by utilizing multiple years of public ALMA data.
The majority of this work will employ the Non-linear Optimal Estimator for MultivariatE Spectral analySIS (NEMESIS) software package, developed by Oxford University (Irwin et al., 2008), to retrieve abundance and temperature information through radiative transfer models. These results will allow us to investigate the chemical evolution and history of Titan’s rich, pre-biotic atmosphere by providing valuable abundance measurements and constraints to molecular photochemical and dynamical models. We will compare our results with measurements made by the Cassini spacecraft, thereby enhancing the scientific return from both orbiter and ALMA datasets. The increased inventory of complex, organic molecules observable with ALMA’s sub-mm frequency range and high spatial resolution may also yield detections of species fundamental to the formation of living organisms, such as amino acids. Thus, by informing photochemical and dynamical models and increasing our known inventory of complex molecular species, we will also assess Titan’s potential habitability.