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1 Introduction to the Astronomy 110 Labs

1.1 Introduction

Astronomy is a physical science. Just like biology, chemistry, geology, and physics, as-
tronomers collect data, analyze that data, attempt to understand the object/subject
they are looking at, and submit their results for publication. Along the way as-
tronomers use all of the mathematical techniques and physics necessary to understand
the objects they examine. Thus, just like any other science, a large number of math-
ematical tools and concepts are needed to perform astronomical research. In today’s
introductory lab, you will review and learn some of the most basic concepts neces-
sary to enable you to successfully complete the various laboratory exercises you will
encounter later this semester. When needed, the weekly laboratory exercise you are
performing will refer back to the examples in this introduction—so keep the worked
examples you will do today with you at all times during the semester to use as a
reference when you run into these exercises later this semester (in fact, on some occa-
sions your TA might have you redo one of the sections of this lab for review purposes).

1.2 The Metric System

Like all other scientists, astronomers use the metric system. The metric system is
based on powers of 10, and has a set of measurement units analogous to the English
system we use in everyday life here in the US. In the metric system the main unit
of length (or distance) is the meter, the unit of mass is the kilogram, and the unit
of liquid volume is the liter. A meter is approximately 40 inches, or about 4” longer
than the yard. Thus, 100 meters is about 111 yards. A liter is slightly larger than a
quart (1.0 liter = 1.101 qt). On the Earth’s surface, a kilogram = 2.2 pounds. In the
Astronomy 110 labs you will mostly encounter units of length/distance (variations on
the meter).

As you have almost certainly learned, the metric system uses prefixes to change
scale. For example, one thousand meters is one “kilometer”. One thousandth of a
meter is a “millimeter”. The prefixes that you will hear in this class are listed in
Table 1.1.

In the metric system 3,600 meters is equal to 3.6 kilometers; while 0.8 meter is
equal to 80 centimeters, which in turn equals 800 millimeters, etc. In the lab exercises
this semester we will encounter a large range in sizes and distances. For example, you
will measure the sizes of some objects/things in class in millimeters, talk about the
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Table 1.1: Metric System Prefixes
Prefix Name Prefix Symbol Prefix Value

Giga G 1,000,000,000 (one billion)
Mega M 1,000,000 (one million)
kilo k 1,000 (one thousand)
centi c 0.01 (one hundredth)
milli m 0.001 (one thousandth)
micro µ 0.0000001 (one millionth)
nano n 0.0000000001 (one billionth)

wavelength of spectral lines in nanometers, and measure the sizes of features on the
Sun that are larger than 100,000 kilometers.

1.2.1 Beyond the Metric System

When we talk about the sizes or distances to those objects beyond the surface of the
Earth, we begin to encounter very large numbers. For example, the average distance
from the Earth to the Moon is 384,000,000 meters or 384,000 kilometers (km). The
distances found in astronomy are usually so large that we have to switch to a unit
of measurement that is much larger than the meter, or even the kilometer. In and
around the solar system, astronomers use “Astronomical Units”. An Astronomical
Unit is the mean distance between the Earth and the Sun. One Astronomical Unit
(AU) = 149,600,000 km. For example, Jupiter is about 5 AU from the Sun, while
Pluto’s average distance from the Sun is 39 AU. With this change in units, it is easy
to talk about the distance to other planets. It is more convenient to say that Saturn
is 9.54 AU away than it is to say that Saturn is 1,427,184,000 km from Earth.

When we talk about how far away the stars are in our own Milky Way galaxy, we
have to switch to an even larger unit of distance to keep the numbers manageable. One
such unit is the “light year”. A light year (ly) is the distance light travels in one year.
The speed of light is enormous: 300,000 kilometers per second (km/s) or 186,000 miles
per second. Since one year contains 31,536,000 seconds, one ly = 9,460,000,000,000
km! The nearest star, Alpha Centauri, is 4.2 ly away. The Milky Way galaxy is more
than 150,000 light years across. The nearest galaxy with a size similar to that of
the Milky Way, the Andromeda Galaxy (see the sky chart for November online at
http://astronomy.nmsu.edu/tharriso/skycharts.html for a picture and description of
the Andromeda galaxy), is 2.2 million light years away!

In the Parallax lab we will introduce the somewhat odd unit of “parsecs”. For
now, we will simply state that one parsec (“pc”) = 3.26 ly. Thus, Alpha Centauri is
1.28 pc away. During the semester you will frequently hear the term parsec, kiloparsec
(1 thousand pc), Megaparsec (1 million pc), and even the term Gigaparsec (1 billion
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pc). Astronomers have borrowed the prefixes from the metric system to construct
their own shorthand way of describing extremely large distances. The Andromeda
Galaxy is at a distance of 700,000 pc = 0.7 Megaparsecs (“Mpc”).

1.2.2 Changing Units and Scale Conversion

Changing units (like those in the previous paragraph) and/or scale conversion is some-
thing you must master during this semester. The concept is fairly straightforward,
so let’s just work some examples.

1. Convert 34 meters into centimeters

Answer: Since one meter = 100 centimeters, 34 meters = 3,400 centimeters.

2. Convert 34 kilometers into meters:

3. If one meter equals 40 inches, how many meters are there in 400 inches?

4. How many centimeters are there in 400 inches?

5. How many parsecs are there in 1.4 Mpc?

6. How many AU are there in 299,200,000 km?

One technique that you will use this semester involves measuring a photograph or
image with a ruler, and converting the measured number into a real unit of size (or
distance). One example of this technique is reading a road map. In Figure 1.1 is a
map of the state of New Mexico. Down at the bottom left hand corner is a scale in
Miles and Kilometers.

Map Exercises (using a ruler determine):

1) How many kilometers is it from Las Cruces to Albuquerque?

2) What is the distance in miles from the border with Arizona to the border with
Texas if you were to drive along I40?

3) If you were to drive 100 km/hr (kph), how long would it take you to go from Las
Cruces to Albuquerque?
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Figure 1.1: A map of New Mexico.

4) If one mile = 1.6 km, how many miles per hour (mph) is 100 kph?
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1.2.3 Squares, Square Roots, and Exponents

In several of the labs this semester you will encounter squares, cubes, and square
roots. Let us briefly review what is meant by such terms as squares, cubes, square
roots and exponents. The square of a number is simply that number times itself: 3
× 3 = 32 = 9. The exponent is the little number “2” above the three. 52 = 5 × 5
= 25. The exponent tells you how many times to multiply that number by itself: 84

= 8 × 8 × 8 × 8 = 4096. The square of a number simply means the exponent is 2
(three squared = 32), and the cube of a number means the exponent is three (four
cubed = 43). Here are some examples:

1) 72 = 7 × 7 = 49

2) 75 = 7 × 7 × 7 × 7 × 7 = 16,807

3) The cube of 9 = 93 = 9 × 9 × 9 = 729

4) The exponent of 1216 is 16

5) 2.563 = 2.56 × 2.56 × 2.56 = 16.777

Your turn:

7) 63 =

8) 44 =

9) 3.12 =

The concept of a square root is easy to understand, but is much harder to calculate
(we usually have to use a calculator). The square root of a number is that number
whose square is the number: the square root of 4 = 2 because 2 × 2 = 4. The square
root of 9 is 3 (9 = 3 × 3). The mathematical operation of a square root is usually
represented by the symbol “

√
”, as in

√
9 = 3. But mathematicians also represent

square roots using a fractional exponent of one half: 91/2 = 3. Likewise, the cube
root of a number is represented as 271/3 = 3 (3 × 3 × 3 = 27). The fourth root
is written as 161/4 (= 2), and so on. We will encounter square roots in the algebra
section shortly. Here are some examples/problems:

1)
√

100 = 10

2) 10.53 = 10.5 × 10.5 × 10.5 = 1157.625
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3) Verify that the square root of 17 (
√

17 = 171/2) = 4.123

1.3 Scientific Notation

The range in numbers encountered in Astronomy is enormous: from the size of sub-
atomic particles, to the size of the entire universe. You are certainly comfortable
with numbers like ten, one hundred, three thousand, ten million, a billion, or even a
trillion. But what about a number like one million trillion? Or, four thousand one
hundred and fifty six million billion? Such numbers are too cumbersome to handle
with words. Scientists use something called “Scientific Notation” as a short hand
method to represent very large and very small numbers. The system of scientific no-
tation is based on the number 10. For example, the number 100 = 10 × 10 = 102. In
scientific notation the number 100 is written as 1.0 × 102. Here are some additional
examples:

Ten = 10 = 1 × 10 = 1.0 × 101

One hundred = 100 = 10 × 10 = 102 = 1.0 × 102

One thousand = 1,000 = 10 × 10 × 10 = 103 = 1.0 × 103

One million = 1,000,000 = 10 × 10 × 10 × 10 × 10 × 10 = 106 = 1.0 ×106

Ok, so writing powers of ten is easy, but how do we write 6,563 in scientific nota-
tion? 6,563 = 6563.0 = 6.563 × 103. To figure out the exponent on the power of ten,
we simply count-up the numbers to the left of the decimal point, but do not include
the left-most number. Here are some other examples:

1,216 = 1216.0 = 1.216 × 103

8,735,000 = 8735000.0 = 8.735000 × 106

1,345,999,123,456 = 1345999123456.0 = 1.345999123456 × 1012

Your turn! Work the following examples:

121 = 121.0 =

735,000 =

999,563,982 =

Now comes the sometimes confusing issue: writing very small numbers. First,
lets look at powers of 10, but this time in fractional form. The number 0.1 = 1/10.
In scientific notation we would write this as 1 × 10−1. The negative number in the
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exponent is the way we write the fraction 1/10. How about 0.001? We can rewrite
0.001 as 1/10 × 1/10 × 1/10 = 0.001 = 1 × 10−3. Do you see where the exponent
comes from? Starting at the decimal point, we simply count over to the right of the
first digit that isn’t zero to determine the exponent. Here are some examples:

0.121 = 1.21 × 10−1

0.000735 = 7.35 × 10−4

0.0000099902 = 9.9902 × 10−6

Your turn:

0.0121 =

0.0000735 =

0.0000000999 =

−0.121 =

There is one issue we haven’t dealt with, and that is when to write numbers in
scientific notation. It is kind of silly to write the number 23.7 as 2.37 × 101, or 0.5
as 5.0 × 10−1. You use scientific notation when it is a more compact way to write a
number to insure that its value is quickly and easily communicated to someone else.
For example, if you tell someone the answer for some measurement is 0.0033 meter,
the person receiving that information has to count over the zeros to figure out what
that means. It is better to say that the measurement was 3.3 × 10−3 meter. But
telling someone the answer is 215 kg, is much easier than saying 2.15 × 102 kg. It
is common practice that numbers bigger than 10,000 or smaller than 0.01 are best
written in scientific notation.

How do we multiply and divide two numbers in Scientific Notation? It is a three
step process: 1) multiply (divide) the numbers out front, 2) add (subtract) the expo-
nents, and 3) reconstruct the number in Scientific Notation. It is easier to just show
some examples:

(2 × 104) × (3 × 105) = (2 × 3) × 10(4+5) = 6 × 109

(2.00 × 104) × (3.15 × 107) = (2.00 × 3.15) × 10(4+7) = 6.30 × 1011
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(2 × 104) × (6 × 105) = (2 × 6) × 10(4+5) = 12 × 109 = 1.2 × 1010

(6 × 104) ÷ (3 × 108) = (6 ÷ 3) × 10(4−8) = 2 × 10−4

(3.0 × 104) ÷ (6.0 × 108) = (3.0 ÷ 6.0) × 10(4−8) = 0.5 × 10−4 = 5.0 × 10−5

Your turn:

(6 × 103) × (3 × 102) =

(8.0 × 1018) ÷ (4.0 × 1014) =

Note how we rewrite the exponent to handle cases where the number out front is
greater than 10, or less than 1.

1.4 Algebra

Because this is a freshman laboratory, we do not use high-level mathematics. But we
do sometimes encounter a little basic algebra and we need to briefly review the main
concepts. Algebra deals with equations and “unknowns”. Unknowns, or “variables”,
are usually represented as a letter in an equation: y = 3x + 7. In this equation both
“x” and “y” are variables. You do not know what the value of y is until you assign a
value to x. For example, if x = 2, then y = 13 (y = 3×2 + 7 = 13). Here are some
additional examples:

y = 5x + 3, if x=1, what is y? Answer: y = 5×1 + 3 = 5 + 3 = 8

q = 3t + 9, if t=5, what is q? Answer: q = 3×5 + 9 = 15 + 9 = 24

y = 5x2 + 3, if x=2, what is y? Answer: y = 5×(22) + 3 = 5×4 + 3 = 20 + 3 = 23

What is y if x = 6 in this equation: y = 3x + 13 =

These problems were probably easy for you, but what happens when you have
this equation: y = 7x + 14, and you are asked to figure out what x is if y = 21? Let’s
do this step by step, first we re-write the equation:

y = 7x + 14
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We now substitute the value of y (y = 21) into the equation:

21 = 7x + 14

Now, if we could get rid of that 14 we could solve this equation! Subtract 14 from
both sides of the equation:

21 − 14 = 7x + 14 − 14 (this gets rid of that pesky 14!)

7 = 7x (divide both sides by 7)

x = 1

Ok, your turn: If you have the equation y = 4x + 16, and y = 8, what is x?

We frequently encounter more complicated equations, such as y= 3x2 + 2x − 345,
or p2 = a3. There are ways to solve such equations, but that is beyond the scope of
our introduction. However, you do need to be able to solve equations like this: y2 =
3x + 3 (if you are told what “x” is!). Let’s do this for x = 11:

Copy down the equation again:

y2 = 3x + 3

Substitute x = 11:

y2 = 3×11 + 3 = 33 + 3 = 36

Take the square root of both sides:

(y2)1/2 = (36)1/2

y = 6

Did that make sense? To get rid of the square of a variable you have to take the
square root: (y2)1/2 = y. So to solve for y2, we took the square root of both sides of
the equation.

1.5 Graphing and/or Plotting

The last subject we want to discuss is graphing data, and the equation of a line. You
probably learned in high school about making graphs. Astronomers frequently use
graphs to plot data. You have probably seen all sorts of graphs, such as the plot of
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the performance of the stock market shown in the next figure (Fig. 1.2). A plot like
this shows the history of the stock market versus time. The “x” (horizontal) axis
represents time, and the “y” (vertical) axis represents the value of the stock market.
Each place on the curve that shows the performance of the stock market is represented
by two numbers, the date (x axis), and the value of the index (y axis). For example,
on May 10 of 2004, the Dow Jones index stood at 10,000.
Plots like this require two data points to represent each point on the curve or in the

Figure 1.2: The change in the Dow Jones stock index over one year (from April 2003
to July 2004).

plot. For comparing the stock market you need to plot the value of the stocks versus
the date. We call data of this type an “ordered pair”. Each data point requires a
value for x (the date) and y (the value of the Dow Jones index). In the next table
is the data for how the temperature changes with altitude near the Earth’s surface.
As you climb in altitude the temperature goes down (this is why high mountains can
have snow on them year round, even though they are located in warm areas). The
data in this table is plotted in Figure 1.3.

Looking at the plot of temperature versus altitude, we see that a straight line can
be drawn through the data points. We can figure out the equation of this straight
line and then predict the temperature at any altitude. In high school you learned
that the equation of a line was y = mx + b, where “m” is the “slope” of the line, and
“b” is the “y intercept”. The y intercept is simply where the line crosses the y-axis.
In the plot, the y intercept is at 59.0, so b = 59. So, we can rewrite the equation for
this line as y = mx + 59.0. How can we figure out m? Simple, pick any other data
point and solve the equation–let’s choose the data at 10,000 feet. The temperature
(y) is 23.3 at 10,000 feet (= x): 23.3 = 10000m + 59. Subtracting 59 from both sides
shows 23.3 − 59 = 10000x + 59 − 59, or −35.7 = 10000m. To find m we simply
divide both sides by 10,000: m = −35.7/10000 = −0.00357. In scientific notation,
the equation for the temperature vs. altitude is y = −3.57×10−3x + 59.0. Why is the
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Table 1.2: Temperature vs. Altitude
Altitude Temperature

(feet) oF
0 59.0

2,000 51.9
4,000 44.7
6,000 37.6
8,000 30.5
10,000 23.3
12,000 16.2
14,000 9.1
16,000 1.9

slope negative? What is happening here? As you go up in altitude, the temperature
goes down. Increasing the altitude (x) decreases the temperature (y). Thus, the slope
has to be negative.

Using the equation for temperature versus altitude just derived, what is the
temperature at 20,000 feet?

Ok, your turn. On the blank sheet of graph paper in Figure 1.4 plot the equation
y = 2x + 2 for x = 1, 2, 3, and x = −1, −2, and −3. What is the y intercept of this
line? What is its slope?

While straight lines and perfect data show up in science from time to time, it
is actually quite rare for real data to fit perfectly on top of a line. One reason
for this is that all measurements have error. So, even though there might be a
perfect relationship between x and y, the noise of the measurements introduces small
deviations from the line. In other cases, the data are approximated by a line. This
is sometimes called a best-fit relationship for the data. An example of a plot with
real data is shown in Figure 1.5. In this case, the data suggest that there is a general
trend between the absolute magnitude (MV) and the Orbital Period in certain types of
binary stars. But some other factor plays a role in determining the final relationship,
so some stars do not fit very well, and hence their absolute magnitudes cannot be
estimated very well from their orbital periods (the vertical bars associated with each
data point are error bars, and represent the measurement error).
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Figure 1.3: The change in temperature as you climb in altitude with the data from
the preceding table. At sea level (0 ft altitude) the surface temperature is 59oF. As
you go higher in altitude, the temperature goes down.
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Figure 1.4: Graph paper for plotting the equation y = 2x + 2.
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Figure 1.5: The relationship between absolute visual magnitude (MV) and Orbital
Period for cataclysmic variable binary stars.
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Name:

Date:

2 Optics

2.1 Introduction

Unlike other scientists, astronomers are far away from the objects they want to ex-
amine. Therefore astronomers learn everything about an object by studying the light
it emits. Since objects of astronomical interest are far away, they appear very dim
and small to us. Thus astronomers must depend upon telescopes to gather more
information. Lenses and mirrors are used in telescopes which are the instruments
astronomers use to observe celestial objects. Therefore it is important for us to have
a basic understanding of optics in order to optimize telescopes and interpret the in-
formation we receive from them.

The basic idea of optics is that mirrors or lenses can be used to change the direc-
tion which light travels. Mirrors change the direction of light by reflecting the light,
while lenses redirect light by refracting, or bending the light.

The theory of optics is an important part of astronomy, but it is also very useful in
other fields. Biologists use microscopes with multiple lenses to see very small objects.
People in the telecommunications field use fiber optic cables to carry information at
the speed of light. Many people benefit from optics by having their vision corrected
with eyeglasses or contact lenses.

This lab will teach you some of the basic principles of optics which will allow you
to be able to predict what mirrors and lenses will do to the light which is incident on
them. At the observatory you use real telescopes, so the basic skills you learn in this
lab will help you understand telescopes better.

• Goals: to discuss the properties of mirrors and lenses, and demonstrate them
using optics; build a telescope

• Materials: optical bench, ray trace worksheet, meterstick

2.2 Discussion

The behavior of light depends on how it strikes the surface of an object. All angles
are measured with respect to the normal direction. The normal direction is defined
as a line which is perpendicular to the surface of the object. The angle between the
normal direction and the surface of the object is 90◦. Some important definitions are
given below. Pay special attention to the pictures in Figure 2.1 since they relate to
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the reflective (mirrors) and refractive (lenses) optics which will be discussed in this
lab.

Figure 2.1: The definition of the “normal” direction n, and other angles found in
optics.

• n = line which is always perpendicular to the surface; also called the normal

• θ I = angle of incidence; the angle between the incoming light ray and the
normal to the surface

• θ R = angle of reflection; the angle between the outgoing light ray and the
normal to the surface

• α R = angle of refraction; the angle between the transmitted light ray and the
normal direction

2.3 Reflective Optics: Mirrors

How do mirrors work? Let’s experiment by reflecting light off of a simple flat mirror.

As part of the equipment for this lab you have been given a device that has a large
wooden protractor mounted in a stand that also has a flat mirror. Along with this
set-up comes a “Laser Straight” laser alignment tool. Inside the Laser Straight is a
small laser. There is a small black switch which turns the laser on and off. Keep it off,
except when performing the following exercise (always be careful around lasers–they
can damage your eyes if you stare into them!).

With this set-up, we can explore how light is reflected off of a flat mirror. Turn
on the Laser Straight, place it on the wooden part of the apparatus outside the edge
of the protractor so that the laser beam crosses across the protractor scale and inter-
cepts the mirror. Align the laser at some angle on the protractor, making sure the
laser beam passes through the vertex of the protractor. Note how the “incident” laser
beam is reflected. Make a sketch of what you observe in the space below.
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Table 2.1: Data Table

Angle of Incidence Angle of Reflection
20o

30o

45o

60o

75o

90o

Now experiment using different angles of incidence by rotating the Laser Straight
around the edge of the protractor, always insuring the laser hits the mirror exactly
at the vertex of the protractor. Note that an angle of incidence of 90o corresponds to
the “normal” defined above (see Fig. 2.1a).

1. Fill in Table 2.1 with the data for angle of incidence vs. angle of reflection. (3
pts)

2. What do you conclude about how light is reflected from a mirror? (2 pts)

The law governing the behavior of light when it strikes a mirror is known as the
Law of Reflection:

angle of incidence = angle of reflection

θ I = θ R
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3. OK, now what happens if you make the mirror curved? First let’s consider a
concave mirror, one which is curved away from the light source. Try to think
about the curved mirror as being made up of lots of small subsections of flat
mirrors, and make a prediction for what you will see if you put a curved mirror
in the light path. You might try to make a drawing in the space below:

At the front of the classroom is in fact just such a device: A curved wooden
base to which are glued a large number of flat mirrors, along with a metal stand
that has three lasers mounted in it, and the “disco5000” smoke machine. Have
your TA turn on the lasers, align them onto the multi-mirror apparatus, and
spew some smoke!

4. Was your prediction correct?

Also at the front of the room are two large curved mirrors. There are two types
of curved mirrors, “convex” and “concave”. In a convex mirror, the mirror is
curved outwards, in a concave mirror, the mirror is curved inwards (“caved”
in). Light that is reflected from these two types of mirrors behaves in different
ways. In this subsection of the lab, you will investigate how light behaves when
encountering a curved mirror.

5. Have your TA place the laser apparatus in front of the convex mirror, and
spew some more smoke. BE CAREFUL NOT TO LET THE LASER
LIGHT HIT YOUR EYE. What happens to the laser beams when they
are reflected off of the convex mirror? Make a drawing of how the light is
reflected (using the attached work sheet, the diagram labeled “Convex Mirror”
in Figure 2.2). (5 pts)

6. Now have your TA replace the convex mirror with the concave mirror. Now
what happens to the laser beams? Draw a diagram of what happens (using
the same worksheet, in the space labeled “Concave Mirror”). (5 pts)
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Figure 2.2: The worksheet needed in subsection 3
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7. Note that there are three laser beams. Using a piece of paper, your hand, or
some other small opaque item, block out the top laser beam on the stand.
Which of the reflected beams disappeared? What happens to the images of
the laser beams upon reflection? Draw this result (5 pts):

8. The point where the converging laser beams cross is called the “focus”. From
these experiments, we can draw the conclusion that concave mirrors focus
light, convex mirrors diverge light. Both of the mirrors are 61 cm in diameter.
Using a meter stick, how far from the mirror is the convergent point of the
reflected light (“where is the best focus achieved”)? (3 pts)

This distance is called the “focal length”. For concave mirrors the focal length
is one half of the “radius of curvature” of the mirror. If you could imagine a
spherical mirror, cut the sphere in half. Now you have a hemispherical mirror.
The radius of the hemisphere is the same as the radius of the sphere. Now,
imagine cutting a small cap off of the hemisphere, now you have a concave
mirror, but it is a piece of a sphere that has the same radius as before!

9. What is the radius of curvature of the big concave mirror? (1 pt)

10. Ok, with the lasers off, look into the concave mirror, is your face larger or
smaller? Does a concave mirror appear to magnify, or demagnify your image.
How about the convex mirror, does it appear to magnify, or demagnify? (1
pt):
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2.4 Refractive Optics: Lenses

How about lenses? Do they work in a similar way?

For this subsection of the lab, we will be using an “optical bench” that has a
light source on one end, and a projection (imaging) screen on the other end. To start
with, there will be three lenses attached mounted on the optical bench. Loosen the
(horizontal) thumbscrews and remove the three lenses from the optical bench. Two
of the lenses have the same diameter, and one lens is larger. Holding one of the lenses
by the steel shaft, examine whether this lens can be used as a “magnifying glass”,
that is when you look through it, do objects appear bigger, or smaller? You will find
that two of the lenses are “positive” lenses in that they magnify objects, and one is
a “negative” lens that acts to “de-magnify” objects. Note how easy it is to decide
which lenses are positive and which one is the negative lens.

Now we are going to attempt to measure the “focal lengths” of these lenses. First,
remount the smaller positive lens back on the optical bench. Turn on the light by
simply connecting the light source to the battery or transformer using the alligator
clips (be careful not to let the alligator clips touch each other or else the transformer
will be damaged). Take the smaller positive lens move it to the middle of the optical
bench (tightening or loosing the vertical clamping screw to allow you to slide it back
and forth). At the one end of the optical bench mount the white plastic viewing
screen. It is best to mount this at a convenient measurement spot–let’s choose to
align the plastic screen so that it is right at the 10 cm position on the meter stick.
Now slowly move the lens closer to the screen. As you do so, you should see a circle
of light that decreases in size until you reach “focus” (for this to work, however, your
light source and lens have to be at the same height above the meter stick!).

11. Measure the distance between the lens and the plastic screen. Write down this
number, we will call it “a”.

The distance “a” = cm (1 pt)

12. Now measure the distance between the lens and the front end of the light source.

Write down this number, we will call it “b”:

The distance “b” = cm (1 pt)

To determine the focal length of a lens (“F”), there is a formula called “the
lens maker’s formula”:

1

F
=

1

a
+

1

b
(1)
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13. Calculate the focal length of the small positive lens (2 pts): F = cm

14. Now replace the positive lens with the small negative lens. Repeat the process.
Can you find a focus with this lens? What appears to be happening? (4 pts)

15. How does the behavior of these two lenses compare with the behavior of mirrors?
Draw how light behaves when encountering the two types of lenses using Figure
2.3. Note some similarities and differences between what you have drawn in
Fig. 2.2, and what you drew in Fig. 2.3 and write them in the space below. (5
pts)

Ok, now let’s go back and mount the larger lens on the optical bench. This lens
has a very long focal length. Remove the light source from the optical bench.
Now mount the big lens exactly 80 cm from the white screen. Holding the light
source “out in space”, move it back and forth until you can get the best focus
(Note that this focus will not be a point, but will be a focused image of the
filament in the light bulb and show-up as a small, bright line segment. This
is a much higher power lens, so the image is not squished down like occurred
with the smaller positive lens). Using the wooden meter stick, have your lab
partners measure the distance between the light source and the lens. This is
hard to do, but you should get a number that is close to 80 cm.
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Figure 2.3: The worksheet needed in subsection 4. The positive lenses used in this
lab are “double convex” lenses, while the negative lens is a “double concave” lens.
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16. Assuming that a = b = 80 cm, use the lens maker’s formula to calculate F:

The focal length of the large lens is F = cm (2 pts)

2.5 Making a Telescope

As you have learned in class, Galileo is given credit as the first person to point a
telescope at objects in the night sky. You are now going to make a telescope just
like that used by Galileo. Remove the white screen (and light source) from the
optical bench and mount (and lock) the large positive lens at the 10 cm mark on
the yardstick scale. Now mount the small negative lens about 40 cm away from
the big lens. Looking at the “eyechart” mounted in the lab room (maybe go to
the back of the room if you are up front–you want to be as far from the eyechart
as possible), focus the telescope by moving the little lens backwards or forwards.
Once you achieve focus, let your lab partners look through the telescope too.
Given that everyone’s eyes are different, they may need to re-focus the little
lens.

17. Write down the distance “N” between the two lenses:

The distance between the two lenses is N = cm (2 pts)

18. Describe what you see when you look through the telescope: What does the
image look like? Is it distorted? Are there strange colors? What is the smallest
set of letters you can read? Is the image right side up? Any other interesting
observations? (5 pts):

This is exactly the kind of telescope that Galileo used. Shortly after Galileo’s
observations became famous, Johannes Kepler built his own telescopes, and
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described how they worked. Kepler suggested that you could make a better
telescope using two positive lenses. Let’s do that. Remove the small negative
lens and replace it with the small positive lens. Like before, focus your telescope
on the eyechart, and let everyone in your group do the same. Write down the
distance “P” between the two lenses after achieving best focus:

19. The distance between the two lenses is P = cm (2 pts)

20. Describe what you see: What does the image look like? Is it distorted? Are
there strange colors? What is the smallest set of letters you can read? Is the
image right side up? Any other interesting observations? (5 pts):

21. Compare the two telescopes. Which is better? What makes it better? Note
that Kepler’s version of the telescope did not become popular until many years
later. Why do you think that is? (5 pts):

2.5.1 The Magnifying and Light Collecting Power of a Telescope

Telescopes do two important things: they collect light, and magnify objects.
Astronomical objects are very far away, and thus you must magnify the ob-
jects to actually see any detail. Telescopes also collect light, allowing you to
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see fainter objects than can be seen by your eye. It is easy to envision this
latter function as two different size buckets sitting out in the rain. The bigger
diameter bucket will collect more water than the smaller bucket. In fact, the
amount of water collected goes as the area of the top of the bucket. If we have
circular buckets, than given that the area of a circle is πR2, a bucket that is
twice the radius, has four times the area, and thus collects four times the rain.
The same relationship is at work for your eye and a telescope. The radius of
a typical human pupil is 4 mm, while the big lens you have been using has a
radius of 20 mm. Thus, the telescopes that you built collect 25 times as much
light as your eyes.

Determining the magnification of a telescope is also very simple:

M =
F

f
(2)

Where “M” is the magnification, “F” is the focal length of the “objective” lens
(the bigger of the two lenses), and “f” is the focal length of the “eyepiece” (the
smaller of the two lenses). You have calculated both “F” and “f” in the pre-
ceding for the two positive lenses, and thus can calculate the magnification of
the “Kepler” telescope:

22. The magnification of the Kepler telescope is M = times. (1 pt)

Ok, how about the magnification of the Galileo telescope? The magnification
for the Galileo telescope is calculated the same way:

M =
F

f
(3)

But remember, we could not measure a focal length (f) for the negative lens.
How can this be done? With specialized optical equipment it is rather easy
to measure the focal length of a negative lens. But since we do not have that
equipment, we have to use another technique. In the following two figures we
show a “ray diagram” for both the Kepler and Galileo telescopes.

Earlier, we had you make various measurements of the lenses, and measure sep-
arations of the lenses in both telescopes once they were focused. If you look
at Figure 2.4 and Figure 2.5, you will see that there is a large “F”. This is the
focal length of the large, positive lens (the “objective”). In Kepler’s telescope,
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Figure 2.4: The ray diagram for Kepler’s telescope.

Figure 2.5: The ray diagram for Galileo’s telescope.

when it is focused, you see that the separation between the two lenses is the
sum of the focal lengths of the two lenses. We called this distance “P”, above.
You should confirm that the “P” you measured above is in fact equal (or fairly
close) to the sum of the focal lengths of the two positive lenses: P = f + F
(where little “f” is the focal length of the smaller positive lens).

Ok, now look at Figure 2.5. Note that when this telescope is focused, the sep-
aration between the two lenses in the Galileo telescope is N = F − f (where F
and f have the same definition as before).

23. Find “f” for the Galileo telescope that you built, and determine the magnifica-
tion of this telescope (3 pts):
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24. Compare the magnification of your Galileo telescope to that you calculated for
the Kepler telescope (2 pts):

What do you think of the quality of images that these simple telescopes produce?
Note how hard it is to point these telescopes. It was hard work for Galileo, and the
observers that followed him, to unravel what they were seeing with these telescopes.
You should also know that the lenses you have used in this class, even though they are
not very expensive, are far superior to those that could be made in the 17th century.
Thus, the simple telescopes you have constructed today are much better than what
Galileo used!
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2.6 Summary (35 points)

Please summarize the important concepts of this lab.

• Describe the properties of the different types of lenses and mirrors discussed in
this lab

• What are some of the differences between mirrors and lenses?

• Why is the study of optics important in astronomy?

Use complete sentences, and proofread your lab before handing it in.

2.7 Possible Quiz Questions

1) What is a “normal”?
2) What is a concave mirror?
3) What is a convex lens?
4) Why do astronomers need to use telescopes?

2.8 Extra Credit (ask your TA for permission before at-
tempting, 5 points )

Astronomers constantly are striving for larger and larger optics so that they can
collect more light, and see fainter objects. Galileo’s first telescope had a simple
lens that was 1” in diameter. The largest telescopes on Earth are the Keck 10 m
telescopes (10 m = 400 inches!). Just about all telescopes use mirrors. The reason
is that lenses have to be supported from their edges, while mirrors can be supported
from behind. But, eventually, a single mirror gets too big to construct. For this
extra credit exercise look up what kind of mirrors the 8 m Gemini telescopes have
(at http://www.gemini.edu) versus the mirror system used by the Keck telescopes
(http://keckobservatory.org/about/the observatory). Try to find out how they were
made using links from those sites. Write-up a description of the mirrors used in these
two telescopes. Do you think the next generation of 30 or 100 m telescopes will be
built, like Gemini, or Keck? Why?
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Name:

Date:

3 The Power of Light: Understanding Spectroscopy

3.1 Introduction

For most celestial objects, light is the astronomer’s only subject for study. Light from
celestial objects is packed with amazingly large amounts of information. Studying the
distribution of brightness for each wavelength (color) which makes up the light pro-
vides the temperature of a source. A simple example of this comes from flame color
comparison. Think of the color of a flame from a candle (yellow) and a flame from a
chemistry class Bunson burner (blue). Which is hotter? The flame from the Bunson
burner is hotter. By observing which color is dominant in the flame, we can determine
which flame is hotter or cooler. The same is true for stars; by observing the color of
stars, we can determine which stars are hot and which stars are cool. If we know the
temperature of a star, and how far away it is (see the “Measuring Distances Using
Parallax” lab), we can determine how big a star is.

We can also use a device, called a spectroscope, to break-up the light from an
object into smaller segments and explore the chemical composition of the source of
light. For example, if you light a match, you know that the predominant color of the
light from the match is yellow. This is partly due to the temperature of the match
flame, but it is also due to very strong emission lines from sodium. When the sodium
atoms are excited (heated in the flame) they emit yellow light.

In this lab, you will learn how astronomers can use the light from celestial objects
to discover their nature. You will see just how much information can be packed into
light! The close-up study of light is called spectroscopy.

This lab is split into three main parts:

• Experimentation with actual blackbody light sources to learn about the quali-
tative behavior of blackbody radiation.

• Computer simulations of the quantitative behavior of blackbody radiation.

• Experimentation with emission line sources to show you how the spectra of each
element is unique, just like the fingerprints of human beings.

Thus there are three main components to this lab, and they can be performed in
any order. So one third of the groups can work on the computers, while the other
groups work with the spectrographs and various light sources.

• Goals: to discuss the properties of blackbody radiation, filters, and see the
relationship between temperature and color by observing light bulbs and the
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spectra of elements by looking at emission line sources through a spectrograph.
Using a computer to simulate blackbody. radiation

• Materials: spectrograph, adjustable light source, gas tubes and power source,
computers, calculators

3.2 Blackbody Radiation

Blackbody radiation (light) is produced by any hot, dense object. By “hot” we mean
any object with a temperature above absolute zero. All things in the Universe emit
radiation, since all things in the Universe have temperatures above absolute zero.
Astronomers idealize a perfect absorber and perfect emitter of radiation and call it
a “blackbody”. This does not mean it is black in color, simply that it absorbs and
emits light at all wavelengths, so no light is reflected. A blackbody is an object which
is a perfect absorber (absorbs at all wavelengths) and a perfect emitter (emits at all
wavelengths) and does not reflect any light from its surface. Astronomical objects are
not perfect blackbodies, but some, in particular, stars, are fairly well approximated
by blackbodies.

The light emitted by a blackbody object is called blackbody radiation. This radi-
ation is characterized simply by the temperature of the blackbody object. Thus, if we
can study the blackbody radiation from an object, we can determine the temperature
of the object.

To study light, astronomers often split the light up into a spectrum. A spectrum
shows the distribution of brightness at many different wavelengths. Thus, a spectrum
can be shown using a graph of brightness vs. wavelength. A simple example of this
is if you were to look at a rainbow and record how bright each of the separate colors
were. Figure 3.1 shows what the brightness of the colors in a hot flame or hot star
might look like. At each separate color, a brightness is measured. By fitting a curve
to the data points, and finding the peak in the curve, we can determine the temper-
ature of the blackbody source.

3.3 Absorption and Emission Lines

One question which you may have considered is: how do astronomers know what
elements and molecules make up astronomical objects? How do they know that the
Universe is made up mostly of hydrogen with a little bit of helium and a tiny bit of
all the other elements we have discovered on Earth? How do astronomers know the
chemical make up of the planets in our Solar System? They do this by examining the
absorption or emission lines in the spectra of astronomical sources. [Note that the
plural of spectrum is spectra.]
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Figure 3.1: Astronomers measure the amount of light at a number of different wave-
lengths (or colors) to determine the temperature of a blackbody source. Every black-
body has the same shape, but the peak moves to the violet/blue for hot sources, and
to the red for cool sources. Thus we can determine the temperature of a blackbody
source by figuring out where the most light is emitted.

3.3.1 The Bohr Model of the Atom

In the early part of the last century, a group of physicists developed the Quantum
Theory of the Atom. Among these scientists was a Danish physicist named Niels
Bohr. His model of the atom, shown in the figure below, is the easiest to understand.
In the Bohr model, we have a nucleus at the center of the atom, which is really much,
much smaller relative to the electron orbits than is illustrated in our figure. Almost
all of the atom’s mass is located in the nucleus. For Hydrogen, the simplest element
known, the nucleus consists of just one proton. A proton has an atomic mass unit
of 1 and a positive electric charge. In Helium, the nucleus has two protons and two
other particles called neutrons which do not have any charge but do have mass. An
electron cloud surrounds the nucleus. For Hydrogen there is only one electron. For
Helium there are two electrons and in a larger atom like Oxygen, there are 8. The
electron has about 1

2000
the mass of the proton but an equal and opposite electric

charge. So protons have positive charge and electrons have negative charge. Because
of this, the electron is attracted to the nucleus and will thus stay as close to the
nucleus as possible.

In the Bohr model, Figure 3.2, the electron is allowed to exist only at certain dis-
tances from the nucleus. This also means the electron is allowed to have only certain
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orbital energies. Often the terms orbits, levels, and energies are used interchangeably
so try not to get confused. They all mean the same thing and all refer to the electrons
in the Bohr model of the atom.

Figure 3.2: In the Bohr model, the negatively charged electrons can only orbit the
positively charged nucleus in specific, “quantized”, orbits.

Now that our model is set up let’s look at some situations of interest. When
scientists studied simple atoms in their normal, or average state, they found that the
electron was found in the lowest level. They named this level the ground level. When
an atom is exposed to conditions other than average, say for example, putting it in
a very strong electric field, or by increasing its temperature, the electron will jump
from inner levels toward outer levels. Once the abnormal conditions are taken away,
the electron jumps downward towards the ground level and emits some light as it
does so. The interesting thing about this light is that it comes out at only particular
wavelengths. It does not come out in a continuous spectrum, but at solitary wave-
lengths. What has happened here?

After much study, the physicists found out that the atom had taken-in energy
from the collision or from the surrounding environment and that as it jumps down-
ward in levels, it re-emits the energy as light. The light is a particular color because
the electron really is allowed only to be in certain discrete levels or orbits. It cannot
be halfway in between two energy levels. This is not the same situation for large
scale objects like ourselves. Picture a person in an elevator moving up and down
between floors in a building. The person can use the emergency stop button to stop
in between any floor if they want to. An electron cannot. It can only exist in certain
energy levels around a nucleus.
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Now, since each element has a different number of protons and neutrons in its
nucleus and a different number of electrons, you may think that studying “electron
gymnastics” would get very complicated. Actually, nature has been kind to us be-
cause at any one time, only a single electron in a given atom jumps around. This
means that each element, when it is excited, gives off certain colors or wavelengths.
This allows scientists to develop a color fingerprint for each element. This even
works for molecules. These fingerprints are sometimes referred to as spectral lines.
The light coming from these atoms does not take the shape of lines. Rather, each
atom produces its own set of distinct colors. Scientists then use lenses and slits to
produce an image in the shape of a line so that they can measure the exact wavelength
accurately. This is why spectral lines get their name, because they are generally stud-
ied in a linear shape, but they are actually just different wavelengths of light.

3.3.2 Kirchoff’s Laws

Continuous spectra are the same as blackbody spectra, and now you know about spec-
tral lines. But there are two types of spectral lines: absorption lines and emission
lines. Emission lines occur when the electron is moving down to a lower level, and
emits some light in the process. An electron can also move up to a higher level by
absorbing the right wavelength of light. If the atom is exposed to a continuous spec-
trum, it will absorb only the right wavelength of light to move the electron up. Think
about how that would affect the continuous spectrum. One wavelength of light would
be absorbed, but nothing would happen to the other colors. If you looked at the
source of the continuous spectrum (light bulb, core of a star) through a spectrograph,
it would have the familiar Blackbody spectrum, with a dark line where the light had
been absorbed. This is an absorption line.

The absorption process is basically the reverse of the emission process. The elec-
tron must acquire energy (by absorbing some light) to move to a higher level, and it
must get rid of energy (by emitting some light) to move to a lower level. If you’re
having a hard time keeping all this straight, don’t worry. Gustav Kirchoff made it
simple in 1860, when he came up with three laws describing the processes behind the
three types of spectra. The laws are usually stated as follows:

• I. A dense object will produce a continuous spectrum when heated.

• II. A low-density, gas that is excited (meaning that the atoms have electrons
in higher levels than normal) will produce an emission-line spectrum.

• III. If a source emitting a continuous spectrum is observed through a cooler,
low-density gas, an absorption-line spectrum will result.
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A blackbody produces a continuous spectrum. This is in agreement with Kir-
choff’s first law. When the light from this blackbody passes through a cloud of cooler
gas, certain wavelengths are absorbed by the atoms in that gas. This produces an
absorption spectrum according to Kirchoff’s third law. However, if you observe the
cloud of gas from a different angle, so you cannot see the blackbody, you will see the
light emitted from the atoms when the excited electrons move to lower levels. This
is the emission spectrum described by Kirchoff’s second law.

Kirchoff’s laws describe the conditions that produce each type of spectrum, and
they are a helpful way to remember them, but a real understanding of what is hap-
pening comes from the Bohr model.

In the second half of this lab you will be observing the spectral lines produced by
several different elements when their gaseous forms are heated. The goal of this sub-
section of the lab is to observe these emission lines and to understand their formation
process.

3.4 Creating a Spectrum

Light which has been split up to create a spectrum is called dispersed light. By dis-
persing light, one can see how pure white light is really made up of all possible colors.
If we disperse light from astronomical sources, we can learn a lot about that object.
To split up the light so you can see the spectrum, one has to have some kind of tool
which disperses the light. In the case of the rainbow mentioned above, the dispersing
element is actually the raindrops which are in the sky. Another common dispersing
element is a prism.

We will be using an optical element called a diffraction grating to split a source
of white light into its component colors. A diffraction grating is a bunch of really,
really, small rectangular openings called slits packed close together on a single sheet
of material (usually plastic or glass). They are usually made by first etching a piece of
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glass with a diamond and a computer driven etching machine and then taking either
casts of the original or a picture of the original.

The diffraction grating we will be using is located at the optical entrance of an
instrument called a spectroscope. The image screen inside the spectroscope is where
the dispersed light ends up. Instead of having all the colors land on the same spot,
they are dispersed across the screen when the light is split up into its component
wavelengths. The resultant dispersed light image is called a spectrum.

3.5 Observing Blackbody Sources with the Spectrograph

In part one of this lab, we will study a common blackbody in everyday use: a simple
white light bulb. Your Lab TA will show you a regular light bulb at two different
brightnesses (which correspond to two different temperatures). The light bulb emits
at all wavelengths, even ones that we can’t see with our human eyes. You will also
use a spectroscope to observe emission line sources.

1. First, get a spectroscope from your lab instructor. Study Figure 3.3 figure out
which way the entrance slit should line up with the light source. DO NOT
TOUCH THE ENTRANCE SLIT OR DIFFRACTION GRATING!
Touching the plastic ends degrades the effectiveness and quality of the spectro-
scope.

Figure 3.3:

2. Observe the light source at the brighter (hotter) setting.
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3. Do you see light at all different wavelengths/colors or only a few discrete wave-
lengths? (2 points)

4. Of all of the colors which you see in the spectrographs, which color appears the
brightest?(3 points)

5. Now let us observe the light source at a cooler setting. Do you see light at all
different wavelengths/colors or only a few discrete wavelengths? Of all of the
colors which you see in the spectrographs, which color appears the brightest?
(3 points)

6. Describe the changes between the two light bulb observations. What happened
to the spectrum as the brightness and temperature of the light bulb increased?
Specifically, what happened to the relative amount of light at different wave-
lengths?(5 points)

7. Betelgeuse is a Red Giant Star found in the constellation Orion. Sirius, the
brightest star in the sky, is much hotter and brighter than Betelgeuse. Describe
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how you might expect the colors of these two stars to differ. (4 points)

3.6 Quantitative Behavior of Blackbody Radiation

This subsection, which your TA may make optional (or done as one big group), should
be done outside of class on a computer with network access, we will investigate how
changing the temperature of a source changes the characteristics of the radiation
which is emitted by the source. We will see how the measurement of the color of
an object can be used to determine the object’s temperature. We will also see how
changing the temperature of a source also affects the source’s brightness.

To do this, we will use an online computer program which simulates the spectrum
for objects at a given temperature. This program is located here:

http://astro.unl.edu/naap/blackbody/animations/blackbody.html

The program just produces a graph of wavelength on the x-axis vs. brightness
on the y-axis; you are looking at the relative brightness of this source at different
wavelengths.

The program is simple to use. There is a sliding bar on the bottom of the “applet”
that allows you to set the temperature of the star. Play around with it a bit to get
the idea. Be aware that the y-axis scale of the plot will change to make sure that
none of the spectrum goes off the top of the plot; thus if you are looking at objects
of different temperature, the y-scale can be different.

Note that the temperature of the objects are measured in units called degrees
Kelvin (K). These are very similar to degrees Centigrade/Celsius (C); the only dif-
ference is that: K = C + 273. So if the outdoor temperature is about 20 C (68
Fahrenheit), then it is 293 K. Temperatures of stars are measured in thousands of
degrees Kelvin; they are much hotter than it is on Earth!

1. Set the object to a temperature of around 6000 degrees, which is the temperature
of the Sun. Note the wavelength, and the color of the spectrum at the peak of
the blackbody curve.

2. Now set the temperature to 3000 K, much cooler than the Sun. How do the
spectra differ? Consider both the relative amount of light at different wave-
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lengths as well as the overall brightness. Now set the temperature to 12,000 K,
hotter than Sun. How do the spectra differ? (5 points)

3. You can see that each blackbody spectrum has a wavelength where the emission
is the brightest (the “top” of the curve). Note that this wavelength changes as
the temperature is changed. Fill in the following small table of the wavelength
(in “nanometers”) of the peak of the curve for objects of several different tem-
peratures. You should read the wavelengths at the peak of the curve by looking
at the x-axis value of the peak. (5 points)

Temperature Peak Wavelength

3000
6000
12000
24000

4. Can you see a pattern from your table? Describe how the peak wavelength
changes as you increase the temperature. (3 points)

5. The peak wavelength and temperature are related by the equation:

λmax =
2.898x106

T
(4)

where λmax is the peak wavelength (in nanometers) and T is the temperature
(in Kelvin). Where would the peak wavelength be for objects on Earth, at a
temperature of about 300 degrees K? (2 points)
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3.7 Spectral Lines Experiment

3.7.1 Spark Tubes

In space, atoms in a gas can get excited when light from a continuous source heats
the gas. We cannot do this easily because it requires extreme temperatures, but we
do have special equipment which allows us to excite the atoms in a gas in another
way. When two atoms collide they can exchange kinetic energy (energy of motion)
and one of the atoms can become excited. This same process can occur if an atom
collides with a high speed electron. We can generate high speed electrons simply -
it’s called electricity! Thus we can excite the atoms in a gas by running electricity
through the gas.

The instrument we will be using is called a spark tube. It is very similar to the
equipment used to make neon signs. Each tube is filled with gas of a particular
element. The tube is placed in a circuit and electricity is run through the circuit.
When the electrons pass through the gas they collide with the atoms causing them
to become excited. So the electrons in the atoms jump to higher levels. When these
excited electrons cascade back down to the lower levels, they emit light which we can
record as a spectrum.

3.7.2 Emission-line Spectra Experiment

For the third, and final subsection of this lab you will be using the spectrographs to
look at the spark tubes that are emission line sources.

• The TA will first show you the emission from hot Hydrogen gas. Notice how
simple this spectrum is. On the attached graphs, make a drawing of the lines
you see in the spectrum of hydrogen. Be sure to label the graph so you remember
which element the spectrum corresponds to. (4 points)

• Next the TA will show you Mercury. Notice that this spectrum is more compli-
cated. Draw its spectrum on the attached sheet.(4 points)

• Next the TA will show you Neon. Draw and label this spectrum on your sheet
as well.(4 points)
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Figure 3.4: Draw your Hydrogen, Mercury and Neon spectra here.
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3.7.3 The Unknown Element

Now your TA will show you one more element, but won’t tell you which one. This
time you will be using a higher quality spectroscope (the large gray instrument) to try
to identify which element it is by comparing the wavelengths of the spectral lines with
those in a data table. The gray, table-mounted spectrograph is identical in nature to
the handheld spectrographs, except it is heavier, and has a more stable wavelength
calibration. When you look through the gray spectroscope you will see that there
is a number scale at the bottom of the spectrum. These are the wavelengths of the
light in “nanometers” (1 nm = 10−9 meter). Look through this spectrograph at the
unknown element and write down the wavelengths of the spectral lines that you can
see in the table below, and note their color.

Table 3.1: Unknown Emission Line Source

Observed Wavelength (nm) Color of Line

Now, compare the wavelengths of the lines in your data table to each of the three
elements listed below. In this next table we list the wavelengths (in nanometers) of
the brightest emission lines for hydrogen, helium and argon. Note that most humans
cannot see light with a wavelength shorter than 400 nm or with a wavelength longer
than 700 nm.

Table 3.2: Emission Line Wavelengths

Hydrogen Helium Argon
656.3 728.1 714.7
486.1 667.8 687.1
434.0 587.5 675.2
410.2 501.5 560.6
397.0 492.1 557.2
388.9 471.3 549.5

Which element is the unknown element? (5 points)
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3.8 Questions

1. Describe in detail why the emission or absorption from a particular electron
would produce lines only at specific wavelengths rather than at all wavelengths
like a blackbody. (Use the Bohr model to help you answer this question.) (5
points)

2. What causes a spectrum to have more lines than another spectrum (for example,
Helium has more lines than Hydrogen)? (4 points)

3. Referring to Fig. 3.5, does the electron transition in the atom labeled “A” cause
the emission of light, or require the absorption of light? (2 points)

4. Referring to Fig. 3.5, does the electron transition in the atom labeled “B” cause
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the emission of light, or require the absorption of light? (2 points)

5. Comparing the atom labeled “C” to the atom labeled “D”, which transition
(that occurring in C, or D) releases the largest amount of energy? (3 points)

Figure 3.5: Electron transitions in an atom (the electrons are the small dots, the
nucleus the large black dots, and the circles are possible orbits.
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3.9 Summary (35 points)

Summarize the important ideas covered in this lab. Some questions to answer are:

• What information you can learn about a celestial object just by measuring the
peak of its blackbody spectrum?

• What does a blackbody spectrum look like?

• How does the peak wavelength change as the temperature of a blackbody
changes?

• How can you quantitatively measure the color of an object?

• Do the color of items you see around you on Earth (e.g. a red and blue shirt)
tell you something about the temperature of the object? Why or why not?

• What information can you learn about an astronomical object from its spec-
trum?

• Explain how you would get this information from a spectrum.

Use complete sentences, and proofread your summary before handing in the lab.

3.10 Possible Quiz Questions

1. What is meant by the term “blackbody”?

2. What type of sources emit a blackbody spectrum?

3. How is an emission line spectrum produced?

4. How is an absorption line spectrum produced?

5. What type of instrument is used to produce a spectrum?

3.11 Extra Credit (ask your TA for permission before at-
tempting, 5 points)

Research how astronomers use the spectra of binary stars to determine their masses.
Write a one page paper describing this technique, including a figure detailing what is
happening.
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4 Measuring Distances Using Parallax

4.1 Introduction

How do astronomers know how far away a star or galaxy is? Determining the distances
to the objects they study is one of the the most difficult tasks facing astronomers.
Since astronomers cannot simply take out a ruler and measure the distance to any
object, they have to use other methods. Inside the solar system, astronomers can
simply bounce a radar signal off of a planet, asteroid or comet to directly measure
the distance to that object (since radar is an electromagnetic wave, it travels at the
speed of light, so you know how fast the signal travels–you just have to count how
long it takes to return and you can measure the object’s distance). But, as you will
find out in your lecture sessions, some stars are hundreds, thousands or even tens of
thousands of “light years” away. A light year is how far light travels in a single year
(about 9.5 trillion kilometers). To bounce a radar signal of a star that is 100 light
years away would require you to wait 200 years to get a signal back (remember the
signal has to go out, bounce off the target, and come back). Obviously, radar is not
a feasible method for determining how far away stars are.

In fact, there is one, and only one direct method to measure the distance to a
star: “parallax”. Parallax is the angle that something appears to move when the
observer looking at that object changes their position. By observing the size of this
angle and knowing how far the observer has moved, one can determine the distance
to the object. Today you will experiment with parallax, and appreciate the small
angles that astronomers must measure to determine the distances to stars.

To introduce you to parallax, perform the following simple experiment:

Hold your thumb out in front of you at arm’s length and look at it with your left
eye closed. Now look at it with your right eye closed. As you look at your thumb,
alternate which eye you close several times. You should see your thumb move relative
to things in the background. Your thumb is not moving but your point of view is
moving, so your thumb appears to move.

• Goals: to discuss the theory and practice of using parallax to find the distances
to nearby stars, and use it to measure the distance to objects in the classroom

• Materials: classroom “ruler”, worksheets, ruler, protractor, calculator, small
object
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4.2 Parallax in the classroom

The “classroom parallax ruler” will be installed/projected on one side of the class-
room. For the first part of this lab you will be measuring motions against this ruler.

Now work in groups: stand at the back of the room and have the TA place the
parallax device on one of tape marks along the line that goes straight to the front
wall. You should be able to see the plastic stirrer against the background ruler. The
observer should blink his/her eyes and measure the number of lines on the background
ruler against which the object appears to move. Note that you can estimate the
motion measurement to a fraction of tick mark, e.g., your measurement
might be 2 1/2 tick marks). Do this for the three different marked distances.
Switch places and do it again. Each person should estimate the motion for each of
the three distances.

1. How many tick marks did the object move at the closest distance? (2 points):

2. How many tick marks did the object move at the middle distance? (2 points):

3. How many tick marks did the object move at the farthest distance? (2 points):

4. ’Parallax’ is the term used for the apparent motion of the object against the
background ruler. It is caused by looking at an object from two different vantage
points. In this case, the two vantage points are the locations of your two eyes.
Qualitatively, what do you see? As the object gets farther away, is the apparent
motion smaller or larger? (1 point):

5. What if the vantage points are further apart? For example, imagine you had
a huge head and your eyes were a foot apart rather than several inches apart.
What would you predict for the apparent motion? (1 point):

Try the experiment again, this time using the object at one of the distances
used above, but now measuring the apparent motion by using just one eye, but
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moving your whole head a few feet from side to side to get more widely sepa-
rated vantage points.

6. How many tick marks does the object move as seen from the more widely
separated vantage points? (1 point):

7. For an object at a fixed distance, how does the apparent motion change as you
observe from more widely separated vantage points? (1 point):

4.3 Measuring distances using parallax

We have seen that the apparent motion depends on both the distance to an object
and also on the separation of the two vantage points. We can then turn this around:
if we can measure the apparent motion and also the separation of the two vantage
points, we should be able to infer the distance to an object. This is very handy: it
provides a way of measuring a distance without actually having to go to an object.
Since we can’t travel to them, this provides the only direct measurement of the dis-
tances to stars.

We will now see how parallax can be used to determine the distances to the
objects you looked at just based on your measurements of their apparent motions
and a measurement of the separation of your two vantage points (your two eyes).

4.3.1 Angular motion of an object

How can we measure the apparent motion of an object? As with our background
ruler, we can measure the motion as it appears against a background object. But
what are the appropriate units to use for such a measurement? Although we can
measure how far apart the lines are on our background ruler, the apparent motion
is not really properly measured in a unit of length; if we had put our parallax ruler
further away, the apparent motion would have been the same, but the number of tick
marks it moved would have been larger.

The apparent motion is really an angular motion. As such, it can be measured in
degrees, with 360 degrees in a circle.
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Figure out the angular separation of the tick marks on the ruler as seen from the
opposite side of the classroom. Do this by putting one eye at the origin of one of the
tripod-mounted protractors and measuring the angle from one end of the background
ruler to the other end of the ruler. You might lay a pencil from your eye at the origin
of the protractor toward each end and use this to measure the the total angle. Divide
this angle by the total number of tick marks to figure out the angle for each tick mark.

1. Number of degrees for the entire background ruler (between the 0 and 20 marks):

2. Number of tick marks between 0 and 20 on the ruler:

3. Number of degrees in each tick mark:

Convert your measurements of apparent motion in tick marks from Section 4.2
to angular measurements by multiplying the number of tick marks by the num-
ber of degrees per tick mark:

4. How many degrees did the object appear to move at the closest distance? (2
points):

5. How many degrees did the object appear to move at the middle distance? (2
points):

6. How many degrees did the object appear to move at the farthest distance? (2
points):

4.3.2 Distance between the vantage points

Now you need to measure the distance between the two different vantage points, in
this case, the distance between your two eyes. Have your partner measure this with
a ruler. Since you see out of the pupil part of your eyes, you want to measure the
distance between the centers of your two pupils.
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1. What is the distance between your eyes? (2 points)

4.3.3 Using parallax measurements to determine the distance to an ob-
ject

To determine the distance to an object for which you have a parallax measurement,
you can construct an imaginary triangle between the two different vantage points and
the object, as shown in Figure 4.1.

Figure 4.1: Parallax triangle

The angles you have measured correspond to the angle α on the diagram, and
the distance between the vantage points (your pupils) corresponds to the distance b
on the diagram. The distance to the object, which is what you want to figure out, is d.

The three quantities b, d, and α are related by a trigonometric function called the
tangent. Now, you may have never heard of a tangent, if so don’t worry–we will show
you how to do this using another easy (but less accurate) way! But for those of you
who are familiar with a little basic trigonometry, here is how you find the distance
to an object using parallax: If you split your triangle in half (dotted line), then the
tangent of (α/2) is equal to the quantity (b/2)/d:

tan
(α

2

)
=

(b/2)

d

Rearranging the equation gives:

d =
(b/2)

tan (α/2)
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You can determine the tangent of an angle using your calculator by entering the
angle and then hitting the button marked tan. There are several other units for mea-
suring angles besides degrees (for example, radians), so you have to make sure that
your calculator is set up to use degrees for angles before you use the tangent
function.

Combine your measurements of angular distances and the distance between the
vantage points to determine the three different distances to the parallax device. The
units of the distances which you determine will be the same as the units you used
to measure the distance between your eyes; if you measured that in inches, then the
derived distances will be in inches.

Distance when object was at closest distance: (2 points)

Distance when object was at middle distance: (2 points)

Distance when object was at farthest distance: (2 points)

Now go and measure the actual distances to the locations of the objects using a
yardstick, meterstick, or tape measure. How well did the parallax distances work?
Can you think of any reasons why your measurements might not match up exactly?
(5 points)

4.4 Using Parallax to measure distances on Earth, and within
the Solar System

We just demonstrated how parallax works in the classroom, now lets move to a larger
scale then the classroom.
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4.4.1 The “Non-Tangent” way to figure out distances from angles

Because the angles in astronomical parallax measurement are very small, astronomers
do not have to use the tangent function to determine distances from angles–they use
something called the “small angle approximation formula”:

θ

57.3
=

(b/2)

d

In this equation, we have defined θ = α/2, where α is the same angle as in the
earlier equations (and in Fig. 4.1). Rearranging the equation gives:

d =
57.3× (b/2)

θ

To use this equation your parallax angle “θ” has to be in degrees. Now you
can proceed to the next step!

1. Using the small angle formula, and your measured pupil distance, what would
be the parallax angle (in degrees) for Organ Summit, the highest peak in the
Organ mountains, if the Organ Summit is located 12 miles (or 20 km) from this
classroom? [Hint: there are 5280 feet in a mile, and 12 inches in a foot. There
are 1,000 meters in a km.]: (3 points)

You should have gotten a tiny angle! The smallest angle that the best human
eyes can resolve is about 0.02 degrees. Obviously, our eyes provide an inade-
quate baseline for measuring this large of a distance. How can we get a bigger
baseline? Well surveyors use a “transit” to carefully measure angles to a distant
object. A transit is basically a small telescope mounted on a (fancy!) protrac-
tor. By locating the transit at two different spots separated by 100 yards (and
carefully measuring this baseline!), they can get a much larger parallax angle,
and thus it is fairly easy to measure the distances to faraway trees, mountains,
buildings or other large objects.

How about an object in the Solar System? We will use Mars, the planet that
comes closest to Earth. At favorable oppositions, Mars gets to within about 0.4
AU of the Earth. Remember, 1 AU is the average distance between the Earth
and Sun: 149,600,000 km.
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2. Calculate the parallax angle for Mars (using the small angle approximation)
using a baseline of 1000 km. (3 points)

4.5 Distances to stars using parallax, and the “Parsec”

Because stars are very far away, the parallax motion will be very small. For exam-
ple, the nearest star is about 1.9 × 1013 miles or 1.2 × 1018 inches away! At such a
tremendous distance, the apparent angular motion is very small. Considering the two
vantage points of your two eyes, the angular motion of the nearest star corresponds
to the apparent diameter of a human hair seen at the distance of the Sun! This is a
truly tiny angle and totally unmeasurable by your eye.

Like a surveyor, we can improve our situation by using two more widely separated
vantage points. The two points farthest apart we can use from Earth is to use two
opposite points in the Earth’s orbit about the Sun. In other words, we need to observe
a star at two different times separated by six months. The distance between our two
vantage points, b, will then be twice the distance between the Earth and the Sun: “2
AU”. Figure 4.2 shows the idea.

Figure 4.2: Parallax Method for Distance to a Star

Using 299.2 million km as the distance b, we find that the apparent angular motion
(α) of even the nearest star is only about 0.0004 degrees. This is also unobservable
using your naked eye, which is why we cannot directly observe parallax by looking
at stars with our naked eye. However, this angle is relatively easy to measure using
modern telescopes and instruments.
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Time to talk about a new distance unit, the “Parsec”. Before we do so, we have
to review the idea of smaller angles than degrees. Your TA or professor might already
have mentioned that a degree can be broken into 60 arcminutes. Thus, instead of say-
ing the parallax angle is 0.02 degrees, we can say it is 1.2 arcminutes. But note that
the nearest star only has a parallax angle of 0.024 arcminutes. We need to switch to a
smaller unit to keep from having to use scientific notation: the arcsecond. There are
60 arcseconds in an arcminute, thus the parallax angle (α) for the nearest star is 1.44
arcseconds. To denote arcseconds astronomers append a single quotation mark (”) at
the end of the parallax angle, thus α = 1.44” for the nearest star. But remember, in
converting an angle into a distance (using the tangent or small angle approximation)
we used the angle α/2. So when astronomers talk about the parallax of a star they
use this angle, α/2, which we called “θ” in the small angle approximation equation.

How far away is a star that has a parallax angle of θ = 1”? The answer is 3.26
light years, and this distance is defined to be “1 Parsec”. The word Parsec comes
from Parallax Second. An object at 1 Parsec has a parallax of 1”. An object at 10
Parsecs has a parallax angle of 0.1”. Remember, the further away an object is, the
smaller the parallax angle.

The nearest star (Alpha Centauri) has a parallax of θ = 0.78”, and is thus at a
distance of 1/θ = 1/0.78 = 1.3 Parsecs.

Depending on your professor, you might hear the words Parsec, kiloparsec, Mega-
parsec and even Gigaparsec in your lecture classes. These are just shorthand methods
of talking about distances in astronomy. A kiloparsec is 1,000 Parsecs, or 3,260 light
years. A Megaparsec is one million parsecs, and a Gigaparsec is one billion parsecs.
To convert to light years, you simply have to multiply by 3.26. The Parsec is a strange
unit, but you have already encountered other strange units this semester!

Let’s work some examples. Remember:

• 1 Parsec = 3.26 lightyears

• distance (in Parsecs) = 1
θ
(in arcseconds)

1. If a star has a parallax angle of θ = 0.25”, what is its distance in Parsecs? (1
point)

2. If a star is at a distance of 5 Parsecs, what is its parallax angle? (1 point)

3. If a star is at a distance of 5 Parsecs, how many light years away is it? (1
point)
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4.6 Questions

1. How does the parallax angle change as an object is moved further away? Given
that you can usually only measure an angular motion to some accuracy, would
it be easier to measure the distance to a nearby star or a more distant star?
Why? (4 points)

2. Relate the experiment you did in lab to the way parallax is used to measure the
distances to nearby stars in astronomy. Describe the process an astronomer has
to go through in order to determine the distance to a star using the parallax
method. What do your two eyes represent in that experiment? (5 points)

3. Imagine that you did the classroom experiment by putting the object all the
way at the front of the room (against the ruler). How big would the apparent
motion be relative to the tick marks? What would you infer about the distance
to the object? Why do you think this estimate is incorrect? What can you
infer about where the background objects in a parallax experiment need to be
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located? (7 points)

4. Imagine that you observe a star field twice one year, separated by six months
and observe the configurations of stars shown in Figure 4.3:

Figure 4.3: Star field seen at two times of year six months apart.

The star marked P appears to move between your two observations because of
parallax. So you can consider the two pictures to be like our lab experiment
where the left picture is what is seen by one eye and the right picture what
is seen by the other eye. All the stars except star P do not appear to change
position; they correspond to the background ruler in our lab experiment. If
the angular distance between stars A and B is 0.5 arcminutes (remember, 60
arcminutes = 1 degree), then how far away would you estimate that star P is?

(a) Determine the scale: Measure the distance (in cm) between stars A and
B. (This distance corresponds to an angular separation of 0.5 arcminutes)

(b) Measure how much star P moved (in cm)

(c) Convert this measured distance to an angular distance in arcminutes (using
the scale found in part a).
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(d) Convert your angular distance from arcminutes to arcseconds (remember,
there are 60 arcseconds in 1 arcminute).

(e) What is the value of θ? (Recall that θ = α
2
)

(f) Using the parallax equation (d = 1
θ
) find the distance to the star P .

(11 points)
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4.7 Summary (35 points)

Please summarize the important concepts discussed in this lab. Your summary should
include:

• A brief description on the basic principles of parallax and how astronomers can
use parallax to determine the distance to nearby stars

Also think about and answer the following questions:

• Does the parallax method work for all stars we can see in our Galaxy and why?

• Why do you think it is important for astronomers to determine the distances
to the stars which they study?

Use complete sentences, and proofread your summary before handing in the lab.

4.8 Possible Quiz Questions

1) How do astronomers measure distances to stars?
2) How can astronomers measure distances inside the Solar System?
3) What is an Astronomical Unit?
4) What is an arcminute?
5) What is a Parsec?

4.9 Extra Credit (ask your TA for permission before at-
tempting, 5 points )

Use the web to find out about the planned GAIA Mission. What are the goals of
GAIA? How accurately can it measure a parallax? Discuss the units of milliarcseconds
(“mas”) and microarcseconds. How much better is GAIA than the best ground-based
parallax measurement programs?
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5 Discovering Exoplanets

5.1 Introduction

One of the most exciting discoveries in Astronomy over the last twenty years was the
conclusive detection of planets orbiting other stars. At last count, we are closing-
in on having discovered two thousand planets orbiting other stars. Planets orbiting
other stars are called “exoplanets.” These exoplanets range in size from similar to
the Earth, to larger than Jupiter. With much hard work, we now know that small
exoplanets are much more common than big exoplanets, and some astronomers be-
lieve that Earth-sized planets orbit nearly every normal star. The current goal of
astronomers is to find exoplanets that are most similar to Earth (same mass, radius,
orbiting their host star at 1 AU, etc.). With improvements in technology, we will one
day be able to determine whether such exoplanets support life. In the distant future,
maybe we will be able to send a space probe to those exoplanets to investigate the
life found there.

Astronomers have been studying the sky with advanced instruments for more than
100 years, but it was only in the early 1990’s that the first real exoplanets were found.
Why did it take so long? The answer is that compared to their host stars, exoplan-
ets are tiny, and hard to see. We will quantify how hard it is to see them shortly.
First though, how might we discover such objects? There are three main techniques:
direct imaging, transits (mini-eclipses), and “radial velocity” measurements. As its
name suggests, direct imaging is simply taking a picture of a star and looking for its
planets. The big problem is that the star is very bright (it generates its own energy),
while an exoplanet shines by reflected light from the star. This is by far the hardest
method to find exoplanets. To be effective, we will need to launch special telescopes
into space where our image-disturbing atmosphere does not exist, allowing us to see
much, much more clearly.

The transit method is much easier in that what we monitor is the light output
from a star, and if an exoplanet crosses in front of the star, the light briefly dims. As
we will learn, this technique also tells us the diameter of the exoplanet. The radial
velocity method uses the Doppler effect to detect the orbital motion of the planet.
The radial velocity technique allows us to determine the mass of the exoplanet. If we
can combine the transit and radial velocity techniques, we can get the size and mass
of a planet, and thus measure its density, and therefore constrain its composition. We
will investigate all three methods in this lab, and then learn how we can characterize
the properties of these objects.
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5.2 Why are Exoplanets so hard to see?

In our first experiment, we are simply going to demonstrate how hard it is to directly
see an exoplanet. First, however, a diagram to remind you how small the Earth and
Jupiter are compared to the Sun (Figure 5.1).

Figure 5.1: Comparison of the size of the Earth and Jupiter to the Sun.

Let’s look at some numbers. The radius of the Sun is 695,550 km, the radius
of Jupiter is 69,911 km, and the radius of the Earth is 6,371 km. Note that these
objects are all spheres, and thus when we look at them from space, they all appear
to be circles (“disks”). What is the area of a circle? Acircle = πR2.

Exercise #1: Calculate the areas of the circular disks of the Sun, Jupiter, and
Earth (if you want make the calculation simpler, just set RSun = 700,000 km,
RJupiter = 70,000 km, and REarth = 6000 km). (3 points).

(Area of Earth) = km2

(Area of Jupiter) = km2

(Area of Sun) = km2

If we are going to take a picture of a exoplanet around a star, we have two problems:
how much light will the exoplanet reflect compared to its star, and how close-in is it?
Let’s tackle the first question.

Exercise #2: We are going to keep everything very simple, and just estimate how
much sunlight the Earth or Jupiter would reflect compared to that emitted by the
Sun. We will assume that these planets reflect 100% of the light that hits them, and
we are going to ignore the fact that the amount of sunlight at the orbits of each of
these planets is less than at the surface of the Sun (remember, the amount of light
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passing through a sphere surrounding a light source drops off as 1/R2). In this
unrealistic scenario, the maximum amount of light that a planet can reflect is simply
the ratio of its area to that of the star it orbits. Calculate the following: (2 points).

(Area of Earth)/(Area of Sun) =

(Area of Jupiter)/(Area of Sun) =

These already small numbers are actually way too big. As we noted, Earth can
only reflect the amount of light it intercepts at the distance it is from the Sun. In
fact, the Earth only intercepts 1.67 × 10−9 of the Sun’s light output, and the amount
of visible light it reflects (its “albedo”) is 40%. So, seen from distant space, the Earth
is only one billionth as bright as the Sun! Jupiter is obviously much bigger than the
Earth, but remember, Jupiter is at 5.2 AU, so it actually receives 1/27th the amount
of sunlight as does the Earth. Thus, to an observer outside our solar system, Jupiter
is only 4.4 times more luminous than the Earth.

Directly detecting exoplanets is going to be hard, besides being very faint, they
are located very close to their host stars. We need a way to “turn off” the star. One
way to do this is to block its light out with a small, opaque metal disk. As shown
in Figure 5.2, we now have the capability to do this, but only for finding big planets
located far from their host stars (in fact, to date, only Jupiter-sized planets located
at large distances from their host stars have been directly imaged). There is a more
complex technique called “nulling interferometry” where you use the star’s own light
to cancel itself out, but not its planets, that lets astronomers search for planets closer
to the host star. While it can be done from the ground, it is better from space.
You can more read about this method by searching for the canceled NASA mission
“Terrestrial Planet Finder” on the web (it was killed due to budget cuts).

5.3 Exoplanet Transits

The exoplanet transit method of discovery is simple to envision, and the easiest to
carry-out. As shown in Figure 5.3, a transit occurs when an exoplanet crosses the disk
of its host star as seen by observers on Earth. Since the planet does not emit any light
(we are looking at the “nighttime side”), it is completely dark. Thus, the amount
of light from the star will dim as the planet blocks out (“eclipses”) a small portion
of the star’s light-emitting disk. The plot of the brightness of a star versus time is
called a “light curve”. The light curve of the transit is shown below the cartoon of
the star and exoplanet in Figure 5.3.

Exercise #3: Simulating an Exoplanet transit
As part of the materials set out for you to use during today’s lab is a device to

simulate an exoplanet transit. Take a look at the wooden device. It has a light meter
attached to the back, and three rods that dangle down in front of the light meter.
We will use the desk lamp as our light source (“star”), and move the rods across the
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Figure 5.2: A planet orbiting the star Fomalhaut (inside the box, with the arrow
labeled “2012”). This image was obtained with the Hubble Space Telescope, and
the star’s light has been blocked-out using a small metal disk. Fomalhaut is also
surrounded by a dusty disk of material—the broad band of light that makes a complete
circle around the star. This band of dusty material is about the same size as the
Kuiper belt in our solar system. The planet, “Fomalhaut B”, is estimated to take
1,700 years to orbit once around the star. Thus, using Kepler’s third law (P2 ∝ a3),
it is roughly about 140 AU from Fomalhaut (remember that Pluto orbits at 39.5 AU
from the Sun).

Figure 5.3: The diagram of an exoplanet transit. The planet, small, dark circle/ disk,
crosses in front of the star as seen from Earth. In the process, it blocks out some
light. The light curve shown on the bottom, a plot of brightness versus time, shows
that the star brightness is steady until the exoplanet starts to cover up some of the
visible surface of the star. As it does so, the star dims. It eventually returns back to
its normal brightness only to await the next transit.

light meter. Note that the dowel rod on top has five notches. The two furthest from
the center represent where we will be at the start and end of our simulation. At these
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positions, no light is blocked (similar to position #1 in Figure 5.3). Note also that
we have two planets, one big, one small, and a bare rod without a planet. What do
you think the latter is used for? Yes, our planets need to be attached to something to
allow us to perform this experiment. Thus, this planet-less rod allows us to measure
how much light just the bare rod blocks out. We will have to take this into account
when we plot our light curves.

The light meter itself is rather simple, it has power, mode, and hold buttons. We
only will use the power and mode buttons. Hit the power button (note that to extend
battery life, the device automatically shuts off after 45 seconds). At the bottom of
the device display window there will either be a “LUX” or “FC” displayed. We want
the unit to be in LUX, so click the mode button until LUX is displayed.

Setting things up: Move all of the metal rods to the left end of the dowel rod so
that nothing is blocking the lamp light from illuminating the white circle. Turn on
the light meter. Note that the number bounces around–this is due to electronic
noise. Every electronic device has this type of noise, and it takes much hard work
(and expense) to minimize this noise (one way is to chill the device to low
temperatures). Here we have to live with it, but this is just like what an astronomer
would have to deal with in a real observation. You are going to have to make a
mental average of the values at each measurement point. For example, in five
seconds, if the numbers are 78, 81, 79, 82, and 78, we would just estimate the count
rate as “80”. Note: the light meter is very sensitive, so you must keep yourself and
your hands well away from the front of the device when making a measurement (the
meter will detect light reflected off of you, making it hard to figure out what is going
on!).

With the room lights turned off, set the desk lamp about two feet in front of the
transit device. Power on the light and the light meter. With no rods in front of the
glass disk, adjust the height and direction of the desk lamp to maximize the number
of counts. Make sure the light bulb in the lamp is at roughly the same height as the
round, glass disk in front of the light meter. One way to do this is move the big
planet in front (putting the rod in the center-most notch) and make sure its shadow
hits the center of the glass disk. Move all of the rods out of the way, and then move
the transit device closer to the lamp until it gives a reading above 200 counts.

Now we are simply going to move each of the three rods (Bare Rod, Small Planet,
Large Planet) into the five notches on the top dowel rod, and write down the average
value of the light meter measurement at each position into Table 5.1. We do this one
rod at a time. Once done, move that rod to the far right side of the dowel rod to
start the process for the next rod. The rods may swing around a bit, just let them
stop moving, back away from the front of the device, and take your measurement. It
sometimes takes a few seconds for the light meter to settle to the correct value, so
give it a few seconds, and then make a estimate of the average light value at this
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position. Note: if you accidently bump the lamp or transit device you have to start
over! Small changes in the separation or lamp height will result in bad data.

Table 5.1: Exoplanet Transit Data

Position Bare Rod δ Small P. S.P.+δ Large P. L.P.+δ
#1 0.0
#2
#3
#4
#5 0.0

Now we have to account for the dimming effect of the rod. First, add the bare rod
measurements at positions #1 and #5 together and divide by 2 to create the
average unobscured value. Now, in the column labeled “δ”, fill in the differences
between the average unobscured value you just calculated, and your bare rod
measurements at positions 2 through 4 (δ = Ave. − #2, etc.). Then in columns 5
(S.P. + δ) and 7 (L.P. + δ), add the value in column 3 to the measurements in
columns 4 and 6, respectively for all five measurements [obviously, you add the
value of δ at position #2 to the value of Small P. at position #2 to get the value of
(S.P. + δ) at position #2]. (14 points)

Making Light Curves
Now we want to plot the data in Table 5.1 to make a light curve for our two planets.
Plot your data on the graph paper in the next two windows. We have filled-in the X
axis with notation for the five positions you measured. You will have to put values
on the Y axis that allow the entire light curve to be plotted. For example if the
unobscured value was near 285 (positions #1 or #5), the top Y axis grid line might
be set to 300. If the value at position #3 was 223, the bottom of the Y axis could
have a value of 200. It depends on your light meter, and how bright the light source
was. You will have to decide how to label the Y axis! Plot the data for both planets
in Figures 5.4 and 5.5. (8 points).
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Figure 5.4: The light curve of the transit of the small planet.

Figure 5.5: The light curve of the transit of the large planet.

5.3.1 Real exoplanet transits

Now that we have seen how one might observe a real exoplanet transit, and construct
its light curve. We now want to examine how hard this really is. You probably have
already found the dimming signal due to the small planet was quite small. Let’s
calculate how much the light dimmed in our simulations so we can compare them to
real exoplanet transits. First we need to find the difference between the unobscured
value, and the value at position #3 for both planets: (2 points)
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Total dimming small planet = (Position #1) − (Position #3) = counts

Total dimming large planet = (Position #1) − (Position #3) = counts

Now let’s put this in the fractional amount of dimming (“∆F/F”):

Fractional dimming small planet = (Total dimming small planet)/(Position #1) =

Fractional dimming large planet = (Total dimming large planet)/(Position #1) =

How does this compare to the real world? You actually already calculated the percent
dimming for the Earth and Jupiter in Exercise #2. In that exercise we calculated the
ratio of the areas of the planets relative to the Sun—this ratio is in fact how much
the light from the Sun would dim (in fractional terms) when the Earth or Jupiter
transited it as seen from a very distant point in space (or as some alien would measure
watching those crazy exoplanets transit the star we call the Sun!).

Questions:

1) Compare the percent dimming of our simulated exoplanets to the values for the
Earth and Jupiter found in Exercise #2. Was our simulation very realistic? (2
points)

2) Let’s imagine an alien pointed their telescope at our Sun to watch a transit of the
Earth. If his light meter was measuring 25,000 counts from the Sun before the
Earth transited (i.e., Point #1), what would it read at mid-transit (i.e., Point #3)?
Show your math. [Hint: remember the dimming is very small, so the mid-transit
number will be very close to the unobscured value.] (2 points)
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As you have now seen, detecting planets around other stars is very hard. The amount
of dimming during a transit is only about 1% for a Jupiter-sized exoplanet that orbits
another star. To make such high precision measurements, especially to see Earth-sized
planets, requires us to get above the Earth’s atmosphere and use special detectors
that have very low noise. Note that we also have to observe for a very long time—the
Earth only has one transit per year! Jupiter would have one every 12 years! These
events only last a few hours, so we also have to observe the star continuously so we
do not miss the transit. This requires a dedicated instrument, and this need was the
genesis of the Kepler mission launched by NASA several years ago. Kepler detected
over 1,000 transiting exoplanets during its four year mission. Unfortunately, Kepler is
no longer fully functional, and it will not be able to continue searching for Earth-like
planets.

Before we leave the subject of transits behind, we want to talk a little more about
how we can use light curves to get actual information on the exoplanet. In Figure
5.6 is plotted an exoplanet transit and light curve, with all of the math (scary, eh?)
that needs to be taken into account to decipher exactly what is going on (actually
the math is not real scary, as it is derived from Kepler’s laws). In the preceding we
have assumed that the planet crosses the center of the star—but this almost never
happens. The orbit is tilted a little bit, so the transit path is shortened. There are
ways to figure all of this out, as demonstrated by the many math equations in this
figure. But we want to focus your attention on the most important result that a
transit tells you: the radius of the exoplanet. In the top corner of Figure 5.6 there
is a simple equation: ∆F/F = (Rp/R∗)

2. As we have calculated above, the depth of
the eclipse, ∆F/F, allows you to determine the radius of an exoplanet. As all of the
math in this figure shows you, if you can estimate the stellar parameters (R∗, M∗),
you can also determine other characteristics of the exoplanet orbit (semi-major axis,
orbital inclination). It is fairly simple to estimate R∗ and M∗. In fact, if we measure
the period of the orbiting planet, we can measure the mass of the host star using
Kepler’s laws (the P2 = 4π2/GM∗ equation). Thus observing transits provides much
insight into the nature of an exoplanet, its orbit, and the host star.

5.4 Exoplanet Detection by Radial Velocity Variations

The final method we are going to investigate today, the technique of radial veloc-
ity variations, is the most difficult to understand as we have to talk about “center
of mass”, the Doppler effect, and spectroscopy. You have probably heard about all
three of these during the lectures over this past semester, but we are sure you need
to have a review of these topics.

You are certainly aware of the concept center of mass, even if you never knew
what it was called. Take the pencil or pen that you have with you today and try
to balance it across the tip of your finger. The point on the pencil/pen where it
balances on your finger tip is its center of mass. A teeter totter is another good way
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Figure 5.6: An exoplanet transit light curve (bottom) can provide a useful amount
of information. As we have shown, the most important attribute is the radius of
the exoplanet. But if you know the mass and radius of the exoplanet host star, you
can determine other details about the exoplanet’s orbit. As the figure suggests, by
observing multiple transits of an exoplanet, you can actually determine whether it
has a moon! This is because the exoplanet and its moon orbit around the center of
mass of the system (“barycenter”), and thus the planet appears to wobble back and
forth relative to the host star. We will discuss center of mass, and the orbits of stars
and exoplanets around the center of mass, in the next subsection.

to envision the center of mass. If a small kid and a big kid are playing on the teeter
totter, the balance is not good, and it is hard to have fun. You need to either ad-
just the balance point of the teeter totter, or have two kids with the same weight use it.

A diagram for defining the center of mass for two objects with different masses is
shown in Figure 5.7. If the two objects had the same mass, the center of mass would
be halfway between them. If one object has a much bigger mass, than the center of
mass will be located closer to it. You have a device today that clearly demonstrates
this type of system.

Figure 5.7: Center of mass, “xCM”, for two objects that have unequal masses. The
center of mass can be thought as being the point where the system would balance on
a “fulcrum” if connected by a rod.
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Exercise #4: Defining the Center of Mass for a Two Body System

As part of the materials for today’s lab, you were given a center of mass
demonstrator. It consists of a large black mass connected to a small white mass by
a long rod. There is also a wooden handle with a small pin at one end.

Remove the wooden handle from the long rod. Using the meter stick, estimate the
length of the entire device, from the center of the black sphere (we will call it
“M1”), to the center of the white sphere (“M2”).
1) What is this number in cm? (1 point):

Ok, now find the halfway point from the center of one ball to the next. You need to
divide the length you just measured by two, and measure in from one of the balls
and note its location (if necessary, use a piece of tape). Is there a hole there?
2) If you try to balance the device on the tip of your finger at this center point/hole,
what happens? (2 points)

Now put the device on the tip of your finger and find the balance point of the
device. There is also a hole there.
3) Use the meter stick to estimate (and write down) the distance between the center
of the black ball to this point (we will call this “X1”), and the distance between the
center of the white ball and this point (we will call this “X2”). This exercise is best
done by two people. (2 points)

X1 = cm

X2 = cm

This spot on the rod is “the center of mass”. The center of mass point is important,
as it allows us to determine the “mass ratio”, and if we know the mass of one of the
objects, we can figure out the mass of the other object. The equation for center of
mass is this:

M1X1 = M2X2

and the mass ratio is:

M1/M2 = X2/X1
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4) Determine the mass ratio for the center of mass device. (2 points)

M1/M2 =

5) If M1 = 250 grams, what is the mass of M2? (2 points)

M2 = grams

Now that we have explored the concept of center of mass, let’s see how it applies to
objects that orbit each other. Inserting the pin on the wooden handle into the
center point of the rod (not the center of mass hole!), hold the wooden handle and
try to spin the device (watch your head!). Now, move the wooden handle to the
center of mass hole. Spin the device.
6) Explain what happened at both locations: (2 points)

Any two objects in orbit around each other actually orbit the center of mass of the
system. This is diagrammed in Figure 5.81. Thus, the Earth and Sun orbit each other
around their center of mass, and Jupiter and the Sun orbit each other around their
center of mass, etc. In fact, the motion of the Sun is a complex combination of the
orbits of all of the planets in our solar system. For now, we are going to ignore the
other planets, and figure out where the center of mass is for the Sun−Earth system.

The Sun has a mass of MSun = 2.0 × 1030 kg, while the Earth has a mass of MEarth

= 6.0 × 1024 kg. We will save you some math and just tell you that the
approximate mass ratio is:

MSun/MEarth = 330,000

To determine where the center of mass is for the Earth-Sun system, we have to do a
little bit of algebra. Remember that the mean distance between the Earth and the

1An animation of this can be found at http://astronomy.nmsu.edu/tharriso/ast105/Orbit3.gif
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Figure 5.8: If two stars are orbiting around each other, or a planet is orbiting a star,
they both actually orbit the center of mass. If the two objects have the same mass,
the center of mass is exactly halfway between the two objects. Otherwise, the orbits
have different sizes.

Sun is 1 AU. Thus, using our notation from above:

1 AU = X1 + X2

Therefore,

X1 = 1 AU − X2 (Equation #1)

Does that make sense to you? X1 and X2 are the distance from the Sun to the center
of mass, and the Earth to the center of mass, respectively. As the center of mass
demonstration device shows you, the center of mass is located somewhere on the line
that connects the two objects. Thus, X1 + X2 = distance between the two masses.
For the Earth and Sun, X1 + X2 = 1 AU. Now, going back to our center of mass
equation:

M1X1 = M2X2 (Equation #2)

We can substitute the result for X1 in equation #1 into Equation #2:

M1(1 AU − X2) = M2X2 (Equation #3)

Dividing both sides of Equation #3 by M1 gives:
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1 AU − X2 = (M2/M1)X2 (Equation #4)

But (M2/M1) = 1/330,000 for the Earth-Sun system, and now we can solve to find
X2:

1 AU = (M2/M1)X2 + X2 = (1/330,000 + 1)X2

Thus,

X2 = 1.0/(1 + 1/330,000) = 0.999997 AU

Essentially, the Earth is 1 AU from the center of mass, how far away is the Sun from
the Earth-Sun center of mass? Go back to equation #1:

X1 = 1 − 0.999997 = 0.000003 AU

The Sun is very close to the center of mass of the Earth-Sun system.

Exercise #5: Determining the Size and Velocity of the Sun’s “Reflex
Motion”

We are going to calculate the size of the Sun’s orbit around the center of mass for
the Sun-Earth system, and then determine how fast the Sun is actually moving.
The motion of the Sun (or any star) due to an orbiting planet is called the “reflex
motion.” Like the name suggests, it is the response of the star to the gravitational
pull of the planet. Since AU per year is not a normal unit with which to measure
velocity, we need to convert the numbers we have just calculated to something more
useful.

1 AU = 149,597,871 km.
1) How far from the center of mass is the Sun in km? (1 point):

X1 (km) = X1 (AU) × 149,597,871 (km/AU) = km

Hopefully, you noticed how the units of length canceled in the last equation.

72



So, we now have the distance of the Sun from the center of mass. Note that this
number puts the center of mass of the Earth-Sun system well inside the Sun
(actually very close to its core). We now want to figure out what the length of the
orbit is that the Sun executes over one year (remember, the Earth takes one year to
orbit the Sun, so the “orbital period” of the Sun around the Earth-Sun center of
mass will be one year). Referring back to the center of mass device, if you put the
handle in the center of mass hole and spin the system, what path do the masses
trace? That’s right, a circle. Do you remember how to calculate the circumference
of a circle? C = 2πR, where R is the radius of the circle and π = 3.14.

2) What is the circumference of the orbit circle (in km) that is traced-out by the
Sun? (2 points):

3) This is how far the Sun travels each year, thus we can turn this into a velocity
(km/hr = kph) by dividing the distance traveled (in km) by the number of hours in
a year. Show your math (2 points):

VSun (km/hr) = C (km) ÷ (# hours in year) = ???

4) Comment on the size of the reflex velocity (VSun) of the Sun. Note that the
Earth travels much, much further during the year, so its velocity is much, much
higher: 107,000 km/hr! (3 points):

Because all of the math above involved simple, “linear” equations, we can quickly
estimate the reflex velocity of the Sun if we replaced the Earth by something more
massive. For example, if we put an object with 10 Earth masses in an orbit with R
= 1 AU, the reflex velocity of the Sun would be 10 times that which you just
calculated for the Earth.
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5) Jupiter has a mass that is 318 times that of the Earth. If Jupiter orbited the Sun
at 1 AU, what would the reflex velocity of the Sun be? (2 points):

Since Jupiter is at 5.2 AU, and its orbital period is 11.9 yr, the reflex motion of
Jupiter is actually: VJupiter = 318 × VEarth × 5.2 ÷ 11.9 ≈ 45 km/hr.

Exercise #6: Understanding the Sizes of the Reflex Motions

For the final exercise of today’s lab, we want to demonstrate how big these reflex
motions are by comparing them to the velocities that you can generate. To do so,
we are going to be using radar guns just like those used by the police to catch
speeders. These devices are very expensive, so please be extremely careful with
them. The radar guns are a bit technical to set-up, so your TA will put them in the
correct mode for measuring velocities in km/hr.

Your lab group should head out of the classroom, and into the hallway (or outside)
to get a long enough path to execute this part of the lab. The idea is to have one of
the lab members move down the hallway, and act as the “speeding car”. Note that
if there are other people moving around in the hallway, the radar gun might get a
confusing signal and not read correctly. So, make sure only one person is moving
when doing this.

1) One lab member hold the radar gun, have another lab member walk towards the
radar gun. Hold down the trigger a few seconds and then let go. Do this several
times to get a good reading. What is the average velocity of the walking speed of
this lab member? (2 points):

2) Now, we are going to measure the running speed. BE CAREFUL!. Have
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everyone participate, and see who can run the fastest. What are the velocities for
the various lab members? (2 points):

3) Compare your walking and running velocities to the Sun’s reflex velocity caused
by the Earth that you calculated above. How massive a planet (in Earth masses)
would it take to get your walking reflex motion to be executed by the Sun? How
about your running reflex motion? (5 points).

5.5 Radial Velocity and the Doppler Effect

Earlier we called this final exoplanet discovery technique “the radial velocity” method.
What do we mean by this term? The radial velocity is a measurement of how fast
something is coming towards you, or going away from you. If an object is moving
across your line of sight (like the cars on the road as you wait to cross a street at the
pedestrian crossing), it has no radial velocity (formally, they would have a “tangential
velocity” only). If we were an alien watching the Sun, the Sun would sometimes have
a radial velocity coming towards us (normally defined to be a negative number), and
a radial velocity going away from us (normally defined as a positive number), due to
the reflex motions imparted on it by the planets in our solar system. This gives rise
to something called a “radial velocity curve.”
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So how do we detect the radial velocity of a star? We use something called the
Doppler effect. The Doppler effect is the change in frequency of a sound or light wave
due to motion of the source. Think of an ambulance. When the ambulance is coming
towards you, the siren has a high pitch. As it passes by you, the pitch drops (for audio
examples, go here: http://www.soundsnap.com/search/audio/doppler/score?page=1”).
This is shown in Figure 5.9. The radar guns you just used emit microwaves that are
Doppler shifted by moving objects. Stars are too far away to use radar. Fortunately,
the same process happens with all types of electromagnetic radiation. Astronomers
use visible light to search for Exoplanets. In a source coming towards us the light
waves get compressed to higher frequency. When it is receding the light waves are
stretched to lower frequency. Compressing the frequency of light adds energy, so it
“blueshifts” the light. Lowering the frequency removes energy, so it “redshifts” the
light. For an object orbiting the center of mass, sometimes the light is blueshifted (at
point #4 in Figure 5.10), sometimes it is redshifted (at point #2 in Figure 5.10).

Figure 5.9: For a stationary vehicle emitting sound, there is no Doppler effect. As
the vehicle begins to move, however, the sound is compressed in the direction it is
moving, and stretched-out in the opposite direction.

This is how astronomers discover exoplanets, they monitor the spectrum of a star
and look for a changing radial velocity like that shown in Figure 5.10. What they
see is that the absorption lines in the spectrum of the exoplanet host star shift back
and forth, red to blue to red to blue. Measuring the shift gives them the velocity.
Measuring the time it takes to go from maximum blueshift to maximum redshift and
back to maximum blueshift, is the exoplanet’s orbital period. Remember, the ex-
oplanet is too faint to detect directly, it is only the reflex velocity of the host star
that can be observed. And, now you should understand how we measure the mass
of the exoplanet. The amount of reflex velocity is directly related to the mass of the
exoplanet and the size of its orbit. We can use the orbital period and Kepler’s laws
to figure out the size of the exoplanet’s orbit. We then measure the radial velocity
curve, and if we can estimate the host star’s mass, we can directly measure the mass
of the exoplanet using the techniques you have learned today.
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Figure 5.10: A radial velocity curve (left) for a planet with a one year orbit like Earth,
but that imparts a reflex velocity of 1.5 km/hr on its host star. When the motion is
directly away from us, #2, we have the maximum amount of positive radial velocity.
When the motion of the object is directly towards us, #4, we have the maximum
negative radial velocity. At points #1 and #3, the object is not coming towards us,
or going away from us, thus its radial velocity is 0 km/hr. The orbit of the object
around the center of mass (“X”) is shown in the right hand panel, where the observer
is at the bottom of the diagram. The numbered points represent the same places in
the orbit in both panels.

Here is how it is done. To determine the mass of an exoplanet, we first must fig-
ure out the semi-major axis of its orbit (for the Earth, the semi-major axis = R = 1
AU). We return to Kepler’s laws:

R3 =
GMstar

4π2
P 2 (Equation #5)

In this equation, “G” is the gravitational constant. P is the orbital period. In
physics equations like these, the system of units used must be the same for each
parameter. Such as centimeter-gram-second, or meter-kilogram-second. We call these
the “‘cgs” and “mks” systems, respectively. You cannot mix and match. Thus, there
have to be two flavors of G for this equation: Gcgs = 6.67 × 10−8, and Gmks = 6.67
× 10−11. The equation above is just Kepler’s third law P2 ∝ a3 you learned about at
the beginning of the semester. What Isaac Newton did was figure out what is needed
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to change the “∝” into the “=” sign. If we know “R” and the exoplanet host star
mass (Mstar) we can figure out the exoplanet’s mass. So using equation #5 above, we
find R. Since we know the orbital period (P), we can estimate the exoplanet’s orbital
velocity:

Vpl =
2πR

P
(Equation #6)

The mass of the planet is simply:

Mpl =
MstarVstar

Vpl

In this equation Vstar is the host star reflex velocity like those we calculated above
for the Earth-Sun, and Jupiter-Sun systems. The biggest unknown when making
such mass measurements is estimating the host star mass. There are ways to do this,
but they are beyond the scope of today’s lab. We will use these equations in the
take-home part of this lab, so make sure you understand what is going on here before
leaving today.
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Name:
Date:

5.5.1 Take-Home Exercise (35 points total)

1) Discuss what you have learned about Exoplanets today. How hard are they to
detect, and what are the main techniques astronomers use to find them? (10
points)

2) You have obtained a radial velocity curve for a transiting exoplanet that orbits
the star 18 Scorpii, which is referred to as a “solar twin” (that is, identical in every
way to the Sun). The planet has an orbital period of 400 days. The maximum reflex
velocity of the star 18 Scorpii is 1 m/s. What is the mass of this exoplanet? You are
going to need to use equations #5 and #6, and the mass (listed in Exercise #4) and
radius (from Exercise #1) of the Sun. Remember that you must use a consistent set
of units. In equation #5 “G” is listed in “mks”. Thus, the period of the exoplanet
must be converted from days to seconds, and the mass and radius of the Sun must
be in kilograms and meters, respectively, to correctly use equations #5 and #6.
Compare the mass of this exoplanet to the mass of the Earth (6.0 × 1024 kg). Show
your work. (10 points)
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3) As we noted, the exoplanet around 18 Scorpii is also a transiting system, and
∆F/F = 4.8 × 10−4. Calculate the radius of this planet (like those in Exercise #3).
Compare it to the radius of the Earth. What is the density of this planet in kg/m3?
[Hint: density = mass/volume. What is the volume of a sphere?] Compare this to
the density of the Earth (5,511 kg/m3), and Jupiter (1,326 kg/m3). Is “18 Scorpii
B” more like a Terrestrial planet, or a Jovian planet? Show your work. (15 points)

5.5.2 Possible Quiz Questions

1) What is an Exoplanet?
2) Name one of the techniques used to find Exoplanets
3) Why are Exoplanets so hard to discover?

5.5.3 Extra Credit (make sure you get permission from your TA before
attempting, 5 points)

Using the web, search for an article on an “Earth-like exoplanet” and write a one
page discussion of this object, and what makes it “Earth-like”. Note that there are
quite a few such objects, just pick the one you find most interesting (and one that
has sufficient discussion to allow you to write a short paper).
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Name:

Date:

6 The Hertzsprung-Russell Diagram

6.1 Introduction

As you may have learned in class, the Hertzsprung-Russell Diagram, or the “HR dia-
gram”, is one of the most important tools used by astronomers: it helps us determine
both the ages of star clusters and their distances. In your Astronomy 110 textbooks
the type of HR diagram that you will normally encounter plots the Luminosity of a
star (in solar luminosity units, LSun) versus its temperature (or spectral type). An
example is shown here:

The positions of the various main types of stars are labeled in this HR diagram.
The Sun has a temperature of 5,800 K, and a luminosity of 1 LSun. The Sun is a main
sequence “G” star. All stars cooler than the Sun are plotted to the right of the Sun in
this diagram. Cool main sequence stars (with spectral types of K and M) are plotted
to the lower right of the Sun. Hotter main sequence stars (O, B, A, and F stars) are
plotted to the upper left of the Sun’s position. As the Sun runs out of hydrogen fuel
in its center, it will become a red giant star–a star that is cooler than the Sun, but
100× more luminous. Red giants are plotted to the upper right of the Sun’s position.
As the Sun runs out of all of its fuel, it sheds its atmosphere and ends its days as a
white dwarf. White dwarfs are hotter, and much less luminous than the Sun, so they
are plotted to the lower left of the Sun’s position in the HR diagram.

The HR diagrams for clusters can be very different depending on their ages. In
the following examples, we show the HR diagram of a hypothetical cluster of stars
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at a variety of different ages. When the star cluster is very young, (see Fig. 6.1)
only the hottest stars have made it to the main sequence. In the HR diagram below,
the G, K, and M stars (stars that have temperatures below 6,000 K) are still not on
the main sequence, while those stars hotter than 7,000 K (O, B, A, and F stars) are
already fusing hydrogen into helium at their cores:

Figure 6.1: The HR diagram of a cluster of stars that is 1 million years old.

In the next HR diagram, Figure 6.2, we see a much older cluster of stars (100
million years = 100 Myr). In this older cluster, some of the hottest and most massive
stars (the O and B stars) have evolved into red supergiants. The position of the
“main sequence turn off” allows us to estimate the age of a cluster.

Figure 6.2: The HR diagram of a cluster of stars that is 100 million years old.

In the final HR diagram, Figure 6.3, we have a much older cluster (10 billion years
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old = 10 Gyr), now stars with one solar mass are becoming red giants, and we say
the main sequence turn-off is at spectral type G (T = 5,500 K).

Figure 6.3: The HR diagram of a cluster of stars that is 10 billion years old.

Some white dwarfs (produced by evolved A and F stars) now exist in the cluster.
Thus, the HR diagram for a cluster of stars is useful for determining its age.

6.2 Magnitudes and Color Index

While the HR diagrams presented in your class lectures or textbook allow us to pro-
vide a very nice description of the evolution of stars and star clusters, astronomers
do not actually directly measure either the temperatures or luminosities of stars. Re-
member that luminosity is a measure the total amount of energy that a star emits.
For the Sun it is 1026 Watts. But how much energy appears to be coming from an
object depends on how far away that object is. Thus, to determine a star’s lumi-
nosity requires you to know its distance. For example, the two brightest stars in the
constellation Orion (see the “Constellation Highlight” for February from the Ast110
homepage link), the red supergiant Betelgeuse and the blue supergiant Rigel, ap-
pear to have about the same brightness. But Rigel is six more times luminous than
Betelgeuse–Rigel just happens to be further away, so it appears to have the same
brightness even though it is pumping out much more energy than Betelgeuse. The
“Dog star” Sirius, located to the southeast of Orion, is the brightest star in the sky
and appears to be about 5 times brighter than either Betelgeuse or Rigel. But in
fact, Sirius is a nearby star, and actually only emits 22× the luminosity of the Sun,
or about 1/2000th the luminosity of Rigel!

Therefore, without a distance, it is impossible to determine a star’s luminosity–
and remember that it is very difficult to measure the distance to a star. We can,
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however, measure the relative luminosity of two (or more) stars if they are at the
same distance: for example if they are both in a cluster of stars. If two stars are at
the same distance, then the difference in their apparent brightness is a measurement
of the true differences in their luminosities. To measure the apparent brightness of a
star, astronomers use the ancient unit of “magnitude”. This system was first devel-
oped by the Greek astronomer Hipparcos (ca. 190 to 120 BC). Hipparcos called the
brightest stars “stars of the first magnitude”. The next brightest were called “stars of
the second magnitude”. His system progressed all the way down to “stars of the sixth
magnitude”, the faintest stars you can see with the naked eye from a dark location.

Astronomers adopted this system and made it more rigorous by defining a five
magnitude difference to be exactly equal to a factor of 100 in brightness. That is, a
first magnitude star is 100X brighter than a sixth magnitude star. If you are good
with mathematics, you will find that a difference of one magnitude turns out to be
a factor of 2.5 (2.5 × 2.5 × 2.5 × 2.5 × 2.5 = 100, we say that the fifth root of
100 = 1001/5 = 2.5). Besides this peculiar step size, it is also important to note that
the magnitude system is upside down: usually when we talk about something being
bigger, faster, or heavier, the quantity being measured increases with size (a car going
100 mph is going faster than one going 50 mph, etc.). In the magnitude system, the
brighter the object, the smaller its magnitude! For example, Rigel has an apparent
magnitude of 0.2, while the star Sirius (which appears to be 4.5 times brighter than
Rigel) has a magnitude of −1.43.

Even though they are a bit screwy, and cause much confusion among Astronomy
110 students, astronomers use magnitudes because of their long history and tradition.
So, when astronomers measure the brightness of a star, they measure its apparent
magnitude. How bright that star appears to be on the magnitude scale. Usually,
astronomers will measure the brightness of a star in a variety of different color filters
to allow them to determine its temperature. This technique, called “multi-wavelength
photometry”, is simply the measurement of how much light is detected on Earth at
a specific set of wavelengths from a star of interest. Most astronomers use a system
of five filters, one each for the ultraviolet region (the “U filter”), the blue region (the
“B filter”), the visual (“V”, or green) region, the yellow-red region (“R”), and the
near-infrared region (“I”). Generally, when doing real research, astronomers measure
the apparent magnitude of a star in more than one filter. [Note: because the name
of the filter can some times get confused with spectral types, filter names will be
italicized to eliminate any possible confusion.]

To determine the temperature of a star, measurements of the apparent brightness
in at least two filters is necessary. The difference between these two measurements is
called the “color index”. For example, the apparent magnitude in the B filter minus
the apparent magnitude in the V filter, (B−V ), is one example of a color index (it is
also the main color index used by astronomers to measure the temperature of stars,
but any two of the standard filters can be used to construct a color index). Let us
take Polaris (the “North Star”) as an example. Its apparent B magnitude is 2.59, and
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Table 6.1: The (B − V ) Color Index for Main Sequence Stars
Spectra Type (B − V ) Spectral Type (B − V )
O and B Stars −0.40 to −0.06 G Stars 0.59 to 0.76

A Stars 0.00 to 0.20 K Stars 0.82 to 1.32
F Stars 0.31 to 0.54 M Stars 1.41 to 2.00

its apparent V magnitude is 2.00, so the color index for Polaris is (B − V ) = 2.59 −
2.00 = 0.59. In Table 6.1, we list the (B − V ) color index for main sequence stars.
We see that Polaris has the color of a G star.

In Table 6.1, we see that O and B stars have negative (B − V ) color indices. We
say that O and B stars are “Blue”, because they emit more light in the B filter than
in the V filter. We say that K and M stars are very red, as they emit much more V
light than B light (and even more light in the R and I filters!). A-stars emit the same
amount of light at B and V, while F and G stars emit slightly more light at V than
at B . With this type of information, we can now figure out the spectral types, and
hence temperatures of stars by using photometry.

6.3 The Color-Magnitude HR Diagram

To construct HR diagrams of star clusters, astronomers measure the apparent bright-
ness of stars in two different color filters, and then plot the data into a “Color-
Magnitude” diagram, plotting the apparent V magnitude versus the color index
(B − V ) as shown below. Figure 6.4 shows a color-magnitude diagram for a globular
cluster. You might remember from class (or will soon be told!) that globular clusters
are old, and that the low mass stars are evolving off the main sequence and becoming
red giants. The main sequence turnoff for this globular cluster is at a color index of
about (B − V ) = 0.4, the color of F stars. An F star has a mass of about 1.5 MSun,
thus stars with masses near 1.5 MSun are evolving off the main sequence to become
red giants, so this globular cluster is about 7 billion years old.

6.4 The Color-Magnitude Diagram for the Pleiades

In today’s lab, you and your lab partners will construct a color magnitude diagram
for the Pleiades star cluster. The Pleiades, sometimes known as the “Seven Sisters”
(see the constellation highlight for January at the back of this lab manual), is a star
cluster located in the wintertime constellation of Taurus, and can be seen with the
naked eye. A wide-angle photograph of the Pleiades is shown below (Fig. 6.4). Many
people confuse the Pleiades with the Little Dipper because the brightest stars form
a small dipper-like shape.
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Figure 6.4: The HR diagram for the globular cluster M15.

Figure 6.5: A photograph of the Pleiades.

As you will find out, the Pleiades is a relatively young group of stars. We will be
using photographs of the Pleiades taken using two different color filters to construct
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a Color-Magnitude diagram. If you look closely at the photograph of the Pleiades,
you will notice that the brighter stars are larger in size than the fainter stars. Note:
you are not seeing the actual disks of the stars in these photographs. Brighter stars
appear bigger on photographs because more light from them is detected by the pho-
tograph. As the light from the stars accumulates, it spreads out. Think of a pile of
sand. As you add sand to a pile, it develops a conical, pyramid shape. The addition
of more sand to the pile raises the height of the sand pile, but the base of the sand pile
has to spread more to support this height. The same thing happens on a photograph.
The more light there is, the larger the spread in the image of the star. In reality,
all of the stars in the sky are much to far away to be seen as little disks (like those
we see for the planets in our solar system) when viewed/imaged through any existing
telescope. We would need to have a space-based telescope with a mirror 1.5 miles
across to actually be able to see the stars in the Pleiades as little, resolved disks!
[However, there are some special techniques astronomers have developed to actually
measure the diameters of stars. Ask your TA about them if you are curious.]

Thus, we can use the sizes of the stars on a photograph to figure out how bright
they are, we simply have to measure their diameters! A special tool, called a “dyname-
ter”, is used to measure sizes of circles. You will be given a clear plastic dynameter
in class. A replica of this dynameter is shown here:

As demonstrated, a dynameter allows you to measure the diameter of a star image
by simply sliding the dynameter along until the edges of the star just touch the lines.
In the example above, the star image is 2.8 mm in diameter. On the following two
pages are digitized scans of two photographs of the Pleiades taken through B and
V filters. These photographs were digitized to allow us to put in an X-Y scale so
that you can keep track of which star is which in the two different photographs. You
should be able to compare the digitized photographs with the actual photo shown
above and see that most of the brighter stars are on all three images.
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Figure 6.6: This is not the right figure for use in this lab–your TA will give you the
correctly scaled version. (Go to: http://astronomy.nmsu.edu/astro/hrlabB.ps)
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Figure 6.7: This is not the right figure for use in this lab–your TA will give you the
correctly scaled version. (Go to: http://astronomy.nmsu.edu/astro/hrlabB.ps)
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6.4.1 Procedure

The first task for this lab is to collect your data. What you need to do for this lab
is to measure the diameters of ten of the 63 stars on both digitized photographs. At
the end of this lab there is a data table that has the final data for 53 of the 63 stars.
It is missing the information for ten of the stars (#’s 7, 8, 13, 18, 30, 39, 53, 55, 61,
and 63). You must collect the data for these ten stars.

Task #1: First, identify the stars with the missing data on both of the digitized
photographs (use their X,Y positions to do this). Then measure their diameters of
these ten stars on both photographs using the dynameter. Write the V and B diam-
eters into the appropriate spaces within the data table. [Note: You will probably not
be able to measure the diameters to the same precision as shown for the other stars
in the data table. Those diameters were measured using a computer. Do the best you
can—make several measurements of each star and average the results.] (15 points)

6.4.2 Converting Diameters to Magnitudes

Obviously, the diameter you measure of a star on a photograph has no obvious link
to its actual magnitude. For example, we could blow the photograph up, or shrink
it down. The diameters of the stars would change, but the relative change in size
between stars of different brightnesses would stay the same. To turn diameters into
magnitudes requires us to “calibrate” the two photographs. For example, the bright-
est star in the Pleiades, “Alcyone” (star #35), has a V magnitude of 2.92, and has a
V diameter of 4.4 mm. We have used this star to calibrate our data. Once you have
completed measuring the diameters of the stars, you must convert those diameters
(in millimeters) into V magnitudes and (B − V ) color index. To do so, requires you
to use the following two equations:

V(mag) = −2.95×(V mm) + 15.9 (Eq. # 1)

and

(B − V ) = −1.0×(B mm − V mm) + 0.1 (Eq. #2)

These equations might seem confusing to you because of the negative number in
front of the diameters. But if you remember, the brighter the star, the smaller its
magnitude. Brighter stars appear bigger, so bigger diameters mean smaller magni-
tudes! That is why there is a negative sign. Using the example of Alcyone, its V
diameter is 4.4 mm and it has a B diameter of 4.7 mm. Putting the V diameter into
equation #1 gives: V (mag) = −2.95×(4.4 mm) + 15.9 = −13.0 + 15.9 = 2.9. So, the
V magnitude of Alcyone is correct: V = 2.9, and we have calibrated the photograph.
Its color index can be found using Eq. #2: (B − V ) = − 1.0×(4.7 − 4.4) + 0.1 =
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−1.0×(0.4) + 0.1 = −0.20. Alcyone is a B star!

Task #2: Convert all of the B and V diameters into V magnitudes and (B − V )
color index, entering them into the proper column in your data table. Use any of the
other stars in the table to see how it is done. Make sure all students in your group
have complete tables with all of the data entered. (15 points)

6.4.3 Constructing a Color-Magnitude Diagram

The collection of the data is now complete. In this lab you are getting exactly the
same kind of experience in “reducing data” that real astronomers do. Aren’t you glad
you didn’t have to measure the diameters of all 63 stars? Obtaining and reducing
data can be very tedious, tiring, or even boring. But it is an essential part of the sci-
entific process. Because of the possibility of mis-measurement of the star diameters,
a real astronomer doing this lab would probably measure all of the star diameters at
least three times to insure that they had not made any errors. Today, we will assume
you did everything exactly right, but we will provide a check shortly.

Now we want to finally get to the goal of the lab: constructing a Color-Magnitude
diagram. In this portion of the lab, we will be plotting the V magnitudes vs. the
(B − V ) color index. On the following page is a blank grid that has V magnitude on
the Y axis, and the (B − V ) color index on the X axis. Now we want to plot your
data onto this blank Color-Magnitude diagram to closely examine what kind of stars
are in the Pleiades.

Task #3: For each star in your table, plot its position where the (B − V ) color
index is the X coordinate, and the V magnitude is the Y coordinate. Note that some
stars will have very similar magnitudes and colors because they are the same types
of star. When this happens, simply plot them as close together as possible, making
sure they are slightly separated for clarity. All students must complete their own
Color-Magnitude diagram. (15 points)

Error checking: All of your stars should fit within the boundaries of the Color-
Magnitude diagram! If not, go back and re-measure the problem star(s) to see if you
have made an error in the B or V diameter or in the calculations.

6.5 Results

If you have done everything correctly, you should now have a Color-Magnitude dia-
gram in which your plotted stars trace out the main sequence for the Pleiades. Use
your Color-Magnitude diagram to answer the following questions:
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Figure 6.8: The Color-Magnitude Diagram for the Pleiades

1. Are there more B stars in the Pleiades, or more K stars? (5 points)

2. Given that the Sun is a main sequence G star, draw an “X” to mark the spot
where the Sun would be in your Color-Magnitude diagram for the Pleiades (5
points)
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3. The faintest stars that the human eye can see on a clear, dark night is V = 6.0. If
the Sun was located in the Pleiades, could you see it with the naked eye? (5 points)

4. Are there any red giants or supergiants in the Pleiades? What does this tell you
about the age of the Pleiades? (5 points)
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6.6 Summary (35 points)

Please summarize the important concepts of this lab.

• Describe how an HR diagram is constructed.

• If you have plotted your HR Diagram for the Pleiades correctly, you will notice
that the faint, red stars seem to have a spread when compared to the brighter,
bluer stars. Why do you think this occurs? How might you change your ob-
serving or measuring procedure to fix this problem? [Hint: is it harder or easier
to measure big diameters vs. small diameters?]

• Why are HR diagrams important to astronomers?

Use complete sentences, and proofread your lab before handing it in.

6.7 Possible Quiz Questions

1. What is a magnitude? Which star is brighter, a star with V = -2.0, or one with
V = 7.0?

2. In an HR Diagram, what are the two quantities that are plotted?

3. What are the properties of a white dwarf?

4. What are the properties of a red giant?

5. What is a Color Index, and what does it tell you about a star?

6.8 Extra Credit (ask your TA for permission before at-
tempting, 5 points)

White dwarfs are 100× less luminous than the Sun, but are hot, and have a
negative color index (B − V ) = −0.2. Given that a factor of 100 = 5 magnitudes, is
it possible to plot the positions of white dwarfs on your Color-Magnitude diagram
for the Pleiades?
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Table 6.2: Data Table
# X Y V(mm) B(mm) V(mag) (B − V )
01 157.00 832.00 3.10 2.89 6.76 0.31
02 157.61 832.20 2.49 2.00 8.50 0.59
03 178.33 821.70 2.37 1.70 8.91 0.77
04 183.40 830.51 2.32 1.60 9.06 0.82
05 190.53 818.94 2.24 1.52 9.29 0.82
06 190.62 834.99 2.23 1.52 9.32 0.81
07 192.98 865.44
08 197.37 754.50
09 202.78 696.35 2.23 1.46 9.32 0.87
10 203.87 810.57 2.36 1.72 8.94 0.74
11 210.57 789.29 2.32 1.62 9.06 0.80
12 212.22 693.49 2.48 1.97 8.58 0.61
13 233.44 830.40
14 234.34 759.27 2.35 1.57 8.97 0.88
15 235.50 751.74 2.40 1.85 8.82 0.65
16 246.00 807.00 3.26 3.07 6.28 0.29
17 252.95 795.24 2.75 2.35 7.78 0.50
18 254.95 688.02
19 259.60 730.54 2.39 1.74 8.85 0.75
20 260.00 795.00 2.35 1.77 8.97 0.68
21 265.00 792.00 2.24 1.48 9.29 0.86
22 265.00 831.00 2.95 2.65 7.20 0.40
23 266.66 831.82 2.20 1.36 9.41 0.94
24 269.27 731.47 2.18 1.33 9.47 0.95
25 270.00 789.00 2.31 1.62 9.09 0.79
26 274.00 790.00 2.32 1.70 9.06 0.72
27 276.28 836.35 2.50 1.98 8.53 0.62
28 277.19 811.96 2.22 1.55 9.35 0.77
29 283.00 792.00 2.35 1.75 8.97 0.70
30 285.00 774.00
31 288.00 786.00 2.20 1.42 9.41 0.88
32 289.50 852.50 2.18 1.54 9.47 0.74
33 291.00 822.00 4.24 4.46 3.39 −0.12
34 297.00 822.00 3.46 3.38 5.69 0.18
35 298.00 793.00 4.40 4.70 2.92 −0.20
36 299.00 749.00 4.09 4.23 3.83 −0.04
37 304.00 773.00 2.39 1.79 8.85 0.70
38 308.00 777.00 2.31 1.67 9.09 0.74
39 310.00 794.04
40 312.00 748.00 3.35 3.20 6.02 0.25
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Table 6.3: Data Table (cont.)
# X Y V(mm) B(mm) V(mag) (B − V )
41 316.46 832.35 2.52 2.01 8.47 0.61
42 317.00 766.00 3.93 4.00 4.31 0.03
43 319.14 731.31 2.38 1.81 8.88 0.67
44 320.29 742.55 2.17 1.46 9.50 0.81
45 322.43 819.50 2.17 1.52 9.50 0.75
46 325.00 756.00 3.62 3.57 5.22 0.15
47 327.00 787.00 2.20 1.47 9.41 0.83
48 327.80 841.25 2.34 1.68 8.99 0.76
49 329.00 771.00 2.87 2.52 7.43 0.45
50 332.00 794.00 2.62 2.14 8.17 0.58
51 335.13 732.56 2.28 1.54 9.17 0.84
52 347.41 654.23 2.15 1.43 9.55 0.82
53 352.00 756.00
54 359.05 685.95 2.35 1.70 8.97 0.75
55 361.00 807.00
56 368.31 692.12 2.35 1.69 8.96 0.76
57 375.90 729.41 2.20 1.50 9.41 0.80
58 375.90 729.41 2.36 1.73 8.94 0.73
59 386.00 813.00 2.37 1.72 8.91 0.75
60 387.50 683.69 2.20 1.54 9.41 0.76
61 397.48 769.11
62 410.49 839.98 2.34 1.62 8.99 0.82
63 420.52 720.04
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Name:

Date:

7 Our Sun

7.1 Introduction

The Sun is a very important object for all life on Earth. The nuclear reactions which
occur in its core produce the energy which plants and animals need to survive. We
schedule our lives around the rising and setting of the Sun in the sky. During the
summer, the Sun is higher in the sky and thus warms us more than during the win-
ter, when the Sun stays low in the sky. But the Sun’s effect on Earth is even more
complicated than these simple examples.

The Sun is the nearest star to us, which is both an advantage and a disadvan-
tage for astronomers who study stars. Since the Sun is very close, and very bright,
we know much more about the Sun than we know about other distant stars. This
complicates the picture quite a bit since we need to better understand the physics
going in the Sun in order to comprehend all our detailed observations. This differ-
ence makes the job of solar astronomers in some ways more difficult than the job of
stellar astronomers, and in some ways easier! It’s a case of having lots of incredibly
detailed data. But all of the phenomena associated with the Sun are occurring on
other stars, so understanding the Sun’s behavior provides insights to how other stars
might behave.

Figure 7.1: A diagram of the various layers/components of the Sun, as well as the
appearance and location of other prominent solar features.
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• Goals: to discuss the layers of the Sun and solar phenomena; to use these
concepts in conjunction with pictures to deduce characteristics of solar flares,
prominences, sunspots, and solar rotation

• Materials: You will be given a Sun image notebook, a bar magnet with iron
filings and a plastic tray. You will need paper to write on, a ruler, and a
calculator

7.2 Layers of the Sun

One of the things we know best about the Sun is its overall structure. Figure 7.1 is a
schematic of the layers of the Sun’s interior and atmosphere. The interior of the Sun
is made up of three distinct regions: the core, the radiative zone, and the convective
zone. The core of the Sun is very hot and dense. This is the only place in the Sun
where the temperature and pressure are high enough to support nuclear reactions.
The radiative zone is the region of the sun where the energy is transported through
the process of radiation. Basically, the photons generated by the core are absorbed
and emitted by the atoms found in the radiative zone like cars in stop and go traffic.
This is a very slow process. The convective zone is the region of the Sun where energy
is transported by rising “bubbles” of material. This is the same phenomenon that
takes place when you boil a pot of water. The hot bubbles rise to the top, cool, and
fall back down. This gives the the surface of the Sun a granular look. Granules are
bright regions surrounded by darker narrow regions. These granules cover the entire
surface of the Sun.

The atmosphere of the Sun is also comprised of three layers: the photosphere, the
chromosphere, and the corona. The photosphere is a thin layer that forms the visible
surface of the Sun. This layer acts as a kind of insulation, and helps the Sun retain
some of its heat and slow its consumption of fuel in the core. The chromosphere is
the Sun’s lower atmosphere. This layer can only be seen during a solar eclipse since
the photosphere is so bright. The corona is the outer atmosphere of the Sun. It is
very hot, but has a very low density, so this layer can only be seen during a solar
eclipse (or using specialized telescopes). More information on the layers of the Sun
can be found in your textbook.

7.3 Sunspots

Sunspots appear as dark spots on the photosphere (surface) of the Sun (see Figure
7.2). They last from a few days to over a month. Their average size is about the size
of the Earth, although some can grow to many times the size of the Earth! Sunspots
are commonly found in pairs. How do these spots form?

The formation of sunspots is attributed to the Sun’s differential rotation. The
Sun is a ball of gas, and therefore does not rotate like the Earth, or any other solid
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Figure 7.2: A large group of Sunspots. The “umbra” is the darker core of a sunspot,
while the “penumbra” is its lighter, frilly edges.

object. The Sun’s equator rotates faster than its poles. It takes roughly 25 days for
material to travel once around the equator, but about 35 days for it to travel once
around near the north or south poles. This differential rotation acts to twist up the
magnetic field lines inside the Sun. At times, the lines can get so twisted that they
pop out of the photosphere. Figure 7.3 illustrates this concept. When a magnetic
field loop pops out, the places where it leaves and re-enters the photosphere are cooler
than the rest of the Sun’s surface. These cool places appear darker, and therefore are
called “sunspots”.

Figure 7.3: Sunspots are a result of the Sun’s differential rotation.

The number of sunspots rises and falls over an 11 year period. This is the amount
of time it takes for the magnetic lines to tangle up and then become untangled again.
This is called the Solar Cycle. Look in your textbook for more information on
sunspots and the solar cycle.
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7.4 Solar Phenomenon

The Sun is a very exciting place. All sorts of activity and eruptions take place in it
and around it. We will now briefly discuss a few of these interesting phenomena. You
will be analyzing pictures of prominences during this lab.

Prominences are huge loops of glowing gas protruding from the chromosphere.
Charged particles spiral around the magnetic field lines that loop out over the surface
of the Sun, and therefore we see bright loops above the Sun’s surface. Very energetic
prominences can break free from the magnetic field lines and shoot out into space.

Flares are brief but bright eruptions of hot gas in the Sun’s atmosphere. These
eruptions occur near sunspot groups and are associated with the Sun’s intertwined
magnetic field lines. A large flare can release as much energy as 10 billion megatons
of TNT! The charged particles that flares emit can disrupt communication systems
here on Earth.

Another result of charged particles bombarding the Earth is the Northern Lights.
When the particles reach the Earth, they latch on to the Earth’s magnetic field lines.
These lines enter the Earth’s atmosphere near the poles. The charged particles from
the Sun then excite the molecules in Earth’s atmosphere and cause them to glow.
Your textbook will have more fascinating information about these solar phenomena.

7.5 Lab Exercises

There are three main exercises in this lab. The first part consists of a series of “sta-
tions” in a three ring binder where you examine some pictures of the Sun and answer
some questions about the images that you see. Use the information that you have
learned from lectures and your book to give explanations for the different phenomena
that you see at each station. In the second exercise you will learn about magnetic
fields using a bar magnet and some iron filings. Finally, for those labs that occur dur-
ing daylight hours (i.e., starting before 5 pm!), you will actually look at the Sun using
a special telescope to see some of the phenomena that were detailed in the images in
the first exercise of this lab (for those students in nighttime labs, arrangements might
be made so as to observe the Sun during one of your lecture sessions). During this
lab you will use your own insight and knowledge of basic physics and astronomy to
obtain important information about the phenomena that we see on the Sun, just as
solar astronomers do. As with all of the other exercises in this lab manual, if there
is not sufficient room to write in your answers into this lab, do not hesitate to use
additional sheets of paper. Do not try to squeeze your answers into the tiny blank
spaces in this lab description if you need more space then provided! Don’t forget to
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SHOW ALL OF YOUR WORK.

One note of caution about the images that you see: the colors of the pictures
(especially those taken by SOHO) are not true colors, but are simply colors used by
the observatories’ image processing teams to best enhance the features shown in the
image.

7.5.1 Exercise #1: Getting familiar with the Size and Appearance of the
Sun

Station 1: In this first station we simply present some images of the Sun to famil-
iarize yourself with what you will be seeing during the remainder of this lab. Note
that this station has no questions that you have to answer, but you still should take
time to familiarize yourself with the various features visible on/near the Sun, and get
comfortable with the specialized, filtered image shown here.

• The first image in this station is a simple “white light” picture of the Sun
as it would appear to you if you were to look at it in a telescope that was
designed for viewing the Sun. Note the dark spots on the surface of the Sun.
These are “sunspots”, and are dark because they are cooler than the rest of the
photosphere.

• When we take a very close-up view of the Sun’s photosphere we see that it is
broken up into much smaller “cells”. This is the “solar granulation”, and is
shown in picture #2. Note the size of these granules. These convection cells
are about the size of New Mexico!

• To explore what is happening on the Sun more fully requires special tools. If you
have had the spectroscopy lab, you will have seen the spectral lines of elements.
By choosing the right element, we can actually probe different regions in the
Sun’s atmosphere. In our first example, we look at the Sun in the light of the
hydrogen atom (“H-alpha”). This is the red line in the spectrum of hydrogen.
If you have a daytime lab, and the weather is good, you will get to see the Sun
just like it appears in picture #3. The dark regions in this image is where cool
gas is present (the dark spot at the center is a sunspot). The dark linear, and
curved features are “prominences”, and are due to gas caught in the magnetic
field lines of the underlying sunspots. They are above the surface of the Sun,
so they are a little bit cooler than the photosphere, and therefore darker.

• Picture #4 shows a “loop’ prominence located at the edge (or “limb”) of the
Sun (the disk of the Sun has been blocked out using a special telescope called a
“coronograph” to allow us to see activity near its limb). If the Sun cooperates,
you may be able to see several of these prominences with the solar telescope.
You will be returning to this image in Exercise #2.
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Station 2: Here are two images of the Sun taken by the SOHO satellite several
days apart (the exact times are at the top of the image). (8 points)

• Look at the sunspot group just below center of the Sun in image 1, and then
note that it has rotated to the western (right-hand) limb of the Sun in image
2. Since the sunspot group has moved from center to limb, you then know that
the Sun has rotated by one quarter of a turn (90◦).

• Determine the precise time difference between the images. Use this information
plus the fact that the Sun has turned by 90 degrees in that time to determine
the rotation rate of the Sun. If the Sun turns by 90 degrees in time t, it would
complete one revolution of 360 degrees in how much time?

• Does this match the rotation rate given in your textbook or in lecture? Show
your work.

In the second photograph of this station are two different images of the Sun: the one
on the left is a photo of the Sun taken in the near-infrared at Kitt Peak National
Observatory, and the one on the right is a “magnetogram” (a picture of the magnetic
field distribution on the surface of the Sun) taken at about the same time. (Note that
black and white areas represent regions with different polarities, like the north and
south poles of the bar magnet used in the second part of this lab.) (7 points)

• What do you notice about the location of sunspots in the photo and the location
of the strongest magnetic fields, shown by the brightest or darkest colors in the
magnetogram?
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• Based on this answer, what do you think causes sunspots to form? Why are
they dark?

Station 3: Here is a picture of the corona of the Sun, taken by the SOHO satellite in
the extreme ultraviolet. (An image of the Sun has been superimposed at the center
of the picture. The black ring surrounding it is a result of image processing and is
not real.) (10 points)

• Determine the diameter of the Sun, then measure the minimum extent of the
corona (diagonally from upper left to lower right).

• If the photospheric diameter of the Sun is 1.4 million kilometers (1.4 x 106 km),
how big is the corona? (HINT: use unit conversion!)

• How many times larger than the Earth is the corona? (Earth diameter=12,500
km)

Station 4: This image shows a time-series of exposures by the SOHO satellite show-
ing an eruptive prominence. (15 points)

• As in station 3, measure the diameter of the Sun and then measure the distance
of the top of the prominence from the edge of the Sun in the first (earliest)
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image. Then measure the distance of the top of the prominence from the edge
of the Sun in the last image.

• Convert these values into real distances based on the linear scale of the images.
Remember the diameter of the Sun is 1.4 x 106 kilometers.

• The velocity of an object is the distance it travels in a certain amount of time
(vel=dist/time). Find the velocity of the prominence by subtracting the two
distances and dividing the answer by the amount of time between the two
images.

• In the most severe of solar storms, those that cause flares, and “coronal mass
ejections” (and can disrupt communications on Earth), the material ejected in
the prominence (or flare) can reach velocities of 2,000 kilometers per second. If
the Earth is 150 x 106 kilometers from the Sun, how long (hours or days) would
it take for this ejected material to reach the Earth?

Station 5: This is a plot of where sunspots tend to occur on the Sun as a function of
latitude (top plot) and time (bottom plot). What do you notice about the distribution
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sunspots? How long does it take the pattern to repeat? What does this length of
time correspond to? (3 points)

7.5.2 Exercise #2: Exploring Magnetic Fields

The magnetic field of the Sun drives most of the solar activity. In this subsection we
compare the magnetic field of sunspots to that of a bar magnet. During this exercise
you will be using a plastic tray in which you will sprinkle iron filings (small bits of
iron) to trace the magnetic field of a bar magnet. This can be messy, so be careful as
we only have a finite supply of these iron filings, and the other lab subsections will
need to re-use the ones supplied to you.

• First, let’s explore the behavior of a compass in the presence of a magnetic field.
Grab the bar magnet and wave the “north pole” (the red end of the bar magnet
with the large “N”) of the magnet by the compass. Which end of the compass
needle (or arrow) seems to be attracted by the north pole of the magnet? (1
point)

• Ok, reverse the bar magnet so the south pole (white end) is the one closest to
the compass. Which end of the compass needle is attracted to the south pole
of the bar magnet? (1 point)

• The compass needle itself is a little magnet, and the pointy, arrow end of the
compass needle is the north pole of this little magnet. Knowing this, what does
this say about magnets? Which pole is attracted to which pole (and vice versa)?
(1 point)
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• As you know, a compass can be used to find your way if you are lost because
the needle always points towards the North Pole of the Earth. The Earth has
its own magnetic field generated deep in its molten iron core. This field acts
just like that of a bar magnet. But given your answer to the last question, and
the fact that the “north pole” of the compass needle points to the North Pole of
the Earth, what is the actual “polarity” of the Earth’s “magnetic North” pole?
(1 point)

We have just demonstrated the power of attraction of a magnetic field. What does
a magnetic field look like? In this subsection we use some iron filings, a plastic tray,
and the bar magnet to explore the appearance of a magnetic field, and compare that
to what we see on the Sun.

• Place the bar magnet on the table, and center the plastic tray on top of the bar
magnet. Gently sprinkle the iron filings on to the plastic tray so that a thin
coating covers the entire tray. Sketch the pattern traced-out by the magnetic
filings below, and describe this pattern. (2 points)
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• The iron filings trace the magnetic field lines of the bar magnet. The field lines
surround the magnet in all dimensions (though we can only easily show them
in two dimensions). Your TA will show you a device that has a bar magnet
inside a plastic case to demonstrate the three dimensional nature of the field.
Compare the pattern of the iron filings around the bar magnet to the picture
of the sunspot shown in Figure 7.4. They are similar! What does this imply
about sunspots? (3 points)

Figure 7.4: The darker region of this double sunspot is called the “umbra”, while the
less dark, filamentary region is called the “penumbra”. For this sunspot, one umbra
has a “North polarity”, while the other has a “South polarity”.

• Now, lets imagine what a fully three dimensional magnetic field looks like. The
pattern of the iron filings around the bar magnet would also exist into the space
above the bar magnet, but we cannot suspend the iron filings above the magnet.
Complete Figure 7.5 by drawing-in what you imagine the magnetic field lines
look like above the bar magnet. (3 points)
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Figure 7.5: Draw in the field lines above this bar magnet.

• Compare your drawing, above, to the image of the loop prominence seen in
station #1 of Exercise #1. What are their similarities—imagine if the magnetic
field lines emitted light, what would you expect to see? (2 points)

If a sunspot pair is like a little bar magnet on the surface of the Sun, the field extends
up into the atmosphere, and along the magnetic field charged particles can collect,
and we see light emitted by these moving particles (mostly ionized hydrogen). Note
that we do not always see the complete set of field lines in prominences because of
the lack of material high in the Sun’s atmosphere—but the bases of the prominences
are visible, and are located just above the sunspot.

*************If the weather is clear, and your TA is ready, you can proceed to
Exercise #3 to look at the Sun with a special solar telescope.************

7.5.3 Exercise #3: Looking at the Sun

The Sun is very bright, and looking at it with either the naked eye or any optical
device is dangerous—special precautions are necessary to enable you to actually look
at the Sun. To make the viewing safe, we must eliminate 99.999% of the light from
the Sun to reduce it to safe levels. In this exercise you will be using a very special
telescope designed for viewing the Sun. This telescope is equipped with a hydrogen
light filter. It only allows a tiny amount of light through, isolating a single emission
line from hydrogen (“H-alpha”). In your lecture session you will learn about the emis-
sion spectrum of hydrogen, and in the spectroscopy lab you get to see this red line of
hydrogen using a spectroscope. Several of the pictures in Exercise #1 were actually
obtained using a similar filter system. This filter system gives us a unique view of
the Sun that allows us to better see certain types of solar phenomena, especially the
“prominences” you encountered in Exercise #1.

• In the “Solar Observation Worksheet” below, draw what you see on and near
the Sun as seen through the special solar telescope. (8 points)
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Note: Kitt Peak Vacuum Telescope images are courtesy of KPNO/NOAO. SOHO Ex-

treme Ultraviolet Imaging Telescope images courtesy of the SOHO/EIT consortium. SOHO

Michelson Doppler Imager images courtesy of the SOHO/MDI consortium. SOHO is a

project of international cooperation between the European Space Agency (ESA) and NASA.
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7.6 Summary (35 points)

Please summarize the important concepts discussed in this lab.

• Discuss the different types of phenomena and structures you looked at in the
lab

• Explain how you can understand what causes a phenomenon to occur by looking
at the right kind of data

• List the six layers of the Sun (in order) and give their temperatures.

• What causes the Northern (and Southern) Lights, also known as “Aurorae”?

Use complete sentences and, proofread your summary before turning it in.

Possible Quiz Questions
1) What are sunspots, and what leads to their formation?
2) Name the three interior regions of the Sun.
3) What is differential rotation?
4) What is the “photosphere”?
5) What are solar flares?

7.7 Extra Credit (ask your TA for permission before at-
tempting, 5 points)

Look-up a plot of the number of sunspots versus time that spans the last four hundred
years. For about 50 years, centered around 1670, the Sun was unusually “quiet”, in
that sunspots were rarely seen. This event was called the “Maunder minimum” (after
the discoverer). At the same time as this lack of sunspots, the climate in the northern
hemisphere was much colder than normal. The direct link between sunspots and the
Earth’s climate has not been fully established, but there must be some connection
between these two events. Near 1800 another brief period of few sunspots, the “Dalton
minimum” was observed. Looking at recent sunspot numbers, some solar physicists
have suggested the Sun may be entering another period like the Dalton minimum.
Search for the information these scientists have used to make this prediction. Describe
the climate in the northern hemisphere during the last Dalton minimum. Are there
any good ideas on the link between sunspot number and climate that you can find?
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Name:

Date:

8 Mapping the Galaxy

8.1 Introduction

When we look up at the night sky we see many different kinds of objects. Objects
you can see with the naked eye are mostly stars and planets, although in the South-
ern Hemisphere, two nearby galaxies are visible. With a small telescope, one can
see “globular clusters”, “open clusters”, “gaseous nebulae” and “galaxies”. One very
prominent feature which can be seen without the use of a telescope (in a dark loca-
tion), is a swath of light that sweeps across the sky in a broad arc, the Milky Way.
We know the Milky Way is a vast collection of stars that orbit about the center of
our Galaxy in a flattened distribution resembling a plate or disk. This disk is often
called the Milky Way or the Milky Way disk. It is but one of the components that
make up our Galaxy.

In this lab, we will try to determine the shape of the Milky Way and our location
in it based on observations of the distribution of several different types of objects in
the sky.

• Goals: to determine the shape of our Galaxy and our place in it by observing
patterns in the distributions of star clusters and nebulae

• Materials: Galaxy map, colored pencils or markers, scissors, tape, skewer

8.2 Getting used to the ideas

We are trying to determine the shape of our galaxy and our location in it. Since the
Galaxy is so large, we cannot go outside of it and see what it looks like; instead, we
have to infer what it looks like from our vantage point within the Galaxy.

The situation is even more complicated because, when we look at astronomical
objects from the Earth, we cannot easily distinguish how far away the objects are.
We only see in what direction they appear, but two objects which appear in the same
direction are not necessarily at the same distance.

8.3 Map Projections

A hard aspect for some students to grasp is the idea of map projections. If you have
completed the “Terrestrial Planets” lab, we discussed the idea of how a spherical
object (such as the Earth) can be represented on a flat sheet of paper. In Figure 8.1
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is a standard map of the Earth called a “Mercator Projection”. Near the equatorial
regions, this type of projection is not too bad, but as you move to the poles, the
projection is terrible! Antarctica appears to have more land then all of the other
continents combined, but in reality is much smaller than North America. This is
because you cannot perfectly plot a sphere on a rectangular grid.

Figure 8.1: A “Mercator” projection of the Earth.

Map makers have come up with a variety of ways to make better maps that more
correctly represent the actual sizes of objects on a sphere. For example, the “Moll-
weide” projection seen in Figure 8.2 uses a complex formula to do a better job at
rendering the sizes and shapes of the Earth’s continents, though it also fails really
close to the poles.

Figure 8.2: A “Mollweide” projection of the Earth.

A clever way to make a map of a globe is to mentally start with a spherical globe
of paper, and then peel off segments of that sphere (like peeling an orange) so that
we end up with a ragged, but more accurate representation of the Earth’s surface.
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An example is shown in Figure 8.3. Here it is slightly more difficult to make out
the continents, but we could cut out this map with scissors and tape the pieces back
together to construct a spherical globe!

Figure 8.3: A map of the Earth made by “peeling” a sphere apart and plotting the
result on a flat sheet of paper.

On such a map, objects on the far left are actually very near to objects on the
far right. This is the type of map we will use in this exercise. Sitting on the Earth’s
surface, the sky appears to be a spherical entity that surrounds us–it is like a globe
surrounding the globe of the Earth (ask your TA to show you the “celestial sphere”
we have in the back room if they haven’t brought it out for you to look at).

To develop your intuition about this sort of map, let’s each make a map of the
directions of all of your fellow students. Let’s imagine that we are each standing
inside of a globe and you can see all the other students in different directions. Let’s
all agree that “north” should be up towards the ceiling, that the left-most panel in
the map is looking towards the front of the classroom, and that panels to the right
move in a clockwise fashion around the classroom (so the right most panel is almost
all the way back to the front again). Remember that we are imagining that you don’t
know anything about the distance to each student, only what direction they are seen
in.

Now let’s compare the maps. How do the maps differ for students in the middle
of the classroom from those of students at the edge of the classroom?

Now let’s imagine we can reconfigure the students so they are distributed uni-
formly throughout the room. This means there are students above and below you as
well as around you! However, there may be more students in some directions than in
others, depending on where you are located in the classroom. Again, make a map of
the directions of your fellow students.
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Figure 8.4: Map of students in this classroom.

Figure 8.5: The map if students were distributed uniformly in every direction.

Again, let’s compare the maps. How do the maps differ for students in the middle
of the classroom from those of students at the edge of the classroom?

Let’s summarize by drawing maps for four different idealized situations:

You are at the center of a uniform distribution of objects.

You are at the edge of a uniform distribution of objects.
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Figure 8.6: You are at the center of a uniform distribution of objects.

Figure 8.7: You are at the edge of a uniform distribution of objects.
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You are at the center of a flattened distribution of objects.

Figure 8.8: You are at the center of a flattened distribution of objects.

You are at the edge of a flattened distribution of objects.

Figure 8.9: You are at the edge of a flattened distribution of objects.

One final thing to consider for the flattened distribution of objects: how does the
appearance of objects on the map depend on the choice of where you put the North
Pole?

8.4 The Contents of Our Milky Way Galaxy

Before we begin this lab, we should briefly introduce (or re-introduce) you to the
various types of objects we will be plotting on our map. The band of light we call
the Milky Way is in fact the sum of the light from billions of faint, and distant stars.
Stars, and objects containing stars, are what we see with our eye, and those are the
types of objects we will be plotting today. As you have/will find out in your lecture
sessions, the Milky Way and other galaxies like it contain a number of objects that are
not stars (such as molecular gas clouds), but these do not emit light that the human
eye can detect (though we can infer their presence since they can absorb light!), and
we will not be plotting those types of objects. Besides the band of light called the
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Figure 8.10: The Pleiades, an “Open Cluster” of relatively young stars.

Milky Way, there are four types of objects we will plot today: Open clusters, Gaseous
nebulae, Globular clusters and Galaxies. The first three of these all belong to our
Milky Way galaxy, while galaxies are “Milky Ways” in their own rite, and are located
far beyond the boundaries of the Milky Way.

Depending on which labs your professor has chosen, you might have already en-
countered an “Open” cluster: the HR Diagram lab deals with the Pleiades, a well
known Open cluster. A picture of the Pleiades is shown in Figure 8.10. The Pleiades
consists of about 250 stars that are about 100 million years old. All of the stars in the
Milky Way form in clusters. This is because they condense-out of cold molecular gas
that is found in large clouds. Sometimes the gas cloud is small and produces a hand-
ful of stars, sometimes the gas cloud is large (> 106 MSun) and produces thousands
of stars. Eventually, however, such a cluster will slowly fall apart, and the stars will
wander off and circle the galaxy with unique orbits (when in a cluster, however, all of
the stars orbit around the galaxy together as a single unit). This is why astronomers
call them “Open”, they eventually fall apart. If the were “Closed”, they would not
fall apart. Why do they fall apart? Because the gravity from very massive objects
(such as molecular clouds) can pull Open clusters apart because they have relatively
small (< 5,000 MSun) total masses.

In contrast, “Globular clusters” are “Closed”. Globular star clusters do not fall
apart. An example is M15 shown in Figure 8.11. Globular star clusters contain
100,000 stars or more, and thus have large masses, and the gravity from all of these
stars keeps them “bound”: Even as they pass by very massive objects, they cannot be
pulled apart. Globular clusters are made up of some of the oldest stars found in our
galaxy–in fact, most astronomers believe that Globular clusters were among the first
objects that formed as the large gas cloud that was the “proto-Milky Way” collapsed.

“Gaseous nebulae” are closely related to Open clusters. When a cluster of stars
first forms, much of the gas left over from the formation of stars is still present. The
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Figure 8.11: M15, a “Globular Cluster” which contains about 100,000 very old stars.

hotter stars in the cluster can “ionize” this gas (see the Spectroscopy lab), and cause
it to glow. We see this gas as glowing knots and wisps of material surrounding the
stars. The “Lagoon” Nebula, shown in Figure 8.12, is where several hundred young
stars are being born. There is a lot of gas and dust that surrounds the very young
open cluster at the center of the Lagoon, and such regions have complex structures.

As noted earlier, galaxies are large collections of objects mostly composed of stars,
star clusters, gas, and dust. They are the hosts of Open clusters, Globular clusters
and Gaseous nebulae (as well as molecular clouds, and some other objects we have
not mentioned). To see some pretty pictures of galaxies, skip ahead to the “Galaxy
Morphology” lab (the next lab in this manual), where images of several different types
of galaxies are presented.

8.5 Exercises

Now we will create maps which show the distribution of different types of celestial ob-
jects in the sky. In Table 8.1 is a list of constellations within which bright objects can
be observed using a small telescope. The list is separated into four subsections, one
for each type of object: globular clusters, open cluster, gaseous nebulae and galaxies.
For each object type we have listed names of constellations and the number of objects
of each type which can be found within the constellations.

The figure at the end of this lab write-up has a blank map of the sky with the
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Table 8.1: Location of different objects in the sky
Constellation Name Number of Number of Number of Number of

Globular Clusters Galaxies Open Clusters Gaseous Nebulae
Cepheus 3 6
Pegasus 4 2
Aquarius 1
Capricornus 4
Grus 2
Draco 5
Cygnus 7 6
Vulpecula 4
Aquila 3 2
Sagittarius 20 2 3
Telescopium 8
Hercules 4
Ophiuchus 8
Scorpius 6
Lupus 2 1
Norma 4
Ursa Majoris 16
Canes Venatici 10
Bootes 2
Coma Bernaices 3 12
Virgo 2 11
Centaurus 2 5 1 4
Leo 8
Hydra 1 2
Camelopardalis 4
Monoceros 8
Canis Major 6 3
Puppis 5 1
Perseus 4 5
Taurus 3 3
Orion 3 6
Eriadanus 8
Dorado 3 4
Cassiopeia 8 7
Andromeda 4
Triangulus 7
Pisces 3
Cetus 7
Fornax 2
Sculptor 1 5
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Figure 8.12: The Lagoon nebula, a gaseous nebula that contains several hundred
young stars, some of which are so hot they ionize the hydrogen gas, causing it to
glow.

boundaries of all the constellations marked on it. This map is a bit like a map of the
world that shows the borders between countries but nothing else. Remember how-
ever, when we are looking at the sky we are looking up at the inside of a sphere that
completely surrounds us, not down onto the outside of the Earth. The continuous
band of stars already marked on the map is the Milky Way.

For each type of object, your group will construct a separate celestial sphere. In
the end, you should have four celestial spheres, each with one type of object marked
on it.

Complete the following steps to construct each sphere:

1. Mark the location of each object in your set on the celestial sphere map. As
an approximation, just place the marks near the center of the constellation the
objects are in. The marks should be dark and large enough so that you can see
the marks on the other side of the sheet.

2. Use a different color for each type of object. This will help you distinguish the
different types of celestial spheres. (Remember that each sphere will have only
one type of object marked on it.)

3. Cut out the map by cutting along the outside bold-face lines. Be sure it NOT
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to cut off the tabs at the top and bottom of each of the map subsections. These
are essential for the proper construction of the globes.

4. A celestial sphere can be constructed using tape and skewers (be careful!). Your
TA will give you more detailed instructions. Be sure that the skewers go through
the small circles on the tabs at the top and bottom of each of the subsections
of the map.

5. Be sure to construct your celestial sphere inside out because the Earth is really
at the center of this “globe”. The objects we see are above and around us so
when we construct these spheres, the marks should be on the inside surface of
the sphere.

Describe the distribution of each type of object. Work as a group with each
celestial globe and describe the distribution you observe for each type of object. Be
as detailed as possible and make references to the plane of the Milky Way which has
already been marked on each map and also the center of the Milky Way Galaxy which
is toward the constellation Sagittarius. This information will be used to complete the
questions so make sure you take good notes! (20 points)
Milky Way:

Open Clusters:

Gaseous Nebulae:

Globular Clusters:

Galaxies:
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8.6 Questions

The following questions are intended to help you reconstruct the shape of our galaxy
based on the exercises done in the lab. Be sure to answer all parts of the questions
and use complete sentences as always.

1. Do any of the descriptions of the idealized distributions of objects discussed
in subsection 8.2 (i.e. center of flattened distribution, edge of flattened dis-
tribution, center of uniform distribution, edge of uniform distribution) match
the descriptions of the distributions of the celestial objects? If so, which ones?
Explain your reasoning. (10 points)

2. Considering the answer to the previous question, where do you think we are
located with respect to the system of globular clusters? open clusters? gaseous
nebulae? Explain your reasoning. (10 points)

3. Draw a sketch of the Galaxy based on your answers to Questions 1 and 2. Draw
your picture showing our location relative to the distributions of the four types
of objects. Be sure to include all four types of objects and label them. (15
points)

122



4. What do you think the distribution of galaxies, as compared with the distri-
butions of the other objects, tells you about where galaxies are located? (10
points)
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8.7 Summary (35 points)

Please summarize the concepts you learned from this lab. You might wish to discuss:

• Describe each of the 4 types of objects discussed in the lab.

• When you look up into the sky and see a band of stars, what does that tell you
about the structure of the Galaxy you live in?

• Describe the difference (in terms of the 4 objects discussed in lab) in what you
would see if you were a) standing in the center of our Galaxy, and b) standing
at the edge of our Galaxy.

• What conclusions can you draw about the distribution of objects in our galaxy
and beyond?

Use complete sentences, and proofread your summary before handing in the lab.

8.8 Possible Quiz Questions

1. What is an open cluster?

2. What is an HII region?

3. What is a map projection?

4. Why are map projections used?

8.9 Extra Credit (ask your TA for permission before at-
tempting, 5 points)

In this lab we have plotted objects that are in the Milky Way galaxy. What would
the plot look like if we plotted external galaxies? Make sure to research this topic so
that you have confidence in what you are plotting, and make a rough sketch of the
distribution of external galaxies (or photocopy one of the “orange peel” diagrams and
plot your galaxies on that)
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9 Galaxy Morphology

9.1 Introduction

Galaxies are enormous, “gravitationally bound” collections of millions, upon millions
of stars. In addition to these stars, galaxies also contain varying amounts of gas and
dust from which stars form, or from which they have formed. In the centers of some
galaxies live enormous black holes that are sucking-in, and ripping apart stars and
clouds of atomic and molecular gas. Galaxies come in a variety of shapes and sizes.
Some galaxies have large numbers of young stars, and star forming regions, while
others are more quiescent, mostly composed of very old, red stars. In today’s lab you
will be looking at pictures of galaxies to become familiar with the appearances, or
“morphology”, of the various types of galaxies, and learn how to classify galaxies into
one of the three main categories of galaxy type. We will also use photographs/images
of galaxies obtained using different colors of light to learn how the appearances of
galaxies depend on the wavelength of light used to examine them.

• Goals: to learn about galaxies

• Materials: a pen to write with, a ruler, a calculator, and one of the notebooks
of galaxy pictures

9.2 Our Home: The Milky Way Galaxy

During the summertime, if you happen to be far from the city lights, take a look
at the night sky. During the summer, you will see a faint band of light that bisects
the sky. In July, this band of light runs from the Northeast down to the Southwest
horizon (see Fig. 9.1). This band of light is called the Milky Way, our home galaxy.
Because we are located within the Milky Way galaxy, it is actually very hard to figure
out its exact shape: we cannot see the forest for the trees! Thus, it is informative to
look at other galaxies to attempt to compare them to ours to help us understand the
Milky Way’s structure.

Galaxies are collections of stars, and clouds of gas and dust that are bound to-
gether by their mutual gravity. That is, the mass of all of the stars, gas and dust
pull on each other through the force of gravity so that they “stick together”. Just
like the planets in our Solar System orbit the Sun, the stars (and everything else) in
a galaxy orbit around the central point of the galaxy. The central point in a galaxy
is referred to as the “nucleus”. In some galaxies, there are enormous black holes that
sit right at the center. These black holes can have a mass that is a billion times
that of the Sun (109 M�)! But not all galaxies have these ferocious beasts at their
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Figure 9.1: A fisheye lens view of the summertime sky showing the band of light called
the Milky Way. This faint band of light is composed of the light from thousands and
thousands of very faint stars. The Milky Way spans a complete circle across the
celestial sphere because our solar system is located within the “disk” of the galaxy.

cores, some merely have large clusters of young stars, while others have a nucleus
that is dominated by large numbers of old stars. The Sun orbits around the nucleus
of our Milky Way galaxy (Fig. 9.2) in a similar fashion to the way the Earth or-
bits around the Sun. While it only takes one year for the Earth to go around the
Sun, it takes the Sun more than 200 million years to make one trip around our galaxy!

Note that the central region (“bulge” and nucleus) of the Milky Way has a higher
density of stars than in the outer regions. In the neighborhood of the Sun, out in the
“disk”, the mass density is only 0.002 M�/ly3 (remember that density is simply the
mass divided by the volume: M/V, here the Mass is solar masses: M�, and Volume
is in cubic light years: ly3). In the central regions of our Milky Way galaxy (within
300 ly of the center), however, the mass density is 100 times higher: 0.200 M�/ly3.
What does this mean? The nearest star to the Sun is Alpha Centauri at 4.26 ly. If
we were near the nucleus of our Milky Way galaxy, there would be 200 stars within
4.26 ly of the Sun. Our sky would be ablaze with dozens of stars as bright as Venus,
with some as bright as the full moon! It would be a spectacular sight.

Our Milky Way galaxy is a spiral galaxy that contains more than 100 billion stars.
While the Milky Way is a fairly large galaxy, there are much larger galaxies out there,
some with 100 times the mass of the Milky Way. But there are an even larger number
of very small “dwarf” galaxies. Just like the case for stars, nature prefers to produce
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Figure 9.2: A diagram of the size and scale of our “Milky Way” galaxy. The main
regions of our galaxy, the “bulge”, “disk”, and “halo” are labeled. Our Milky Way is
a spiral galaxy, with the Sun located in a spiral arm 28,000 ly from the nucleus. Note
that the disk of the Milky Way galaxy spans 100,000 ly, but is only about 1,000 ly
thick. While the disk and spiral arms of the Milky Way are filled with young stars,
and star forming regions, the bulge of the Milky Way is composed of old, red stars.

lots of little galaxies, and many fewer large galaxies. The smallest galaxies can contain
only a few million stars, and they are thousands of times smaller than the Milky Way.

9.3 Galaxy Types: Spirals Ellipticals, and Irregulars

Shortly after the telescope was invented, astronomers started scanning the sky to
see what was out there. Among the stars, these first astronomers would occasion-
ally come across a faint, fuzzy patch of light. Many of these “nebulae” (Latin for
cloud-like) appeared similar to comets, but did not move. Others of these nebulae
were resolved into clusters of stars as bigger telescopes were constructed, and used to
examine them. Some of these fuzzy nebulae, however, did not break-up into stars no
matter how big a telescope was used to look at them. While many of these nebulae
are clouds of glowing hydrogen gas within the Milky Way galaxy (HII regions), others
(some of which resembled pinwheels) were true galaxies–similar to the Milky Way in
size and structure, but millions of light years from us. It was not until the 1920’s
that the actual nature of galaxies was confirmed–they were true “Island Universes”,
collections of millions and billions of stars. As you will find out in your lecture ses-
sions, the space between galaxies is truly empty, and thus most of the matter in the
Universe resides inside of galaxies: They are islands of matter in an ocean of vacuum.

Like biologists or other scientists, astronomers attempt to associate similar types
of objects into groups or classes. One example is the spectral classification sequence
(OBAFGKM) for stars. The same is true for galaxies–we classify galaxies by their
observed properties. It was quickly noticed that there were two main types of galax-
ies, those with pinwheel shapes, “spiral galaxies”, and smooth, mostly round or oval
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galaxies, “elliptical” galaxies. While most galaxies could be classified as spirals or
ellipticals, some galaxies shared properties of both types, or were irregular in shape.
Thus, the classification of “irregular”. This final category is a catch-all for any galaxy
that cannot be easily classified as a spiral or elliptical. Most irregular galaxies are
small, messy, unorganized clumps of gas and stars (though some irregular galaxies
result from the violent collisions of spiral and/or elliptical galaxies).

9.3.1 Spiral Galaxies

The feature that gives spiral galaxies their shape, and leads to their classification are
their spiral arms. An example of a beautiful spiral is M81 shown in Fig. 9.3. A spiral
galaxy like M81 resembles a whirlpool, or pinwheel: arms of stars, gas and dust that
radiate in curving arcs from the central “bulge”.

Figure 9.3: The Sb spiral galaxy M81. Notice the nice, uniform spiral arms that are
wound tightly around the large, central bulge. Inside the spiral arms, there are large
regions of glowing gas called HII regions–where stars are being born. These stand
out as knots or clumps in the spiral arms. The dark spots, lanes, and arcs are due to
dust clouds that are associated with these star forming regions.

Other spiral galaxies, like M51 shown in Fig. 9.4, have less tightly wound spiral
arms, and much smaller bulges. Finally, there are spiral galaxies with very tightly
wound spiral arms that are dominated by their bulge, like the Andromeda galaxy
(M31) shown in Fig. 9.5. The arms are so tightly wound, that it is hard to tell
where one ends and the other begins. These types of galaxies also have much less
star formation.

Spiral galaxies are classified by how tightly their arms are wound, and how large
their central bulges are. There are three main types of spirals: Sa, Sb, and Sc. Sa
spirals have large bulges and tightly wound arms, while Sc’s have very loosely wound
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Figure 9.4: The Sc spiral galaxy M51. Notice the large, clumpy spiral arms that are
loosely wound around the small, central bulge. Inside the spiral arms of M51 there
are very many large HII regions–M51 has many young star forming regions. Notice
that there is also a lot more dust in M51 than in M81.

Figure 9.5: The Sab spiral galaxy M31. Notice the very large bulge, and very tightly
wound spiral arms. Like the Milky Way, the Andromeda Galaxy has several small
galaxies in orbit around it (just like planets orbit the Sun, some small galaxies can
be found orbiting around large galaxies). Two of these galaxies can be seen as the
round/elliptical blobs above and below the disk of the Andromeda galaxy shown here.
Both are elliptical galaxies, discussed in the next subsection.

arms, and small bulges. Sb’s are intermediate between Sa’s and Sc’s (of course, like
M31, there are galaxies that fall halfway between two classes, and they are given
names like Sab, or Sbc). The spiral classification sequence is shown in Fig. 9.6.
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Figure 9.6: The classification sequence for spirals. S0 spirals are galaxies that show a
small disk that is composed of only old, red stars, and have no gas, little dust and no
star forming regions. They are mostly a large bulge with a weak disk, with difficult-
to-detect spiral arms. They actually share many properties with elliptical galaxies.
Sa galaxies have large bulges, and tightly wound spiral arms. Sb’s have less tightly
wound arms, while Sc’s have very loosely wound arms, and have tiny bulges.

9.3.2 Elliptical Galaxies

Elliptical galaxies do not have as much structure as spiral galaxies, and are thus less
visually interesting. They are smooth, round to elliptical collections of stars that are
highly condensed in their centers, that slowly fade out at their edges. Unlike spiral
galaxies, where all of the stars in the disk rotate in the same direction, the stars
in elliptical galaxies do not have organized rotation: the individual stars orbit the
nucleus of an elliptical galaxy like an individual bee does in a swarm. While they
have random directions, all of the billions of stars have well-defined orbits around
the center of the galaxy, and take many millions of years to complete an orbit. An
example of an elliptical galaxy is shown in Fig. 9.7.

Elliptical galaxies can appear to be perfectly round, or highly elongated. There
are eight categories, ranging from round ones (E0) to more football-shaped ones (E7).
This classification scheme is diagrammed in Fig. 9.8.

It is actually much easier to classify an elliptical galaxy, as the type of elliptical
galaxy can be determined by measuring the major and minor axes of the ellipse. The
definitions of the major and minor axes of an ellipse are shown in Fig. 9.9. To deter-
mine which type of an elliptical galaxy you are looking at, you simply measure the
major axis (“a”) and the minor axis (“b”), and calculate: 10×(a − b)/a. You will
do this for several elliptical galaxies, below.
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Figure 9.7: A typical elliptical galaxy, NGC205, one of the small elliptical galaxies in
orbit around the Andromeda galaxy shown in Fig. ??. Most elliptical galaxies have
a small, bright core, where millions of stars cluster around the nucleus. Just like the
Milky Way, the density of stars increases dramatically as you get near the nucleus
of an elliptical galaxy. Many elliptical galaxies have black holes at their centers.
NGC205 is classified as an E5.

Figure 9.8: The classification scheme for elliptical galaxies. Elliptical galaxies range
from round (E0), to football shaped (E7).

Figure 9.9: The definition of the major (“a”) and minor (“b”) axes of an ellipse.

9.3.3 Irregular Galaxies

As noted above, the classification of a galaxy as an “irregular” usually stems from the
fact that it cannot be conclusively categorized as either a spiral or elliptical. Most
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irregular galaxies, like the LMC shown in Fig. 9.10, are small, and filled with young
stars, and star forming regions. Others, however, result when two galaxies collide, as
shown in Fig. 9.11.

Figure 9.10: The Large Magellanic Cloud (LMC). The LMC is a small, irregular
galaxy that orbits around the Milky Way galaxy. The LMC (and its smaller cousin,
the SMC) were discovered during Magellan’s voyage, and appear as faint patches of
light that look like detached pieces of the Milky Way to the naked eye. The LMC
and SMC can only be clearly seen from the southern hemisphere.

9.3.4 Galaxy Classification Issues

We have just described how galaxies are classified, and the three main types of galax-
ies. Superficially, the technique seems straightforward: you look at a picture of a
galaxy, note its main characteristics, and render a classification. But there are a few
complications that make the process more difficult. In the case of elliptical galaxies,
we can never be sure whether a galaxy is truly a round E0 galaxy, or an E7 galaxy
seen from an angle. For example, think of a football. If we look at the football from
one angle it is long, and pointed at both ends. But if we rotate it by 90o, it appears
to be round. This is a “projection effect”, and one that we can never remove since
we cannot go out and look at elliptical galaxies from some other angle.

As we will find out, spiral galaxies suffer from a different classification issue. When
the Sa/Sb/Sc classification scheme was first devised, only photographs sensitive to
blue light were used. If you actually look at spiral galaxies at other wavelengths, for
example in the red or infrared, the appearance of the galaxy is quite different. Thus it
is important to be consistent with what kind of photograph is used to make a galaxy
classification. We will soon learn that the use of galaxy images at other wavelengths
besides that which our eyes are sensitive to, results in much additional information.
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Figure 9.11: An irregular galaxy that is the result of the collision between two galaxies.
The larger galaxy appears to have once been a normal spiral galaxy. But another
galaxy (visible in the bottom right corner) ran into the bigger galaxy, and destroyed
the symmetry typically found in a spiral galaxy. Galaxy collisions are quite frequent,
and can generate a large amount of star formation as the gas and dust clouds are
compressed as they run into each other. Some day, the Milky Way and Andromeda
galaxies are going to collide—it will be a major disruption to our galaxy, but the star
density is so low, that very few stars will actually run into each other!

9.4 Lab Exercises

For this lab, each group will be getting a notebook containing pictures of galaxies.
These notebooks are divided into five different subsections. Below, there are five sub-
sections with exercises that correspond to each of the five subsections in the notebook.
Make sure to answer all of the questions fully, and to the best of your ability.

Section #1: Classification of Spiral Galaxies
In this subsection we look at black and white photographs of spiral galaxies. First
you will see three standard spiral galaxies that define the Sa, Sb, and Sc subtypes,
followed by more classification exercises.
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Exercise #1: In pictures 1 through 3 are standard spiral galaxies of types Sa, Sb,
Sc. Using the discussion above, and Figures 9.3 to 9.6, classify each of the spiral
galaxies in these three pictures and describe what properties led you to decide which
subclass each spiral galaxy fell into. (3 points)

Exercise #2: The pictures of the galaxies that you have seen so far in this lab are
“positive” images, just like you would see if you looked at those galaxies through a
large telescope—white means more light, black means less light. But working with
the negative images is much more common, as it is much easier to see fine detail
when presented as dark against a light background versus bright against a dark back-
ground. For example, Picture #4 is the negative image for Picture #1. Detail that
is overlooked in a positive image can be seen in a negative image. For most of the
rest of this lab, we will look at negative images like those shown in Picture #4.

Classify the spiral galaxies in Pictures #5, 6, 7 and 8. In each case, describe what
led you to these classifications. (4 points)
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Exercise #3: So far, we have looked at spiral galaxies that have favorable orienta-
tions for classification. That is, we have seen these galaxies from a direction that is
almost perpendicular to the disk of the galaxy. But since the orientation of galaxies
to our line of sight is random, many times we see galaxies from the side view. In this
exercise, you will look at some spiral galaxies from a less favorable viewing angle.

In pictures #9, 10, and 11 are three more spiral galaxies. Try to classify them. Use
the same techniques as before, but try to visualize how each subtype of spiral galaxy
would change if viewed from the side. (Remember that in a negative image, bright
white means no light, and dark means lots of light–so dusty regions show up as white!)
(3 points)

Section #2: Elliptical Galaxies As described earlier, elliptical galaxies do not
show very much detail–they are all brighter in the center, and fade away at the edges.
The only difference is in how elliptical they are, ranging from round (E0) to football-
shaped (E7). In this subsection will learn how to classify elliptical galaxies.

Exercise #4: In pictures #12, 13, 14, and 15 are some elliptical galaxies. Using
Figure 9.8 as a guide, classify each of these four galaxies as either E0, E1, E2, E3,
E4, E5, E6, or E7. Describe how you made each classification. (4 points)
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Exercise #5: In our discussion about elliptical galaxy classification, we mentioned
that there was a quantitative method to classify elliptical galaxies: you use the equa-
tion 10×(a − b)/a to derive the subclass number. In this equation “a” is the major
axis (long diameter) and “b” is the minor axis (the short diameter). Go back to Fig-
ure 9.9 to see the definition of these two axes. For example, if you measured a value
of a = 40 mm, and b = 20 mm, than the subclass is 10×(40 − 20)/40 = 10×(20/40)
= 10×(0.5) = 5. So that this particular elliptical galaxy is an E5.

If the measurements for an elliptical galaxy are a = 30 mm and b= 20 mm, what
subclass is that galaxy? (Round to the nearest integer.) (2 points)

Measure the major and minor axes for each of the galaxies in pictures #12, 13, 14,
and 15, and calculate their subtypes. Note: it can sometimes be hard to determine
where the “edge” of the galaxy is–try to be consistent and measure to the same level
of brightness. (4 points)

It is pretty hard to measure the major and minor axes of elliptical galaxies on
black and white photographs! Usually, astronomers use digital images, and then use
some sort of image processing to make the task easier. Picture #16 is a digitized
version of picture #15, processed so that similar light levels have the same color. As
you can see, this process makes it much easier to define the major and minor axes of
an elliptical galaxy.
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Exercise #6: Measure the major and minor axes of the two elliptical galaxies shown
in Pictures #16 and #17, and classify them using the same equation/technique as
before. (2 points)

Section #3: Irregular Galaxies While most large galaxies in our Universe are
either spirals or ellipticals, there are a large number of very strange looking galaxies.
If we cannot easily classify a galaxy as a spiral or elliptical, we call it an Irregular
galaxy. Some irregular galaxies appear to show some characteristics of spirals and/or
ellipticals, others are completely amorphous blobs. Many of the most unusual looking
galaxies are the result of the interactions between two galaxies (such as a collision).
Sometimes the two galaxies merge together, other times they simply pass through
each other (see Fig. 9.11). Pictures 18 through 22 are of irregular galaxies.

Exercise #7: The peculiar shapes and features of the irregular galaxies shown in
Pictures #18, 19 and 20 are believed to be caused by galaxy collisions or galaxy-
galaxy interactions (that is, a close approach, but not a direct collision). Why do you
think astronomers reached such a conclusion for these three galaxies? (4 points)

Exercise #8: In Pictures #21 and 22 are images of two “dwarf” irregular galaxies.
Note the general lack of any structure in these two galaxies. Unlike the collision-
caused irregular galaxies, these objects truly have no organized structures. It is likely
that there are hundreds of dwarf galaxies like these in our Universe for every single
large spiral galaxy like the Milky Way. So, while these dwarf irregular galaxies only
have a few million stars (compared to the Milky Way’s 100+ billion), they are a
significant component of all of the normal (“baryonic”) mass in our Universe. One
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common feature of dwarf irregular galaxies is their abundance of young, hot stars. In
fact, more young stars are produced each year in some of these small galaxies than
in our Milky Way, even though the Milky Way is 10,000 times more massive! Why
this occurs is still not fully understood.

In the two dwarf irregular galaxies shown in Pictures #21 and 22, the large numbers
of blue stars, and the high number of bright red supergiants (especially in NGC 1705)
indicate a high star formation rate–that is lots of new, young stars. Why are large
numbers of hot, luminous blue stars, and red supergiants linked to young stars? [Hint:
If you have learned about the HR diagram, try to remember how long hot, blue O
and B stars live. As their internal supply of hydrogen runs out, they turn into red
supergiants.] (4 points)

Section #4: Full Color Images of Galaxies
As we have just shown, color images of galaxies let us look at the kinds of stars that
are present in them. A blue color indicates hot, young O and B stars, while a pre-
dominantly red, or yellow color indicates old, cool stars (mostly red giants). In this
subsection we explore the kinds of stars that comprise spiral and elliptical galaxies.

Exercise #9: Comparison of Spirals and Ellipticals
In Pictures #23 through 27 we show some color pictures of elliptical and spiral galax-
ies. Describe the average color of an elliptical galaxy (i.e., #23 & #24) compared to
the colors of spiral galaxies (#25 to #27). (3 points)
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Now, let’s look more closely at spirals and ellipticals. When examining the color pic-
tures of the spiral galaxies you should have noticed that the spiral arms are generally
bluer in color than their bulges. Hot young stars are present in spiral arms! That
is where all of the young stars are. But in the bulges of spirals, the color is much
redder—the bulge is made up of mostly old, red stars. In fact, the bulges of spiral
galaxies look similar to elliptical galaxies. Compare the large bulge of the Sombrero
galaxy (Picture #27) to the giant E0 galaxy M87 (Picture #23). (3 points)

If the bulges of spiral galaxies are made-up of old, red giant stars, what does this say
about elliptical galaxies? (3 points)

It is likely that you have learned about the emission of light by hydrogen atoms in
your lecture sessions (or during the spectroscopy lab). Hydrogen is the dominant
element in the Universe, and can be found everywhere. The brightest emission line in
the visual spectrum of hydrogen is a red line at 656 nm. This gives glowing hydrogen
gas a pinkish color. When we take pictures of glowing clouds of hydrogen gas they
are dominated by this pink light. During the course of this semester, you will also
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hear about ‘HII” regions (such as the “Orion Nebula”, see the monthly skycharts for
February found in the back of this lab manual). HII regions form when hot O and
B stars are born. These stars are so hot that they ionize the nearby hydrogen gas,
causing it to glow. When we look at other spiral galaxies, we see many HII regions
in them, just like those found in our Milky Way.

Of the spiral galaxies shown in Pictures 25 to 27, which has the most HII regions?
Which appears to have the least? What does this imply about M51? (3 points)

Section #5: Multi-wavelength Views of Galaxies
We now want to explore what galaxies look like at ultraviolet and infrared wave-
lengths. “Multi-wavelength” data provides insights that cannot be directly gleaned
from visual images.

We have just finished looking at some color images of galaxies. Those color pic-
tures were actually made by taking several images, each through a different color
filter, and then combining them to form a true-color image. Generally astronomers
take pictures through a red, green, and blue filter to generate an “RGB” color pic-
ture. Many computer programs, such as Adobe Photoshop, allow you to perform this
type of processing. Sometimes, however, it is best not to combine several single-color
images into a color picture–subtle detail is often lost. Also, astronomers can take
pictures of galaxies in the ultraviolet and infrared (or even X-ray and radio!), light
which your eye cannot detect. There is no meaningful way to represent the true col-
ors of a galaxy in an ultraviolet or infrared picture. Why would astronomers want to
look at galaxies in the ultraviolet or infrared? Because different types of stars have
different colors, decomposing the light of galaxies into its component colors allows us
to determine how such stars are distributed (as well as gas and dust). In Pictures
#28 and 29 we present blue and red images of the spiral galaxy M81. As you have
just learned, the bulges of spiral galaxies are red, and the spiral arms (and disks) of
spiral galaxies are blue. Note how the red image highlights the bulge region, while
the blue image highlights the disk. Hot stars emit blue light, so if we want to see how
many blue stars there are in a galaxy, it is best to use blue, or even ultraviolet light.

In this part of the lab, we will look at some multi-wavelength data. Let’s re-
mind ourselves first about the optical part of the electromagnetic spectrum. It runs
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from ultraviolet (“U”, 330 nm), to blue (“B”, 450 nm), through green/visual (“V”,
550 nm), to yellow, red (“R” 600 nm) and infrared (“I”, 760 nm and longer). The
high energy photons have shorter wavelengths and are ultraviolet/blue, while the low
energy photons have longer wavelengths and are red/infrared. If we go to shorter
wavelengths than those that can penetrate our atmosphere, we enter the true ultra-
violet (wavelengths of 90 to 300 nm). These are designated by UV or FUV (FUV
means “far” ultraviolet, below 110 nm). We will now see what galaxies look like at
these wavelengths–but note that we will switch back to black and white photos.

Exercise #10: Comparison of Optical and Ultraviolet Images of Galaxies
In Picture #30 are three separate images of two spiral galaxies. In the left hand
column are FUV, U and I images of the Sc galaxy NGC 1365, and in the right
hand column are FUV, U and R images of the Sa galaxy NGC 2841. Remember
that images in the FUV, UV, U and B filters look at hot stars, while images in V,
R, and I look at cooler stars. The ultraviolet really only sees hot stars! Compare
the number of hot stars in NGC 1365 with NGC 2841. Describe the spiral arms of
NGC 2841. What do you think is happening in the nucleus of NGC 2841? (4 points)

In Picture #31 are FUV, U and R images of two more galaxies: the Sc galaxy NGC
2403, and the irregular galaxy IC 2574. Compare the number of red and blue stars
in these two galaxies–are they similar? What is the main difference? (3 points)
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In Picture #32 is a similar set of images for two elliptical galaxies, NGC 5253 and
NGC 3115 (which can also be seen in Pictures #15 and 16) Compare these two
galaxies. While NGC 3115 is a normal elliptical galaxy, NGC 5253 seems to have
something interesting going on near its nucleus. Why do we believe that? Describe
how we might arrive at this conclusion? (3 points)

Exercise #11: Comparison of Optical and Infrared Images of Galaxies
Ok, now let’s switch to the infrared. Remember that cool stars emit most of their
energy in the red, and infrared portions of the electromagnetic spectrum. So if we
want to trace where the cool, red (and old) stars are, we use red or infrared images.
Another benefit of infrared light is its power to penetrate through dust, allowing us
to see through dusty molecular gas clouds.

In Pictures #33 through #35 are blue (“B”, 450 nm) and infrared (“H”, 1650 nm)
images of spiral galaxies. In Picture #33 we have Sa galaxies, in #34 we have Sb
galaxies, and in #35 we have Sc galaxies. Compare how easy/hard it is to see the
spiral arms in the B images versus the H images. Where are the blue stars? Where
are the red stars? Note that while the hot O and B stars are super-luminous (1 million
times the Sun’s luminosity), they are very rare. For each O star in the Milky Way
galaxy there are millions of G, K, and M stars! Thus, while an O star may have 60
times the Sun’s mass, they are tiny component of the total mass of a spiral galaxy.
Thus, what does the infrared light trace? (5 points)
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Finally, let’s take a look at the Milky Way galaxy. As we mentioned in the introduc-
tion, we are embedded in the disk of the Milky Way galaxy, and thus it is hard to
figure out the exact shape and structure of our galaxy. In Picture #36 is an optical
picture that spans the entire sky–we see that our Milky Way galaxy has a well-defined
disk. But in the optical photograph, it is difficult to ascertain the bulge of the Milky
Way, or the symmetry of our galaxy–there is just too much dust in the way! Picture
#37 is an infrared view that is identical to the previous optical image. What a differ-
ence! We can now see through all of that dust, and clearly make out the bulge–note
how small it is. We think that the Milky Way is an Sc galaxy. Make an argument
in support of this claim, compare it to the photographs of other tilted spiral galaxies
from Exercise #3. [Note: both of these images are special “projections” of the ce-
lestial sphere onto a two-dimensional piece of paper. This “Aitoff” projection makes
sure the sizes and shapes of features are not badly distorted. For proper viewing,
the right hand edge of these pictures should be wrapped around so that it touches
the left hand edge, and you would have to be viewing the picture from inside to
get a proper perspective. It is hard to take a three dimensional picture of the sky
and represent it in two dimensions! A similar problem is encountered when using a
rectangle to make a map of our globe (see the Terrestrial planet lab # ??.) (8 points)
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9.5 Summary (35 points)

Summarize the important concepts of this lab, including the following topics.

• Describe the process for classifying a spiral galaxy.

• Describe the process for classifying an elliptical galaxy.

• What are the main difficulties in classifying these two main types of galaxies
(they may not be the same issues!).

• What kind of information does multi-wavelength data (images) on galaxies pro-
vide? How is it useful? What does it tell us?

• What types of stars are found in spiral galaxies? In ellipticals? What does this
tell us about elliptical galaxies?

• What types of stars are found in dwarf irregular galaxies?

9.6 Possible Quiz Questions

1. What are the three main types of galaxies?

2. What are the major components of the Milky Way and other Spiral galaxies?

3. How big is the Milky Way, and how many stars does it contain?

4. What are O and B stars like? How long do they live? What are red
supergiants?

5. What are HII regions?

6. Draw the electromagnetic spectrum and identify the visual, infrared and
ultraviolet regions.

9.7 Extra Credit (ask your TA for permission before at-
tempting, 5 points)

In the introduction we mentioned that many galaxies (including the Milky Way) have
large black holes at their centers. These black holes rip apart stars and suck in the
gas. As the gas falls in, it gets very hot, and emits a lot of X-rays, ultraviolet and
blue light. Compared to the galaxy, this hot gas region is tiny, and shows up as a
small bright spot at the nucleus of the galaxy in the ultraviolet. Go back to Pictures
30 to 32 and list which of the galaxies appear to have black holes at their centers.
How did you reach your conclusion?
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Name:

Date:

10 How Many Galaxies are there in the Universe?

10.1 Introduction

Measurements, calculations, physical principles and estimations (or educated guesses)
lie at the heart of all scientific endeavors. Measurements allow the scientist to quan-
tify natural events, conditions, and characteristics. However, measurements can be
hard to make for practical reasons. We will investigate some of the issues with taking
measurements in this lab.

In addition, an important part about the measurement of something is an under-
standing about the uncertainty in that measurement. No one, including scientists,
ever make measurements with perfect accuracy, and estimating the degree to which a
result is uncertain is a fundamental part of science. Using a result to prove or disprove
some theory can only be done after a careful consideration of the uncertainty of the
result.

• Goals: to discuss the concepts of estimation, measurement and measurement
error, and to use these, along with some data from the Hubble Space Telescope,
to estimate the number of observable galaxies in the Universe

• Materials: Hubble Deep Field image

10.2 Exercise Section

10.2.1 Direct Measurement, Measurement Error

We will start out by counting objects much closer to home than galaxies!

How many chairs do you think there are in your classroom? You have one minute!

How did you determine this?

How does your number compare with that of other groups? What does this say
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about the uncertainty in the results?

Now do an exact count of the number of chairs - you have three minutes. Note
the advantage of working with a group! By comparing results from different groups,
what is the uncertainty in the result?

10.2.2 Estimation

Now we extend our measurement to a larger system where practical considerations
limit us from doing a direct count.

How many chairs do you think there are in the entire University? You might wish
to consider the campus map shown in Figure 10.1.
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Figure 10.1: A map of the NMSU campus from the NMSU WWW site
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How did you determine your number?

How accurate do you think your number is?

How might you estimate the uncertainty in your number?

10.3 How many galaxies are there in the Universe?

Considering how you estimated the number of chairs in the classroom and on campus,
consider and write down several alternative ways of estimating the number of galaxies
in the Universe.

Let’s consider the issue by looking at a picture of the sky taken with the Hubble
Space Telescope. This telescope is the most capable of existing telescopes for viewing
very faint objects. In an effort to observe the faintest galaxies, astronomers decided to
spend 10 entire days training this telescope on one small region of the sky to observe
the faintest galaxies and learn about them. The image that was obtained is shown in
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Figure 10.2.

First, let’s figure out how long it would take for the Space Telescope to take pic-
tures like this over the entire sky.

To do this, we need to talk about how we measure distances and areas on the sky,
concepts that we have used in some of the other labs this semester. When one mea-
sures, for example, the distance between two stars as seen from Earth, one measures
what is known as an angular distance. A standard unit of this angular distance is
the familiar unit of the degree; there are 360 degrees in a full circle. As an example,
the distance between an object which is straight overhead and one which is on the
horizon is 90 degrees. However, when one makes astronomical observations with big
telescopes, one usually sees an area which is only a small fraction of a degree on
a side. To make things easier to write, astronomers sometimes use units known as
arcminutes and arcseconds. There are 60 arcminutes in a degree, and 60 arcseconds
in an arcminute.

1. We can now use this information to calculate how many pictures the Space
Telescope would have to make to cover the entire sky. The picture from the
Space Telescope covers a region that is about 1 arcminute on a side. Our first
conversion is from arcminutes to degrees (this has been partially done for you):
(3 points)

1 arcminute× 1 degree

60 arcminutes
= degrees (5)

2. The area of the entire picture is measured in square degrees, so we take the
number of degrees found in question 1 and square it to get: (3 points)

3. Now there are 4.13 × 104 square degrees in the sky. From this you can figure out
how many pictures you would need to take to cover the whole sky: (5 points)
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Figure 10.2: A reproduction of the Hubble Deep Field image.
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4. Finally if it takes 10 days for each picture, we can figure out how long it would
take to cover the whole sky with similar pictures: (4 points)

5. With a unit conversion of 365 days/year, we can determine the number of years
it would take: (4 points)

Clearly, this is a very long time! This is an interesting point to note: as-
tronomers can only take deep pictures of a small fraction of the sky. So it is
not practical to count galaxies by taking pictures of the entire sky.

So how can we proceed to figure out how many total galaxies there are? We
can make an estimate by guessing that the number of galaxies in any particular
picture will be the same regardless of where we point. We can then estimate the
total number of galaxies in the sky by counting the number of galaxies in this
one picture, and multiplying it by the number of pictures that it would take to
cover the whole sky.

6. Take a look at the image of the Hubble Deep Field given to you by your TA.
Almost every one of the objects you see in this picture is a distant galaxy. Count
up all the galaxies in each subsection then add them up to get an estimate of
the number of galaxies in this one field. Again, you can proceed quicker by
taking advantage of the multiple members of your group; however, you might
wish to have everyone in the group count one region independently to get some
idea of the measurement uncertainty. (10 points)

Region A1:

Region A2:

Region A3:

Region B1:

Region B2:

Region B3:
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Region C1:

Region C2:

Region C3:

There are a total of galaxies in Hubble Deep Field.

7. Now estimate the total number of galaxies in the whole sky, using our calculation
of the number of pictures it takes to cover the sky which we did above. (7
points)

This is a pretty amazingly large number. Consider that each galaxy has billions
of stars, and think just for minute about how many total stars there are in the
Universe! It makes you feel pretty small.... but, on the other hand, think how
cool it is that humans have evolved to the point where they can even make such
an estimation!

8. As we’ve discussed, an estimate of the uncertainty in a result is often as im-
portant as the result itself. Discuss several reasons why your result may not be
especially accurate. You may wish to compare the number of galaxies in any
given region which you counted with the number counted by other groups, or
consider the variation in the number of galaxies from one region to another.
Also, remember a fundamental assumption that we made for getting our esti-
mate, namely, that the number of galaxies we would see in some other portion
of the sky is the same as that which we see in this Hubble deep field. (8 points)

9. Finally, there’s one more caveat to our calculated total number of galaxies. To
make our estimate, we assumed that the 10 day exposure sees every single
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galaxy in this portion of the sky. With this in mind, how would the calculation
you just conducted compare to the real number of galaxies in the Universe?
Back up your answer with a short explanation. (8 points)

10.4 The Mass and Density of the Universe (Contained in
Galaxies)

In the preceding we have estimated the number of galaxies in the Universe. In the final
subsection of this lab, we now want to explore the implications of this calculation by
making an estimate of the matter density of the Universe. In your lecture subsections,
and some of the earlier labs (like in Table ?? in the Terrestrial Planet lab) you have
probably encountered the concept of density: density = Mass/Volume. Astronomers
usually use the unit of gm/cm3 for density. We can now make an estimate for the
density of matter contained in all of the galaxies in our Universe. We will start with
very large numbers, and end up with an extremely tiny number. It is quite likely
that your calculator cannot handle such numbers. To make this calculation easier,
we will use some round numbers so that you can do the calculation by hand using
the techniques outlined in Lab 1 (if you get stuck with how to multiply numbers with
exponents, refer back to subsection 1.4 in the introductory lab). This is a challenging
exercise, but one that gives you an answer that you might not expect!

10. In question 7 above, you estimated the total number of galaxies in the sky.
If we assume that these galaxies are similar to (though probably somewhat
smaller than) our Milky Way galaxy, we can calculate the total mass of all of
the galaxies in the Universe. Over the course of this semester you will learn that
the Milky Way has about 100 billion stars, and most of these stars are about
the mass of the Sun, or somewhat smaller. The mass of the Sun is 2 × 1033

gm. Let’s assume that the average galaxy in the Universe has 1/2 the number
of stars that the Milky Way has: 50 billion. Fifty billion in scientific notation
is 5 x 1010. To calculate the mass (in gm) of all of the galaxies in the Universe,
we need to solve this equation:
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Mass of Galaxies in Universe = (# of Galaxies)×(Average Mass of a Galaxy)

You calculated the # of Galaxies in question 7. We need to multiply that
number by the Average Mass of a Galaxy. The Average Mass of a Galaxy (in
gm) is simply:

Average Mass of a Galaxy = (# of stars in a galaxy)×(average mass of a star)

If the number of stars in a galaxy is 5 x 1010, and the average mass of a star is
2 X 1033 gm, what is the average mass of a galaxy? (2 points)

Average Mass of a Galaxy = ( )×( )

= gm

With this number, you can now calculate the total mass of all of the galaxies
in the Universe (2 points):

Mass of Universe = ( )×( ) =

gm

11. We have just calculated the total mass of galaxies in the Universe, and are
halfway to our goal of figuring out the density of galactic matter in the Universe.
Since density = M/V, and we now have M, we have to figure out V, the Volume
of the Universe. This is a little more difficult than getting M, so make sure you
are confident of your answer to each of the following steps before proceeding to
the next. We are going to make some assumptions that will simplify the calcu-
lation of V. First off, we will assume that the Universe is a sphere. The volume
of a sphere is simply four thirds “pi” R cubed: Vsphere = 4πR3/3. To figure out
the volume of the Universe we need to calculate “R”, the radius of the Universe.

So, how can we estimate R? In your lecture class you will find out that the most
distant parts of the Universe are moving away from us at nearly the speed of
light (the observed expansion of the Universe is covered in the Hubble’s Law
lab). Let’s assume that the largest distance an object can have in our Universe
is given by the speed of light × the age of the Universe. Remember, if a car
travels at 50 mph for one hour it will cover 50 miles: Distance = velocity ×
time. We can use this equation to estimate the radius of the Universe: RUniverse

= velocity × time = (speed of light) × (age of Universe).
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The speed of light is a very large number: 3 X 1010 cm/s, and the age of the
Universe is also large: 13 billion years. To calculate the radius of the Universe
in cm, we must convert the age of the Universe in years to an age in seconds
(s). First, how many seconds are there in a year? Let’s do the calculation:

Seconds in year = (seconds in day) × (days in year) = (60 × 60 × 24) × 365 =

s/yr

Since this is only estimate, feel free to round off any decimals to whole numbers.
Now that we have the number of seconds in a year, we can convert the age of
the Universe from years to seconds:

Age of Universe in seconds = (Age of Universe in Years) × (seconds in a year)

= (13 × 109 yr) × s/yr = s.

Ok, we now have the “time” part of the equation distance = velocity × time.
And we have already set the velocity to the speed of light: 3 × 1010 cm/s. Now
we can figure out the Radius of the Universe (3 points):

Radius of Universe (in cm) = (speed of light) × (Age of Universe in seconds) =

(3 × 1010 cm/s) × s =

cm.

In these calculations, notice how the units cancel. The units on a distance
or radius is length, and astronomers generally use centimeters (cm) to measure
lengths. Velocities have units of length per time, like cm/s. So when calculating
a radius in cm, we multiply a velocity with units of cm/s × a time measured in
seconds, and the units of seconds cancels, leaving a length unit (cm).

We are now ready to calculate the Volume of the Universe, V = 4πR3/3. It
may be easier for you to break this into two parts, multiplying out 4/3 × π, and
then taking R3, and then multiplying those two numbers. [Remember, π = 3.14.]

Volume of Universe = 4/3 ×π × R3 =

× =

cm3
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12. Tying it all together: figuring out the average density of the Universe (at least
that contained within galaxies–astronomers believe there is more “dark” matter
in the Universe than the regular matter that we can see contained in galaxies!).
We have just calculated the Volume of the Universe, and we have already calcu-
lated the Mass of all of the galaxies in the Universe. Now we take the final step,
and calculate the Average Galactic Matter Density of the Universe (3 points):

Average Density of the Universe = MUniverse/VUniverse =

( gm)/( cm3) =

gm/cm3

13. The mass of a single hydrogen atom is 1.7 x 10−24 gm. Compare your answer
for the average density of the Universe to the mass of a single hydrogen atom.
[Hint: the average amount of mass (in gm) of 1 cm3 of the Universe is simply
the density you just calculated, but you drop the cm3 of the units on density to
get gm.] Are they similar? What does this imply about the Universe, is it full
of stuff, or mostly empty?
(3 points)
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10.5 Summary (35 points)

Please summarize the important concepts discussed in this lab. Your summary should
include a brief discussion of

• direct measurement vs. estimation

• error estimates in both direct measurement and estimation

• Consider the importance of the galaxy counting results discussed in lab. Since
the Hubble Deep Field was taken in a presumably empty part of the sky, what
is the significance of finding so many galaxies in this picture?

• Use the concepts discussed in this lab to estimate the total number of stars that
you can see in the night sky by going out at night and doing some counting and
estimating. Describe your method as well as the number you get and provide
some estimate of your uncertainty in the number.

• Think back to a time before you did this lab, would you have expected the
answer to question #13? Our Universe has many surprises!

Use complete sentences, and proofread your summary before handing in the lab.

10.6 Possible Quiz Questions

1. What is meant by the term “estimation”?

2. Why do scientists use estimation?

3. How many degrees are in a circle?

4. What is an “arcminute”?

5. What is the “Hubble Deep Field”?

10.7 Extra Credit (ask your TA for permission before at-
tempting, 5 points)

In question #7, you estimated the number of galaxies in the Universe. In question
#10 you found that a typical galaxy contains 50 billion stars. Thus, you can now
estimate how many stars there are in the Universe. Recently, some mathematicians
have estimated that there are between 7 × 1019 and 7 × 1022 grains of sand on all of
the Earth’s beaches–that is every single beach on every single island and continent
on the Earth. Obviously, this is a difficult estimate to make, and thus their estimate
is quite uncertain. How would you begin to estimate the number of sand grains on
the Earth’s beaches? What factors need to be taken into account?
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Compare the number of stars in the Universe, with the number of grains of sand
on the planet Earth. How do they compare? We still do not know the average number
of planets that are found around an average star. It is probably safe to assume that
10% of all stars have at least one planet orbiting them. If so, how many planets are
there in the Universe?
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Name:

Date:

11 Hubble’s Law: Finding the Age of the Universe

11.1 Introduction

In your lecture sessions (or the lab on spectroscopy), you will find out that an ob-
ject’s spectrum can be used to determine the temperature and chemical composition
of that object. A spectrum can also be used to find out how fast an object is moving
by measuring the Doppler shift. In this lab you will learn how the velocity of an
object can be found from its spectrum, and how Hubble’s Law uses the Doppler shift
to determine the distance scale of the Universe.

• Goals: to discuss Doppler Shift and Hubble’s Law, and to use these concepts to
determine the age of the Universe

• Materials: galaxy spectra, ruler, calculator

11.2 Doppler Shift

You have probably noticed that when an ambulance passes by you, the sound of its
siren changes. As it approaches, you hear a high, whining sound which switches to
a deeper sound as it passes by. This change in pitch is referred to as the Doppler
shift. To understand what is happening, let’s consider a water bug treading water in
a pond, as in Figure 11.1.

Figure 11.1: A waterbug, treading water.

The bug’s kicking legs are making waves in the water. The bug is moving forward
relative to the water, so the waves in front of him get compressed, and the waves be-
hind him get stretched out. In other words, the frequency of waves increases in front
of him, and decreases behind him. In wavelength terms, the wavelength is shorter
in front of him, and longer behind him. Sound also travels in waves, so when the
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ambulance is approaching you, the frequency is shifted higher, so the pitch (not the
volume) is higher. After it has passed you, the frequency is Doppler shifted to a lower
pitch as the ambulance moves away from you. You hear the pitch change because
to your point of view the relative motion of the ambulance has changed. First it
was moving toward you, then away from you. The ambulance driver won’t hear any
change in pitch, because for her the relative motion of the ambulance hasn’t changed.

The same thing applies to light waves. When a light source is moving away from
you, its wavelength is longer, or the color of the light moves toward the red end of the
spectrum. A light source moving toward you shows a (color)
shift.

This means that we can tell if an object is moving toward or away from us by
looking at the change in its spectrum. In astronomy we do this by measuring the
wavelengths of spectral lines. We’ve already learned how each element has a unique
fingerprint of spectral lines, so if we look for this fingerprint and notice it is displaced
slightly from where we expect it to be, we know that the source must be moving to
produce this displacement. We can find out how fast the object is moving by using
the Doppler shift formula:

∆λ

λo
=
v

c

where ∆λ is the wavelength shift you measure, λo is the rest wavelength1 (the one
you’d expect to find if the source wasn’t moving), v is the radial velocity (velocity
toward or away from us), and c is the speed of light (3× 105 km/s).

In order to do this, you just take the spectrum of your object and compare the
wavelengths of the lines you see with the rest wavelengths of lines that you know
should be there. For example, we would expect to see lines associated with hydrogen
so we might use this set of lines to determine the motion of an object. Here is an
example:

Exercise 1. Doppler Shift (10 points)
If we look at the spectrum of a star, we know that there will probably be hydrogen
lines. We also know that one hydrogen line always appears at 6563Å, but we find the
line in the star’s spectrum at 6570Å. Let’s calculate the Doppler shift:

a) First, is the spectrum of the star redshifted or blueshifted (do we observe a longer
or shorter wavelength than we would expect)?

1For this lab we will be measuring wavelengths in Ångstroms. 1.0 Å= 1.0 × 10−10 m.
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b) Calculate the wavelength shift: ∆λ = (6570Å− 6563Å)

∆λ = Å

c) What is its radial velocity? Use the Doppler shift formula:

∆λ

λo
=
v

c

v = km/s

A way to check your answer is to look at the sign of the velocity. Positive means
redshift, and negative means blueshift.

Einstein told us that nothing can go faster than the speed of light. If you have
a very high velocity object moving at close to the speed of light, this formula would
give you a velocity faster than light! Consequently, this formula is not always correct.
For very high velocities you need to use a different formula, the relativistic Doppler
shift formula, but in this lab we won’t need it.

11.3 Hubble’s Law

In the 1920’s Hubble and Slipher found that there is a relationship between the red-
shifts of galaxies and how far away they are (don’t confuse this with the ways we
find distances to stars, which are much closer). This means that the further away a
galaxy is, the faster it is moving away from us. This seems like a strange idea, but it
makes sense if the Universe is expanding.

The relation between redshift and distance turns out to be very fortunate for as-
tronomers, because it provides a way to find the distances to far away galaxies. The
formula we use is known as Hubble’s Law:

v = H × d

where v is the radial velocity, d is the distance (in Mpc), and H is called the Hubble
constant and is expressed in units of km/(s × Mpc). Hubble’s constant is basically
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the expansion rate of the Universe.

The problem with this formula is that the precise value of H is not known! If we
take galaxies of known distance and try to find H, the values range from 50 to 100
km/(s × Mpc). By using the incredible power of the Hubble Space Telescope, the
current value of the H is near 75 km/(s × Mpc). Let’s do an example illustrating
how astronomers are trying to determine H.

Exercise 2. The Hubble Constant (15 points)
In this exercise you will determine a value of the Hubble constant based on direct
measurements. The figure below has spectra from five different galaxy clusters. At
the top of this figure is the spectrum of the Sun for comparison. For each cluster,
the spectrum of the brightest galaxy in the cluster is shown to the right of the image
of the cluster (usually dominated by a single, bright galaxy). Above and below these
spectra, you’ll note five, short vertical lines that look like bar codes you might find
on groceries. These are comparison spectra, the spectral lines which are produced for
elements here on earth. If you look closely at the galaxy spectra, you can see that
there are several dark lines going through each of them. The left-most pair of lines
correspond to the “H and K” lines from calcium (for the Sun and for Virgo = Cluster
#1, these can be found on the left edge of the spectrum). Are these absorption or
emission lines? (Hint: How are they appearing in the galaxies’ spectra?)

Now we’ll use the shift in the calcium lines to determine the recession velocities
of the five galaxies. We do this by measuring the change in position of a line in the
galaxy spectrum with respect to that of the comparison spectral lines above and be-
low each galaxy spectrum. For this lab, measure the shift in the “K” line of calcium
(the left one of the pair) and write your results in the table below (Column B). At
this point you’ve figured out the shift of the galaxies’ lines as they appear in the
picture. Could we use this alone to determine the recession velocity? No, we need to
determine what shift this corresponds to for actual light. In Column C, convert your
measured shifts into Ångstroms by using the conversion factor 19.7 Å/mm (this
factor is called the “plate scale”, and is similar to the scale on a map that allows you
to convert distances from inches to miles–you can determine this yourself using the
separation of the H and K lines = 34.8 Å).

Earlier in the lab we learned the formula for the Doppler shift. Your results in
Column C represent the values of ∆λ. We expect to find the center of the calcium
K line at λo = 3933.0 Å. Thus, this is our value of λ. Using the formula for the
Doppler shift along with your figures in Column C, determine the recession velocity
for each galaxy. The speed of light is, c = 3 × 105 km/sec. Write your results in
Column D. For each galaxy, divide the velocity (Column D) by the distances provided
in Column E. Enter your results in Column F.

The first galaxy cluster, Virgo, has been done for you. Go through the calcula-
tions for Virgo to check and make sure you understand how to proceed for the other
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galaxies. Show all of your work on a separate piece of paper and turn in
that paper with your lab.

Now we have five galaxies from which to determine the Hubble constant, H. Are
your values for the Hubble constant somewhere between 50 and 100 km/(s × Mpc)?
Why do you think that all of your values are not the same? The answer is simple:
human error. It is only possible to measure the shift in each picture to a certain
accuracy. For Virgo the shift is only about 1 mm, but it is difficult with a ruler and
naked eye to measure such a small length to a high precision. A perfect measurement
would give the “correct” answer (but note that there is always another source of un-
certainty: the accuracy of the distances used in this calculation!).
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A B C D E F
Galaxy Cluster Measured Redshift Velocity Distance Value of H

shift (mm) (Angstroms) (km/s) (Mpc) (km/s/Mpc)
1. Virgo 0.9 17.7 1,352 20 67.6
2. Ursa Major 110
3. Corona Borealis 180
4. Bootes 300
5. Hydra 490

11.4 The Age of the Universe

The expansion of the Universe is a result of the Big Bang. Since everything is flying
apart, it stands to reason that in the past everything was much closer together. With
this idea, we can use the expansion rate to determine how long things have been
expanding - in other words, the age of the Universe! As an example, suppose you
got in your car and started driving up to Albuquerque. Somewhere around T or C,
you look at your watch and wonder what time you left Las Cruces. You know you’ve
driven about 75 miles and have been going 75 miles per hour, so you easily determine
you must have left about an hour ago. For the age of the Universe, we essentially
do the same thing to figure out how long ago the Universe started. This is assuming
that the expansion rate has always been the same, which is probably not true (by
analogy, maybe you weren’t always driving at 75 mph on your way to T or C). The
gravitational force of the galaxies in the Universe pulling on each other would slow
the expansion down. However, we can still use this method to get a rough estimate
of the age of the Universe.

Exercise 3. Age Calculation (15 points)
The Hubble constant is expressed in units of km/(s × Mpc). Since km and Mpc
are both units of distance, we can cancel them out and express H in terms of 1/sec.
Simply convert the Mpc into km, and cancel the units of distance. The conversion
factor is 1 Mpc = 3.086×1019 km.

a) Add up the five values for the Hubble constant written in the table of Exercise 2,
and divide the result by five. This represents the average value of the Hubble constant
you have determined.
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H = km
s×Mpc

b) Convert your value of H into units of 1/s:

H = 1
s

c) Now convert this into seconds by inverting it (1/H from part b):

Age of the Universe = s

d) How many years is this? (convert from seconds to years by knowing there are 60
seconds in a minute, 60 minutes in an hour, etc.)

Age of the Universe= yrs

11.5 How Do we Measure Distances to Galaxies and Galaxy
Clusters?

In exercise #2, we made it easy for you by listing the distances to each of the galaxy
clusters. If you know the distance to a galaxy, and its redshift, finding the Hubble
constant is easy. But how do astronomers find these distances? In fact, it is a very
difficult problem. Why? Because the further away an object is from us, the fainter
it appears to be. For example, if we were to move the Sun out to a distance of 20 pc,
it would no longer be visible to the naked eye! Note that the closest galaxy cluster
is at a distance of 20 Mpc, a million times further than this! Even with the largest
telescopes in the world, we could not see the Sun at such a great distance (and Virgo
is the closest big cluster of galaxies).

Think about this question: Why do objects appear to get dimmer with distance?
What is actually happening? Answer: The light from a source spreads out as it
travels. This is shown in Fig. 11.2. If you draw (concentric) spheres around a light
source, the amount of energy passing through a square meter drops with distance as
1/R2. Why? The area of a sphere is 4πR2. The innermost sphere in Fig. 11.2 has a
radius of “1” m, its area is therefore 4π m2. If the radius of the next sphere out is
“2” m, then its area is 16π m2. It has 4× the area of the inner sphere. Since all of
the light from the light bulb passes through both spheres, its intensity (energy/area)
must drop. The higher the intensity, the brighter an object appears to our eyes. The
lower the intensity, the fainter it appears. Again, refer to Fig. 11.2, as shown there,
the amount of energy passing through 1 square of the inner sphere passes through 4
squares for the next sphere out, and 9 squares (for R = 3) for the outermost sphere.
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The light from the light bulb spreads out as it travels, and the intensity drops as 1/R2.

Figure 11.2: If you draw concentric spheres around a light source (we have cut the
spheres in half for clarity), you can see how light spreads out as it travels. The light
passing through one square on the inner sphere passes through four squares for a
sphere that has twice the radius, and nine squares for a sphere that has three times
the radius of the innermost sphere. This is because the area of a sphere is 4πR2.

Exercise 4. Inverse Square Law If the apparent brightness (or intensity) of an
object is proportional to 1/R2 (where R = distance), how much brighter is an object
in the Virgo cluster, compared to a similar object in Hydra? [Hint: how many times
further is Hydra than Virgo?] (2 points)

An object in Hydra is hundreds of times fainter than the same object in Virgo!
Obviously, astronomers need to find an object that is very luminous if they are go-
ing to measure distances to galaxies that are as far, or even further away than the
Hydra cluster. You have probably heard of a supernova. Supernovae (supernovae is
the plural of supernova) are tremendous explosions that rip stars apart. There are
two types of supernova, Type I is due to the collapse of a white dwarf into neutron
star, while a Type II is the explosion of a massive star that often produces a black
hole. Astronomers use Type I supernovae to measure distances since their explosions
always release the same amount of energy. Type I supernovae have more than one bil-
lion times the Sun’s luminosity when they explode! Thus, we can see them a long way.

Let’s work an example. In 1885 a supernova erupted in the nearby Andromeda
galaxy. Andromeda is a spiral galaxy that is similar in size to our Milky Way located
at a distance of about 1 Mpc. The 1885 supernova was just barely visible to the
naked eye, but would have been easy to see with a small telescope (or even binocu-
lars). Astronomers use telescopes to collect light, and see fainter objects better. The
largest telescopes in the world are the Keck telescopes in Hawaii. These telescopes
have diameters of 10 meters, and collect 6 million times as much light as the naked
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eye (thus, if you used an eyepiece on a Keck telescope, you could “see” objects that
are 6 million times fainter than those visible to your naked eye).

Using the fact that brightness decreases as 1/R2, how far away (in Mpc) could the
Keck telescope see a supernova like the one that blew up in the Andromeda galaxy?
(2 points). [Hint: here we reverse the equation. You are given the brightness ratio,
6 million, and must solve for the distance ratio, remembering that Andromeda has a
distance of 1 Mpc!]

Could the Keck telescopes see a supernova in Hydra? (1 point)

11.6 Questions

1. Explain how the Doppler shift works. (5 points)

2. In the water bug analogy, we know what happens to waves in front of and
behind the bug, but what happens to the waves directly on his left and right
(hint: is the bug’s motion compressing these waves, stretching them out, or not
affecting them at all)? With this in mind, what can the Doppler shift tell us
about the motion of a star which is moving only at a right angle to our line of
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sight? (5 points)

3. Why did we use an average value for the Hubble constant, determined from five
separate galaxies, in our age of the Universe calculation? What other important
factor in our determination of the age of the Universe did we overlook? (Hint:
It was mentioned in the lab.) (5 points)

4. Does the age of the Universe that you calculated seem reasonable? Check your
textbook or the World Wide Web for the ages estimated for globular clusters,
some of the oldest known objects in the Universe. How does our result compare?
Can any object in the Universe be older than the Universe itself? (5 points)
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11.7 Summary (35 points)

Summarize what you learned from this lab. Your summary should include:

• An explanation of how light is used to find the distance to a galaxy

• From the knowledge you have gained from the last several labs, list and explain
all of the information that can be found in an object’s spectrum.

Use complete sentences, and proofread your summary before handing in the lab.

Possible Quiz Questions
1) What is a spectrum, and what is meant by wavelength?
2) What is a redshift?
3) What is the Hubble expansion law?

11.8 Extra Credit (ask your TA for permission before at-
tempting, 5 points)

Recently, it has been discovered that the rate of expansion of the Universe appears
to be accelerating. This means that the Hubble “constant” is not really constant!
Using the world wide web, or recent magazine articles, read about the future of the
Universe if this acceleration is truly occurring. Write a short essay summarizing the
fate of stars and galaxies in an accelerating Universe.
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12 APPENDIX A: Fundamental Quantities

There are various ways to describe the world in which we live. Some are qualitative
and others are quantitative. Qualitative descriptions describe aspects of objects or
events such as texture, and use words like ‘rough’, ‘smooth’, ‘flat’ etc. Qualitative
descriptions cannot be described numerically. One would not say that you looked
tired with a value of 3.0 unless someone had first set up some kind of numerical scale
to measure just how tired you were; tiredness is not something we measure quan-
titatively. On the other hand, length is a dimension that can be described either
qualitatively or quantitatively; one can qualitatively describe an object as long, or
one can quantitatively describe it as 10 feet in length.

All quantitative measurements are made in some kind of unit. Length, for exam-
ple, can be measured in units of meters, feet, miles, etc. Other fundamental metric
units are the kilogram (a measure of mass) and the second (a unit of time). Other
units of measurement are combinations of these fundamental units. An example of a
combination is velocity, expressed in units of meters per second (m/s) which measures
how far something has moved in a given direction over a given period of time.

In astronomical studies, one sometimes uses units which express rather large val-
ues in the fundamental metric units. An example of this would be the Solar Mass
unit (notated as M�). The mass of our Sun is, by definition, one Solar Mass or about
1,900,000,000,000,000,000,000,000,000,000 kilograms. A star with 10 times as much
mass can be written as 10 M�; this is clearly more convenient to write than a number
with all those zeros! Other units used in astronomy are the light year (ly), parsec
(pc), and the astronomical unit (A.U.), all of which are units of distance. The unit
you choose to use depends on the situation, and personal preferences. When describ-
ing distances in the solar system the astronomical unit is typically used since it is
the average distance from the Sun to the Earth. In describing distances to stars the
parsec or light year is usually used.

As described in the introductory lab, the metric system allows easy expression of
large multiples of the fundamental units via prefixes. For example, 1,000 meters is
called a kilometer and is usually written as 1km.

As described in section 1.4 scientists also use a notation system called scientific no-
tation for representing very large or very small numbers without having to write lots of
digits. As an example of how large numbers can get in science let’s look at the mass of
Mars. Using Kepler’s laws of motion to study Mars’ moons, astronomers have deter-
mined that Mars has a mass approximately equal to 640,000,000,000,000,000,000,000
kilograms. Now you can see that it is rather inconvenient to write down all those
zeroes, and it is confusing to use the prefixes above. Imagine how much more mass
there is in the Galaxy and you can see that we need an easy way to write very big
(or very small) numbers. This leads us to the concept of Scientific Notation.
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13 APPENDIX B: Accuracy and Significant Dig-

its

The number of significant digits in a number is the number of non-zero digits in the
number. For example, the number 12.735 has five significant digits; the number 100
has 1. When computing numbers, people today often use calculators since they give
us precise answers quickly. Unfortunately, many times they give us answers that are
unnecessarily and sometimes unrealistically precise. In other words, they give us as
many significant digits as can fit on the calculator screen. In most cases, you will
not know the numbers you are plugging in to the calculator to this precise of a value,
and therefore will get an answer that has too many significant digits to be correct.
This will be the case for your astronomy labs this semester. In general, you should
only report the accuracy of a calculation with the number of significant digits of the
least certain (smallest number of significant digits) of any of the numbers which were
the input into the calculation. For example, if you are dividing 13.2 by 6.8, although
your calculator gives 1.94117647, you should only report two significant figures (i.e.
1.9), since that is the number of significant figures in the input number 6.8.
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14 APPENDIX C: Unit Conversions

Very often, scientists convert numbers from one set of units to another. In fact, not
only do scientists do this, but you do it as well! For example, if someone asks you
how tall you are, you could tell them your height in feet or even in inches. If someone
said they are 72 inches tall, and 12 inches equals 1 foot, then you know they are 6
feet tall! This is nothing more than a simple conversion from units of inches to units
of feet. Another everyday unit conversion is from minutes to hours, and vice versa.
If it takes you 30 minutes to drive from Las Cruces to Anthony, then it takes you 0.5
hours. We know this because 60 minutes are equal to 1 hour. However, how can we
write these unit conversions, with all the steps, so that we are sure we are converting
units correctly (especially when the units are foreign to us (i.e. parsecs, AU, etc.))?

Let us begin with our everyday conversion of inches to feet. Say a person informs
you that they are 72 inches tall and you want to know how many feet tall they are.
First, we need to know the unit conversion from inches to feet (12 inches = 1 foot).
We then write the following equation:

72 inches× 1 foot

12 inches
= 6 feet (6)

Note how the inches units cancel (one in the numerator and one in the denomina-
tor) and the units which remain are feet. As for the mathematics, simply use normal
rules of division (72/12 = 6) and you wind up with the correct result.

The second example, minutes to hours, can be performed using the method above,
but what if someone asked you how many days there are in 30 minutes? You will
need to use 2 unit conversions to do this (60 minutes = 1 hours, 24 hours = 1 day).
Here is how you may perform the unit conversion:

30 minutes× 1 hour

60 minutes
× 1 day

24 hours
≈ 0.0208 days = 2.08× 10−2 days (7)

Again, note that the minute units have cancelled as well as the hour units, leaving
only days.

You have now seen how to perform single and multiple unit conversions. The key
to performing these correctly is to 1) make sure you have all the conversion factors
you need, 2) write out all of the steps and make sure the units cancel, and 3) think
about your final result and ask whether the final result makes sense (is 30 minutes a
small fraction of a day? Does 72 inches equal 6 feet?).
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15 APPENDIX D: Uncertainties and Errors

A very important concept in science is the idea of uncertainties and errors. Whenever
measurements are made, they are never made absolutely perfectly. For example, when
you measure your height, you probably measure it only to roughly the nearest tenth
of an inch or so. No one says they are exactly 71.56789123 inches tall, for example,
because they don’t make the measurement this accurately. Similarly, if someone says
they are 71 inches tall, we don’t really know that they are exactly 71 inches tall;
they may, for example, be 71.002 inches tall, but their measurement wasn’t accurate
enough to draw this distinction.

In astronomy, since the objects we study are so far away, measurements can be
very hard to make. As a result, the uncertainties of the measurements can be quite
large. For example, astronomers are still trying to refine measurements of the distance
to the nearest galaxy. At the current time, we think the distance is about 160,000
light years, but the uncertainty in this measurement is something like 20,000 light
years, so the true distance may be as little as 140,000 light years or as much as
180,000 light years. When you do science, you have to always assess the errors on
your measurements.
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16 Observatory Worksheets

You must visit campus observatory twice this semester. You will need to take four of
the observatory worksheets with you each time you go.
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