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1 Introduction to the Astronomy 110 Labs

1.1 Introduction

Astronomy is a physical science. Just like biology, chemistry, geology, and physics, as-
tronomers collect data, analyze that data, attempt to understand the object/subject
they are looking at, and submit their results for publication. Along the way as-
tronomers use all of the mathematical techniques and physics necessary to understand
the objects they examine. Thus, just like any other science, a large number of math-
ematical tools and concepts are needed to perform astronomical research. In today’s
introductory lab, you will review and learn some of the most basic concepts neces-
sary to enable you to successfully complete the various laboratory exercises you will
encounter later this semester. When needed, the weekly laboratory exercise you are
performing will refer back to the examples in this introduction—so keep the worked
examples you will do today with you at all times during the semester to use as a
reference when you run into these exercises later this semester (in fact, on some occa-
sions your TA might have you redo one of the sections of this lab for review purposes).

1.2 The Metric System

Like all other scientists, astronomers use the metric system. The metric system is
based on powers of 10, and has a set of measurement units analogous to the English
system we use in everyday life here in the US. In the metric system the main unit
of length (or distance) is the meter, the unit of mass is the kilogram, and the unit
of liquid volume is the liter. A meter is approximately 40 inches, or about 4” longer
than the yard. Thus, 100 meters is about 111 yards. A liter is slightly larger than a
quart (1.0 liter = 1.101 qt). On the Earth’s surface, a kilogram = 2.2 pounds. In the
Astronomy 110 labs you will mostly encounter units of length/distance (variations on
the meter).

As you have almost certainly learned, the metric system uses prefixes to change
scale. For example, one thousand meters is one “kilometer”. One thousandth of a
meter is a “millimeter”. The prefixes that you will hear in this class are listed in
Table 1.1.

In the metric system 3,600 meters is equal to 3.6 kilometers; while 0.8 meter is
equal to 80 centimeters, which in turn equals 800 millimeters, etc. In the lab exercises
this semester we will encounter a large range in sizes and distances. For example, you
will measure the sizes of some objects/things in class in millimeters, talk about the
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Table 1.1: Metric System Prefixes
Prefix Name Prefix Symbol Prefix Value

Giga G 1,000,000,000 (one billion)
Mega M 1,000,000 (one million)
kilo k 1,000 (one thousand)
centi c 0.01 (one hundredth)
milli m 0.001 (one thousandth)
micro µ 0.0000001 (one millionth)
nano n 0.0000000001 (one billionth)

wavelength of spectral lines in nanometers, and measure the sizes of features on the
Sun that are larger than 100,000 kilometers.

1.2.1 Beyond the Metric System

When we talk about the sizes or distances to those objects beyond the surface of the
Earth, we begin to encounter very large numbers. For example, the average distance
from the Earth to the Moon is 384,000,000 meters or 384,000 kilometers (km). The
distances found in astronomy are usually so large that we have to switch to a unit
of measurement that is much larger than the meter, or even the kilometer. In and
around the solar system, astronomers use “Astronomical Units”. An Astronomical
Unit is the mean distance between the Earth and the Sun. One Astronomical Unit
(AU) = 149,600,000 km. For example, Jupiter is about 5 AU from the Sun, while
Pluto’s average distance from the Sun is 39 AU. With this change in units, it is easy
to talk about the distance to other planets. It is more convenient to say that Saturn
is 9.54 AU away than it is to say that Saturn is 1,427,184,000 km from Earth.

When we talk about how far away the stars are in our own Milky Way galaxy, we
have to switch to an even larger unit of distance to keep the numbers manageable. One
such unit is the “light year”. A light year (ly) is the distance light travels in one year.
The speed of light is enormous: 300,000 kilometers per second (km/s) or 186,000 miles
per second. Since one year contains 31,536,000 seconds, one ly = 9,460,000,000,000
km! The nearest star, Alpha Centauri, is 4.2 ly away. The Milky Way galaxy is more
than 150,000 light years across. The nearest galaxy with a size similar to that of
the Milky Way, the Andromeda Galaxy (see the sky chart for November online at
http://astronomy.nmsu.edu/tharriso/skycharts.html for a picture and description of
the Andromeda galaxy), is 2.2 million light years away!

In the Parallax lab we will introduce the somewhat odd unit of “parsecs”. For
now, we will simply state that one parsec (“pc”) = 3.26 ly. Thus, Alpha Centauri is
1.28 pc away. During the semester you will frequently hear the term parsec, kiloparsec
(1 thousand pc), Megaparsec (1 million pc), and even the term Gigaparsec (1 billion
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pc). Astronomers have borrowed the prefixes from the metric system to construct
their own shorthand way of describing extremely large distances. The Andromeda
Galaxy is at a distance of 700,000 pc = 0.7 Megaparsecs (“Mpc”).

1.2.2 Changing Units and Scale Conversion

Changing units (like those in the previous paragraph) and/or scale conversion is some-
thing you must master during this semester. The concept is fairly straightforward,
so let’s just work some examples.

1. Convert 34 meters into centimeters

Answer: Since one meter = 100 centimeters, 34 meters = 3,400 centimeters.

2. Convert 34 kilometers into meters:

3. If one meter equals 40 inches, how many meters are there in 400 inches?

4. How many centimeters are there in 400 inches?

5. How many parsecs are there in 1.4 Mpc?

6. How many AU are there in 299,200,000 km?

One technique that you will use this semester involves measuring a photograph or
image with a ruler, and converting the measured number into a real unit of size (or
distance). One example of this technique is reading a road map. In Figure 1.1 is a
map of the state of New Mexico. Down at the bottom left hand corner is a scale in
Miles and Kilometers.

Map Exercises (using a ruler determine):

1) How many kilometers is it from Las Cruces to Albuquerque?

2) What is the distance in miles from the border with Arizona to the border with
Texas if you were to drive along I40?

3) If you were to drive 100 km/hr (kph), how long would it take you to go from Las
Cruces to Albuquerque?
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Figure 1.1: A map of New Mexico.

4) If one mile = 1.6 km, how many miles per hour (mph) is 100 kph?
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1.2.3 Squares, Square Roots, and Exponents

In several of the labs this semester you will encounter squares, cubes, and square
roots. Let us briefly review what is meant by such terms as squares, cubes, square
roots and exponents. The square of a number is simply that number times itself: 3
× 3 = 32 = 9. The exponent is the little number “2” above the three. 52 = 5 × 5
= 25. The exponent tells you how many times to multiply that number by itself: 84

= 8 × 8 × 8 × 8 = 4096. The square of a number simply means the exponent is 2
(three squared = 32), and the cube of a number means the exponent is three (four
cubed = 43). Here are some examples:

1) 72 = 7 × 7 = 49

2) 75 = 7 × 7 × 7 × 7 × 7 = 16,807

3) The cube of 9 = 93 = 9 × 9 × 9 = 729

4) The exponent of 1216 is 16

5) 2.563 = 2.56 × 2.56 × 2.56 = 16.777

Your turn:

7) 63 =

8) 44 =

9) 3.12 =

The concept of a square root is easy to understand, but is much harder to calculate
(we usually have to use a calculator). The square root of a number is that number
whose square is the number: the square root of 4 = 2 because 2 × 2 = 4. The square
root of 9 is 3 (9 = 3 × 3). The mathematical operation of a square root is usually
represented by the symbol “

√
”, as in

√
9 = 3. But mathematicians also represent

square roots using a fractional exponent of one half: 91/2 = 3. Likewise, the cube
root of a number is represented as 271/3 = 3 (3 × 3 × 3 = 27). The fourth root
is written as 161/4 (= 2), and so on. We will encounter square roots in the algebra
section shortly. Here are some examples/problems:

1)
√

100 = 10

2) 10.53 = 10.5 × 10.5 × 10.5 = 1157.625
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3) Verify that the square root of 17 (
√

17 = 171/2) = 4.123

1.3 Scientific Notation

The range in numbers encountered in Astronomy is enormous: from the size of sub-
atomic particles, to the size of the entire universe. You are certainly comfortable
with numbers like ten, one hundred, three thousand, ten million, a billion, or even a
trillion. But what about a number like one million trillion? Or, four thousand one
hundred and fifty six million billion? Such numbers are too cumbersome to handle
with words. Scientists use something called “Scientific Notation” as a short hand
method to represent very large and very small numbers. The system of scientific no-
tation is based on the number 10. For example, the number 100 = 10 × 10 = 102. In
scientific notation the number 100 is written as 1.0 × 102. Here are some additional
examples:

Ten = 10 = 1 × 10 = 1.0 × 101

One hundred = 100 = 10 × 10 = 102 = 1.0 × 102

One thousand = 1,000 = 10 × 10 × 10 = 103 = 1.0 × 103

One million = 1,000,000 = 10 × 10 × 10 × 10 × 10 × 10 = 106 = 1.0 ×106

Ok, so writing powers of ten is easy, but how do we write 6,563 in scientific nota-
tion? 6,563 = 6563.0 = 6.563 × 103. To figure out the exponent on the power of ten,
we simply count-up the numbers to the left of the decimal point, but do not include
the left-most number. Here are some other examples:

1,216 = 1216.0 = 1.216 × 103

8,735,000 = 8735000.0 = 8.735000 × 106

1,345,999,123,456 = 1345999123456.0 = 1.345999123456 × 1012

Your turn! Work the following examples:

121 = 121.0 =

735,000 =

999,563,982 =

Now comes the sometimes confusing issue: writing very small numbers. First,
lets look at powers of 10, but this time in fractional form. The number 0.1 = 1/10.
In scientific notation we would write this as 1 × 10−1. The negative number in the
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exponent is the way we write the fraction 1/10. How about 0.001? We can rewrite
0.001 as 1/10 × 1/10 × 1/10 = 0.001 = 1 × 10−3. Do you see where the exponent
comes from? Starting at the decimal point, we simply count over to the right of the
first digit that isn’t zero to determine the exponent. Here are some examples:

0.121 = 1.21 × 10−1

0.000735 = 7.35 × 10−4

0.0000099902 = 9.9902 × 10−6

Your turn:

0.0121 =

0.0000735 =

0.0000000999 =

−0.121 =

There is one issue we haven’t dealt with, and that is when to write numbers in
scientific notation. It is kind of silly to write the number 23.7 as 2.37 × 101, or 0.5
as 5.0 × 10−1. You use scientific notation when it is a more compact way to write a
number to insure that its value is quickly and easily communicated to someone else.
For example, if you tell someone the answer for some measurement is 0.0033 meter,
the person receiving that information has to count over the zeros to figure out what
that means. It is better to say that the measurement was 3.3 × 10−3 meter. But
telling someone the answer is 215 kg, is much easier than saying 2.15 × 102 kg. It
is common practice that numbers bigger than 10,000 or smaller than 0.01 are best
written in scientific notation.

How do we multiply and divide two numbers in Scientific Notation? It is a three
step process: 1) multiply (divide) the numbers out front, 2) add (subtract) the expo-
nents, and 3) reconstruct the number in Scientific Notation. It is easier to just show
some examples:

(2 × 104) × (3 × 105) = (2 × 3) × 10(4+5) = 6 × 109

(2.00 × 104) × (3.15 × 107) = (2.00 × 3.15) × 10(4+7) = 6.30 × 1011
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(2 × 104) × (6 × 105) = (2 × 6) × 10(4+5) = 12 × 109 = 1.2 × 1010

(6 × 104) ÷ (3 × 108) = (6 ÷ 3) × 10(4−8) = 2 × 10−4

(3.0 × 104) ÷ (6.0 × 108) = (3.0 ÷ 6.0) × 10(4−8) = 0.5 × 10−4 = 5.0 × 10−5

Your turn:

(6 × 103) × (3 × 102) =

(8.0 × 1018) ÷ (4.0 × 1014) =

Note how we rewrite the exponent to handle cases where the number out front is
greater than 10, or less than 1.

1.4 Algebra

Because this is a freshman laboratory, we do not use high-level mathematics. But we
do sometimes encounter a little basic algebra and we need to briefly review the main
concepts. Algebra deals with equations and “unknowns”. Unknowns, or “variables”,
are usually represented as a letter in an equation: y = 3x + 7. In this equation both
“x” and “y” are variables. You do not know what the value of y is until you assign a
value to x. For example, if x = 2, then y = 13 (y = 3×2 + 7 = 13). Here are some
additional examples:

y = 5x + 3, if x=1, what is y? Answer: y = 5×1 + 3 = 5 + 3 = 8

q = 3t + 9, if t=5, what is q? Answer: q = 3×5 + 9 = 15 + 9 = 24

y = 5x2 + 3, if x=2, what is y? Answer: y = 5×(22) + 3 = 5×4 + 3 = 20 + 3 = 23

What is y if x = 6 in this equation: y = 3x + 13 =

These problems were probably easy for you, but what happens when you have
this equation: y = 7x + 14, and you are asked to figure out what x is if y = 21? Let’s
do this step by step, first we re-write the equation:

y = 7x + 14
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We now substitute the value of y (y = 21) into the equation:

21 = 7x + 14

Now, if we could get rid of that 14 we could solve this equation! Subtract 14 from
both sides of the equation:

21 − 14 = 7x + 14 − 14 (this gets rid of that pesky 14!)

7 = 7x (divide both sides by 7)

x = 1

Ok, your turn: If you have the equation y = 4x + 16, and y = 8, what is x?

We frequently encounter more complicated equations, such as y= 3x2 + 2x − 345,
or p2 = a3. There are ways to solve such equations, but that is beyond the scope of
our introduction. However, you do need to be able to solve equations like this: y2 =
3x + 3 (if you are told what “x” is!). Let’s do this for x = 11:

Copy down the equation again:

y2 = 3x + 3

Substitute x = 11:

y2 = 3×11 + 3 = 33 + 3 = 36

Take the square root of both sides:

(y2)1/2 = (36)1/2

y = 6

Did that make sense? To get rid of the square of a variable you have to take the
square root: (y2)1/2 = y. So to solve for y2, we took the square root of both sides of
the equation.

1.5 Graphing and/or Plotting

The last subject we want to discuss is graphing data, and the equation of a line. You
probably learned in high school about making graphs. Astronomers frequently use
graphs to plot data. You have probably seen all sorts of graphs, such as the plot of
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the performance of the stock market shown in the next figure (Fig. 1.2). A plot like
this shows the history of the stock market versus time. The “x” (horizontal) axis
represents time, and the “y” (vertical) axis represents the value of the stock market.
Each place on the curve that shows the performance of the stock market is represented
by two numbers, the date (x axis), and the value of the index (y axis). For example,
on May 10 of 2004, the Dow Jones index stood at 10,000.
Plots like this require two data points to represent each point on the curve or in the

Figure 1.2: The change in the Dow Jones stock index over one year (from April 2003
to July 2004).

plot. For comparing the stock market you need to plot the value of the stocks versus
the date. We call data of this type an “ordered pair”. Each data point requires a
value for x (the date) and y (the value of the Dow Jones index). In the next table
is the data for how the temperature changes with altitude near the Earth’s surface.
As you climb in altitude the temperature goes down (this is why high mountains can
have snow on them year round, even though they are located in warm areas). The
data in this table is plotted in Figure 1.3.

Looking at the plot of temperature versus altitude, we see that a straight line can
be drawn through the data points. We can figure out the equation of this straight
line and then predict the temperature at any altitude. In high school you learned
that the equation of a line was y = mx + b, where “m” is the “slope” of the line, and
“b” is the “y intercept”. The y intercept is simply where the line crosses the y-axis.
In the plot, the y intercept is at 59.0, so b = 59. So, we can rewrite the equation for
this line as y = mx + 59.0. How can we figure out m? Simple, pick any other data
point and solve the equation–let’s choose the data at 10,000 feet. The temperature
(y) is 23.3 at 10,000 feet (= x): 23.3 = 10000m + 59. Subtracting 59 from both sides
shows 23.3 − 59 = 10000x + 59 − 59, or −35.7 = 10000m. To find m we simply
divide both sides by 10,000: m = −35.7/10000 = −0.00357. In scientific notation,
the equation for the temperature vs. altitude is y = −3.57×10−3x + 59.0. Why is the
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Table 1.2: Temperature vs. Altitude
Altitude Temperature

(feet) oF
0 59.0

2,000 51.9
4,000 44.7
6,000 37.6
8,000 30.5
10,000 23.3
12,000 16.2
14,000 9.1
16,000 1.9

slope negative? What is happening here? As you go up in altitude, the temperature
goes down. Increasing the altitude (x) decreases the temperature (y). Thus, the slope
has to be negative.

Using the equation for temperature versus altitude just derived, what is the
temperature at 20,000 feet?

Ok, your turn. On the blank sheet of graph paper in Figure 1.4 plot the equation
y = 2x + 2 for x = 1, 2, 3, and x = −1, −2, and −3. What is the y intercept of this
line? What is its slope?

While straight lines and perfect data show up in science from time to time, it
is actually quite rare for real data to fit perfectly on top of a line. One reason
for this is that all measurements have error. So, even though there might be a
perfect relationship between x and y, the noise of the measurements introduces small
deviations from the line. In other cases, the data are approximated by a line. This
is sometimes called a best-fit relationship for the data. An example of a plot with
real data is shown in Figure 1.5. In this case, the data suggest that there is a general
trend between the absolute magnitude (MV) and the Orbital Period in certain types of
binary stars. But some other factor plays a role in determining the final relationship,
so some stars do not fit very well, and hence their absolute magnitudes cannot be
estimated very well from their orbital periods (the vertical bars associated with each
data point are error bars, and represent the measurement error).
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Figure 1.3: The change in temperature as you climb in altitude with the data from
the preceding table. At sea level (0 ft altitude) the surface temperature is 59oF. As
you go higher in altitude, the temperature goes down.
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Figure 1.4: Graph paper for plotting the equation y = 2x + 2.
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Figure 1.5: The relationship between absolute visual magnitude (MV) and Orbital
Period for cataclysmic variable binary stars.
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Name:

Date:

2 The Origin of the Seasons

2.1 Introduction

The origin of the science of Astronomy owes much to the need of ancient peoples
to have a practical system that allowed them to predict the seasons. It is critical
to plant your crops at the right time of the year—too early and the seeds may not
germinate because it is too cold, or there is insufficient moisture. Plant too late and
it may become too hot and dry for a sensitive seedling to survive. In ancient Egypt,
they needed to wait for the Nile to flood. The Nile river would flood every July, once
the rains began to fall in Central Africa.

Thus, the need to keep track of the annual cycle arose with the development of
agriculture, and this required an understanding of the motion of objects in the sky.
The first devices used to keep track of the seasons were large stone structures (such
as Stonehenge) that used the positions of the rising Sun or Moon to forecast the
coming seasons. The first recognizable calendars that we know about were devel-
oped in Egypt, and appear to date from about 4,200 BC. Of course, all a calendar
does is let you know what time of year it is—it does not provide you with an un-
derstanding of why the seasons occur! The ancient people had a variety of models
for why seasons occurred, but thought that everything, including the Sun and stars,
orbited around the Earth. Today, you will learn the real reason why there are seasons.

• Goals: To learn why the Earth has seasons.

• Materials: a meter stick, a mounted globe, an elevation angle apparatus, string,
a halogen lamp, and a few other items

2.2 The Seasons

Before we begin today’s lab, let us first talk about the seasons. In New Mexico we
have rather mild Winters, and hot Summers. In the northern parts of the United
States, however, the winters are much colder. In Hawaii, there is very little difference
between Winter and Summer. As you are also aware, during the Winter there are
fewer hours of daylight than in the Summer. In Table 2.1 we have listed seasonal
data for various locations around the world. Included in this table are the average
January and July maximum temperatures, the latitude of each city, and the length
of the daylight hours in January and July. We will use this table in Exercise #2.

In Table 2.1, the “N” following the latitude means the city is in the northern hemi-
sphere of the Earth (as is all of the United States and Europe) and thus North of the
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Table 2.1: Season Data for Select Cities
City Latitude January Ave. July Ave. January July

(Degrees) Max. Temp. Max. Temp. Daylight Daylight
Hours Hours

Fairbanks, AK 64.8N -2 72 3.7 21.8
Minneapolis, MN 45.0N 22 83 9.0 15.7
Las Cruces, NM 32.5N 57 96 10.1 14.2

Honolulu, HI 21.3N 80 88 11.3 13.6
Quito, Ecuador 0.0 77 77 12.0 12.0

Apia, Samoa 13.8S 80 78 11.1 12.7
Sydney, Australia 33.9S 78 61 14.3 10.3

Ushuaia, Argentina 54.6S 57 39 17.3 7.4

equator. An “S” following the latitude means that it is in the southern hemisphere,
South of the Earth’s equator. What do you think the latitude of Quito, Ecuador
(0.0o) means? Yes, it is right on the equator. Remember, latitude runs from 0.0o at
the equator to ±90o at the poles. If north of the equator, we say the latitude is XX
degrees north (or sometimes “+XX degrees”), and if south of the equator we say XX
degrees south (or “−XX degrees”). We will use these terms shortly.

Now, if you were to walk into the Mesilla Valley Mall and ask a random stranger
“why do we have seasons?”, the most common answer you would get is “because we are
closer to the Sun during Summer, and further from the Sun in Winter”. This answer
suggests that the general public (and most of your classmates) correctly understand
that the Earth orbits the Sun in such a way that at some times of the year it is closer
to the Sun than at other times of the year. As you have (or will) learn in your lecture
class, the orbits of all planets around the Sun are ellipses. As shown in Figure 2.1 an
ellipse is sort of like a circle that has been squashed in one direction. For most of the
planets, however, the orbits are only very slightly elliptical, and closely approximate
circles. But let us explore this idea that the distance from the Sun causes the seasons.

Figure 2.1: An ellipse with the two “foci” identified. The Sun sits at one focus, while
the other focus is empty. The Earth follows an elliptical orbit around the Sun, but
not nearly as exaggerated as that shown here!
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Exercise #1. In Figure 2.1, we show the locations of the two “foci” of an ellipse
(foci is the plural form of focus). We will ignore the mathematical details of what
foci are for now, and simply note that the Sun sits at one focus, while the other
focus is empty (see the Kepler Law lab for more information if you are interested).
A planet orbits around the Sun in an elliptical orbit. So, there are times when the
Earth is closest to the Sun (“perihelion”), and times when it is furthest
(“aphelion”). When closest to the Sun, at perihelion, the distance from the Earth to
the Sun is 147,056,800 km (“147 million kilometers”). At aphelion, the distance
from the Earth to the Sun is 152,143,200 km (152 million km).

With the meter stick handy, we are going to examine these distances. Obviously,
our classroom is not big enough to use kilometers or even meters so, like a road
map, we will have to use a reduced scale: 1 cm = 1 million km. Now, stick a piece
of tape on the table and put a mark on it to set the starting point (the location of
the Sun!). Carefully measure out the two distances (along the same direction) and
stick down two more pieces of tape, one at the perihelion distance, one at the
aphelion distance (put small dots/marks on the tape so you can easily see them).

1) Do you think this change in distance is big enough to cause the seasons? Explain
your logic. (3 points)

Take the ratio of the aphelion to perihelion distances: . (1 point)

Given that we know objects appear bigger when we are closer to them, let’s take a
look at the two pictures of the Sun you were given as part of the materials for this
lab. One image was taken on January 23rd, 1992, and one was taken on the 21st of
July 1992 (as the “date stamps” on the images show). Using a ruler, carefully
measure the diameter of the Sun in each image:

Sun diameter in January image = mm.

Sun diameter in July image = mm.

3) Take the ratio of bigger diameter / smaller diameter, this = . (1
point)

4) How does this ratio compare to the ratio you calculated in question #2? (2
points)
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5) So, since an object appears bigger when we get closer to it, when is the Earth
closest to the Sun? (2 points)

6) At that time of year, what season is it in Las Cruces? What do you conclude
about the statement “the seasons are caused by the changing distance between the
Earth and the Sun”? (4 points)

Exercise #2. Characterizing the nature of the seasons at different locations.
For this exercise, we are going to be exclusively using the data contained in Table
2.1. First, let’s look at Las Cruces. Note that here in Las Cruces, our latitude is
+32.5o. That is we are about one third of the way from the equator to the pole. In
January our average high temperature is 57oF, and in July it is 96oF. It is hotter in
Summer than in Winter (duh!). Note that there are about 10 hours of daylight in
January, and about 14 hours of daylight in July.

7) Thus, for Las Cruces, the Sun is “up” longer in July than in January. Is the same
thing true for all cities with northern latitudes? Yes or No ? (1 point)

Ok, let’s compare Las Cruces with Fairbanks, Alaska. Answer these questions by
filling in the blanks:

8) Fairbanks is the North Pole than Las Cruces. (1
point)

9) In January, there are more daylight hours in . (1
point)

10) In July, there are more daylight hours in . (1 point)

Now let’s compare Las Cruces with Sydney, Australia. Answer these questions by
filling in the blanks:

11) While the latitudes of Las Cruces and Sydney are similar, Las Cruces is
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of the Equator, and Sydney is of the Equator. (2
points)

12) In January, there are more daylight hours in . (1
point)

13) In July, there are more daylight hours in . (1 point)

14) Summarizing: During the Wintertime (January) in both Las Cruces and
Fairbanks there are fewer daylight hours, and it is colder. During July, it is warmer
in both Fairbanks and Las Cruces, and there are more daylight hours. Is this also
true for Sydney?: . (1 point)

15) In fact, it is Wintertime in Sydney during , and Summertime
during . (2 points)

16) From Table 2.1, I conclude that the times of the seasons in the Northern
hemisphere are exactly to those in the Southern hemisphere. (1
point)

From Exercise #2 we learned a few simple truths, but ones that maybe you have
never thought about. As you move away from the equator (either to the north or to
the south) there are several general trends. The first is that as you go closer to the
poles it is generally cooler at all times during the year. The second is that as you
get closer to the poles, the amount of daylight during the Winter decreases, but the
reverse is true in the Summer.

The first of these is not always true because the local climate can be moderated
by the proximity to a large body of water, or depend on the local elevation. For
example, Sydney is milder than Las Cruces, even though they have similar latitudes:
Sydney is on the eastern coast of Australia (South Pacific ocean) and has a climate
like that of San Diego, California (which has a similar latitude and is on the coast
of the North Pacific). Quito, Ecuador has a mild climate even though it sits right
on the equator due to its high elevation–it is more than 9,000 feet above sea level,
similar to the elevation of Cloudcroft, New Mexico.

The second conclusion (amount of daylight) is always true—as you get closer and
closer to the poles, the amount of daylight during the Winter decreases, while the
amount of daylight during the Summer increases. In fact, for all latitudes north of
66.5o, the Summer Sun is up all day (24 hrs of daylight, the so called “land of the
midnight Sun”) for at least one day each year, while in the Winter there are times
when the Sun never rises! 66.5o is a special latitude, and is given the name “Arctic
Circle”. Note that Fairbanks is very close to the Arctic Circle, and the Sun is up for
just a few hours during the Winter, but is up for nearly 22 hours during the Summer!
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The same is true for the southern hemisphere: all latitudes south of −66.5o experi-
ence days with 24 hours of daylight in the Summer, and 24 hours of darkness in the
Winter. −66.5o is called the “Antarctic Circle”. But note that the seasons in the
Southern Hemisphere are exactly opposite to those in the North. During Northern
Winter, the North Pole experiences 24 hours of darkness, but the South Pole has 24
hours of daylight.

2.3 The Spinning, Revolving Earth

It is clear from the preceding subsection that your latitude determines both the annual
variation in the amount of daylight, and the time of the year when you experience
Spring, Summer, Autumn and Winter. To truly understand why this occurs requires
us to construct a model. One of the key insights to the nature of the motion of the
Earth is shown in the long exposure photographs of the nighttime sky (Figs. 2.2, 2.3).

Figure 2.2: Pointing a camera at the North Star (Polaris, the bright dot near the
center) and exposing for about one hour, the stars appear to move in little arcs. The
center of rotation is called the “North Celestial Pole”, and Polaris is very close to
this position. The dotted/dashed trails in this photograph are the blinking lights of
airplanes that passed through the sky during the exposure.
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Figure 2.3: Here is a composite of many different exposures (each about one hour
in length) of the night sky over Vienna, Austria taken throughout the year (all four
seasons). The images have been composited using a software package like Photoshop
to demonstrate what would be possible if it stayed dark for 24 hrs, and you could
actually obtain a 24 hour exposure (which can only be truly done north of the Arctic
circle). Polaris is the the smallest circle at the very center.

What is going on in these photos? The easiest explanation is that the Earth is
spinning, and as you keep your camera shutter open, the stars appear to move in
“orbits” around the North Pole. You can duplicate this motion by sitting in a chair
that is spinning—the objects in the room appear to move in circles around you. The
further they are from the “axis of rotation”, the bigger arcs they make, and the faster
they move. An object straight above you, exactly on the axis of rotation of the chair,
does not move. As apparent in Figure 2.3, the “North Star” Polaris is not perfectly
on the axis of rotation at the North Celestial Pole, but it is very close (the fact that
there is a bright star near the pole is just random chance). Polaris has been used
as a navigational aid for centuries, as it allows you to determine the direction of North.
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As the second photograph shows, the direction of the spin axis of the Earth does
not change during the year—it stays pointed in the same direction all of the time!
If the Earth’s spin axis moved, the stars would not make perfect circular arcs, but
would wander around in whatever pattern was being executed by the Earth’s axis.

Now, as shown back in Figure 2.1, we said the Earth orbits (“revolves” around)
the Sun on an ellipse. We could discuss the evidence for this, but to keep this lab
brief, we will just assume this fact. So, now we have two motions: the spinning and
revolving of the Earth. It is the combination of these that actually give rise to the
seasons, as you will find out in the next exercise.

Exercise #3: In this part of the lab, we will be using the mounted globes, a
piece of string, a ruler, and the halogen desk lamp. Warning: while the globe
used here is made of fairly inexpensive parts, it is very time consuming
to make. Please be careful with your globe, as the paint can be easily
damaged. Make sure that the piece of string you have is long enough to go slightly
more than halfway around the globe at the equator–if your string is not that long,
ask your TA for a longer piece of string. As you may have guessed, this globe is a
model of the Earth. The spin axis of the Earth is actually tilted with respect to the
plane of its orbit by 23.5o.

Set up the experiment in the following way. Place the halogen lamp at one end of
the table (shining towards the closest wall so as to not affect your classmates), and
set the globe at a distance of 1.5 meters from the lamp. After your TA has dimmed
the classroom lights, turn on the halogen lamp to the highest setting (if there is a
dim, and a bright setting–some lights only have one brightness setting). Note these
lamps get very hot, so be careful. For this lab, we will define the top of the globe as
the Northern hemisphere, and the bottom as the Southern hemisphere.

For the first experiment, arrange the globe so the tilted axis of the “Earth” is
pointed perpendicular (or at a “right” angle = 90◦) to the direction of the “Sun”.
Use your best judgement. Now adjust the height of the desk lamp so that the light
bulb in the lamp is at the same approximate height as the equator.

There are several colored lines on the globe that form circles which are concentric
with the axis, and these correspond to certain latitudes. The red line is the equator,
the black line is 45o North, while the two blue lines are the Arctic (top) and
Antarctic (bottom) circles.

Experiment #1: Note that there is an illuminated half of the globe, and a dark
half of the globe. The line that separates the two is called the “terminator”. It is
the location of sunrise or sunset. Using the piece of string, we want to measure the
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length of each arc that is in “daylight” and the length that is in “night”. This is
kind of tricky, and requires a bit of judgement as to exactly where the terminator is
located. So make sure you have a helper to help keep the string exactly on the line
of constant latitude, and get the advice of your lab partners of where the terminator
is (it is probably best to do this more than once). Fill in the following table (4
points):

Table 2.2: Position #1: Equinox Data Table
Latitude Length of Daylight Arc Length of Nightime Arc
Equator

45oN
Arctic Circle

Antarctic Circle

As you know, the Earth rotates once every 24 hours (= 1 Day). Each of the lines of
constant latitude represents a full circle that contains 360o. But note that these
circles get smaller in radius as you move away from the equator. The circumference
of the Earth at the equator is 40,075 km (or 24,901 miles). At a latitude of 45o, the
circle of constant latitude has a circumference of 28,333 km. At the arctic circles,
the circle has a circumference of only 15,979 km. This is simply due to our use of
two coordinates (longitude and latitude) to define a location on a sphere.

Since the Earth is a solid body, all of the points on Earth rotate once every 24
hours. Therefore, the sum of the daytime and nighttime arcs you measured equals
24 hours! So, fill in the following table (2 points):

Table 2.3: Position #1: Length of Night and Day
Latitude Daylight Hours Nighttime Hours
Equator

45oN
Arctic Circle

Antarctic Circle

18) The caption for Table 2.2 was “Equinox data”. The word Equinox means “equal
nights”, as the length of the nighttime is the same as the daytime. While your
numbers in Table 2.3 may not be exactly perfect, what do you conclude about the
length of the nights and days for all latitudes on Earth in this experiment? Is this
result consistent with the term Equinox? (3 points)

Experiment #2: Now we are going to re-orient the globe so that the (top) polar
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axis points exactly away from the Sun and repeat the process of Experiment #1.
Fill in the following two tables (4 points):

Table 2.4: Position #2: Solstice Data Table
Latitude Length of Daylight Arc Length of Nightime Arc
Equator

45oN
Arctic Circle

Antarctic Circle

Table 2.5: Position #2: Length of Night and Day
Latitude Daylight Hours Nighttime Hours
Equator

45oN
Arctic Circle

Antarctic Circle

19) Compare your results in Table 2.5 for +45o latitude with those for Minneapolis
in Table 2.1. Since Minneapolis is at a latitude of +45o, what season does this
orientation of the globe correspond to? (2 points)

20) What about near the poles? In this orientation what is the length of the
nighttime at the North pole, and what is the length of the daytime at the South
pole? Is this consistent with the trends in Table 2.1, such as what is happening at
Fairbanks or in Ushuaia? (4 points)

Experiment #3: Now we are going to approximate the Earth-Sun orientation six
months after that in Experiment #2. To do this correctly, the globe and the lamp
should now switch locations. Go ahead and do this if this lab is confusing you—or
you can simply rotate the globe apparatus by 180o so that the North polar axis is
tilted exactly towards the Sun. Try to get a good alignment by looking at the
shadow of the wooden axis on the globe. Since this is six months later, it easy to
guess what season this is, but let’s prove it! Complete the following two tables (4
points):
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Table 2.6: Position #3: Solstice Data Table
Latitude Length of Daylight Arc Length of Nightime Arc
Equator

45oN
Arctic Circle

Antarctic Circle

Table 2.7: Position #3: Length of Night and Day
Latitude Daylight Hours Nighttime Hours
Equator

45oN
Arctic Circle

Antarctic Circle

21) As in question #19, compare the results found here for the length of daytime
and nighttime for the +45o degree latitude with that for Minneapolis. What season
does this appear to be? (2 points)

22) What about near the poles? In this orientation, how long is the daylight at the
North pole, and what is the length of the nighttime at the South pole? Is this
consistent with the trends in Table 2.1, such as what is happening at Fairbanks or
in Ushuaia? (2 points)

23) Using your results for all three positions (Experiments #1, #2, and #3) can you
explain what is happening at the Equator? Does the data for Quito in Table 2.1
make sense? Why? Explain. (3 points)
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We now have discovered the driver for the seasons: the Earth spins on an
axis that is inclined to the plane of its orbit (as shown in Figure 2.4). But the spin
axis always points to the same place in the sky (towards Polaris). Thus, as the Earth
orbits the Sun, the amount of sunlight seen at a particular latitude varies: the amount
of daylight and nighttime hours change with the seasons. In Northern Hemisphere
Summer (approximately June 21st) there are more daylight hours; at the start of the
Autumn (∼ Sept. 20th) and Spring (∼ Mar. 21st), the days are equal to the nights.
In the Winter (approximately Dec. 21st) the nights are long, and the days are short.
We have also discovered that the seasons in the Northern and Southern hemispheres
are exactly opposite. If it is Winter in Las Cruces, it is Summer in Sydney (and vice
versa). This was clearly demonstrated in our experiments and is shown in Figure 2.4.

Figure 2.4: The Earth’s spin axis always points to one spot in the sky, and it is tilted
by 23.5o to its orbit. Thus, as the Earth orbits the Sun, the illumination changes with
latitude: sometimes the North Pole is bathed in 24 hours of daylight, and sometimes
in 24 hours of night. The exact opposite is occurring in the Southern Hemisphere.

The length of the daylight hours is one reason why it is hotter in Summer than
in Winter: the longer the Sun is above the horizon the more it can heat the air, the
land and the seas. But this is not the whole story. At the North Pole, where there
is constant daylight during the Summer, the temperature barely rises above freezing!
Why? We will discover the reason for this now.

2.4 Elevation Angle and the Concentration of Sunlight

We have found out part of the answer to why it is warmer in summer than in winter:
the length of the day is longer in summer. But this is only part of the story–you
would think that with days that are 22 hours long during the summer, it would be
hot in Alaska and Canada during the summer, but it is not. The other effect caused
by Earth’s tilted spin axis is the changing height that the noontime Sun attains dur-
ing the various seasons. Before we discuss why this happens (as it takes quite a lot
of words to describe it correctly), we want to explore what happens when the Sun is
higher in the sky. First, we need to define two new terms: “altitude”, or “elevation
angle”. As shown in the diagram in Fig. 2.5.

The Sun is highest in the sky at noon everyday. But how high is it? This, of
course, depends on both your latitude and the time of year. For Las Cruces, the Sun
has an altitude of 81◦ on June 21st. On both March 21st and September 20th, the
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Figure 2.5: Altitude (“Alt”) is simply the angle between the horizon, and an object
in the sky. The smallest this angle can be is 0◦, and the maximum altitude angle is
90◦. Altitude is interchangeably known as elevation.

altitude of the Sun at noon is 57.5◦. On December 21st its altitude is only 34◦. Thus,
the Sun is almost straight overhead at noon during near the Summer Solstice, but
very low during the Winter Solstice. What difference can this possibly make? We now
explore this using the other apparatus, the elevation angle device, that accompanies
this lab (the one with the protractor and flashlight).

Exercise #4: Using the elevation angle apparatus, we now want to measure what
happens when the Sun is at a higher or lower elevation angle. We mimic this by using
a flashlight mounted on an arm that allows you to move it to just about any elevation
angle. It is difficult to exactly model the Sun using a flashlight, as the light source
is not perfectly uniform. But here we do as well as we can. Play around with the
device. Turn on the flashlight and move the arm to lower and higher angles. How
does the illumination pattern change? Does the illuminated pattern appear to change
in brightness as you change angles? Explain. (2 points)

Ok, now we are ready to begin. Take a blank sheet of graph paper and tape
it to the base so we have a more reflective surface. Now arrange the apparatus so

27



the elevation angle is 90◦. The illuminated spot should look circular. Measure the
diameter of this circle using a ruler.

The diameter of the illuminated circle is cm.

Do you remember how to calculate the area of a circle? Does the formula πR2

ring a bell?

The area of the circle of light at an elevation angle of 90◦ is
cm2. (1 point)

Now, as you should have noticed at the beginning of this exercise, as you move
the flashlight to lower and lower elevations, the circle changes to an ellipse. Now
adjust the elevation angle to be 45◦. Ok, time to introduce you to two new terms:
the major axis and minor axis of an ellipse. Both are shown in Fig. 3.4. The minor
axis is the smallest diameter, while the major axis is the longest diameter of an ellipse.

Figure 2.6: An ellipse with the major and minor axes defined.

Ok, now measure the lengths of the major (“a”) and minor (“b”) axes at 45◦:

The major axis has a length of a = cm, while the minor axis has a

length of b = cm.

The area of an ellipse is simply (π × a × b)/4. So, the area of

the ellipse at an elevation angle of 45◦ is: cm2 (1 point).

So, why are we making you measure these areas? Note that the black tube restricts
the amount of light coming from the flashlight into a cylinder. Thus, there is only a
certain amount of light allowed to come out and hit the paper. Let’s say there are
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“one hundred units of light” emitted by the flashlight. Now let’s convert this to how
many units of light hit each square centimeter at angles of 90◦ and 45◦.

At 90◦, the amount of light per centimeter is 100 divided by the area of circle

= units of light per cm2 (1 point).

At 45◦, the amount of light per centimeter is 100 divided by the area of the ellipse

= units of light per cm2 (1 point).

Since light is a form of energy, at which elevation angle is there more energy per
square centimeter? Since the Sun is our source of light, what happens when the Sun
is higher in the sky? Is its energy more concentrated, or less concentrated? How
about when it is low in the sky? Can you tell this by looking at how bright the
ellipse appears versus the circle? (4 points)

As we have noted, the Sun never is very high in the arctic regions of the Earth. In
fact, at the poles, the highest elevation angle the Sun can have is 23.5◦. Thus, the
light from the Sun is spread out, and cannot heat the ground as much as it can at a
point closer to the equator. That’s why it is always colder at the Earth’s poles than
elsewhere on the planet.

You are now finished with the in-class portion of this lab. To understand why the
Sun appears at different heights at different times of the year takes a little explanation
(and the following can be read at home unless you want to discuss it with your TA).
Let’s go back and take a look at Fig. 2.3. Note that Polaris, the North Star, barely
moves over the course of a night or over the year—it is always visible. If you had a
telescope and could point it accurately, you could see Polaris during the daytime too.
Polaris never sets for people in the Northern Hemisphere since it is located very close
to the spin axis of the Earth. Note that as we move away from Polaris the circles
traced by other stars get bigger and bigger. But all of the stars shown in this photo
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are always visible—they never set. We call these stars “circumpolar”. For every lati-
tude on Earth, there is a set of circumpolar stars (the number decreases as you head
towards the equator).

Now let us add a new term to our vocabulary: the “Celestial Equator”. The Celes-
tial Equator is the projection of the Earth’s Equator onto the sky. It is a great circle
that spans the night sky that is directly overhead for people who live on the Equator.
As you have now learned, the lengths of the days and nights at the equator are nearly
always the same: 12 hours. But we have also learned that during the Equinoxes, the
lengths of the days and the nights everywhere on Earth are also twelve hours. Why?
Because during the equinoxes, the Sun is on the Celestial Equator. That means it is
straight overhead (at noon) for people who live in Quito, Ecuador (and everywhere
else on the equator). Any object that is on the Celestial Equator is visible for 12
hours per day from everywhere on Earth. To try to understand this, take a look
at Fig. 2.7. In this figure is shown the celestial geometry explicitly showing that
the Celestial Equator is simply the Earth’s equator projected onto the sky (left hand
diagram). But the Earth is large, and to us, it appears flat. Since the objects in the
sky are very far away, we get a view like that shown in the right hand diagram: we
see one hemisphere of the sky, and the stars, planets, Sun and Moon rise in the east,
and set in the west. But note that the Celestial Equator exactly intersects East and
West. Only objects located on the Celestial Equator rise exactly due East, and set
exactly due West. All other objects rise in the northeast or southeast and set in the
northwest or the southwest. Note that in this diagram (for a latitude of 40◦) all stars
that have latitudes (astronomers call them “Declinations”, or “dec”) above 50◦ never
set–they are circumpolar.

Figure 2.7: The Celestial Equator is the circle in the sky that is straight overhead
(“the zenith”) of the Earth’s equator. In addition, there is a “North Celestial” pole
that is the projection of the Earth’s North Pole into space (that almost points to
Polaris). But the Earth’s spin axis is tilted by 23.5◦ to its orbit, and the Sun appears
to move above and below the Celestial Equator over the course of a year.

What happens is that during the year, the Sun appears to move above and below
the Celestial Equator. On, or about, March 21st the Sun is on the Celestial Equa-
tor, and each day after this it gets higher in the sky (for locations in the Northern
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Hemisphere) until June 21st. After that date it retraces its steps until it reaches the
Autumnal Equinox (September 20th), after which it is then South of the Celestial
Equator. It is lowest in the sky on December 21st. This is simply due to the fact that
the Earth’s axis is tilted with respect to its orbit, and this tilt does not change. You
can see this geometry by going back to the illuminated globe model used in Exercise
#3. If you stick a pin at some location on the globe away from the equator, turn
on the halogen lamp, and slowly rotate the entire apparatus around (while keeping
the pin facing the Sun) you will notice that the shadow of the pin will increase and
decrease in size. This is due to the apparent change in the elevation angle of the “Sun”.
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2.5 Summary (35 points)

Summarize the important points covered in this lab. Questions you should answer
include:

• Why does the Earth have seasons?

• What is the origin of the term “Equinox”?

• What is the origin of the term “Solstice”?

• Most people in the United States think the seasons are caused by the changing
distance between the Earth and the Sun. Why do you think this is?

• What type of seasons would the Earth have if its spin axis was exactly perpen-
dicular to its orbital plane? Make a diagram like Fig. 2.4.

• What type of seasons would the Earth have if its spin axis was in the plane of
its orbit? (Note that this is similar to the situation for the planet Uranus.)

• What do you think would happen if the Earth’s spin axis wobbled randomly
around on a monthly basis? Describe how we might detect this.

2.6 Possible Quiz Questions

1) What does the term “latitude” mean?
2) What is meant by the term “Equator”?
3) What is an ellipse?
4) What are meant by the terms perihelion and aphelion?
5) If it is summer in Australia, what season is it in New Mexico?

2.7 Extra Credit (ask your TA for permission before at-
tempting, 5 points)

We have stated that the Earth’s spin axis constantly points to a single spot in the
sky. This is actually not true. Look up the phrase “precession of the Earth’s spin
axis”. Describe what is happening and the time scale of this motion. Describe what
happens to the timing of the seasons due to this motion. Some scientists believe that
precession might help cause ice ages. Describe why they believe this.
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Name:

Date:

3 Kepler’s Laws and Gravitation

3.1 Introduction

Throughout human history, the motion of the planets in the sky was a mystery: why
did some planets move quickly across the sky, while other planets moved very slowly?
Even two thousand years ago it was apparent that the motion of the planets was very
complex. For example, Mercury and Venus never strayed very far from the Sun, while
the Sun, the Moon, Mars, Jupiter and Saturn generally moved from the west to the
east against the background stars (at this point in history, both the Moon and the
Sun were considered “planets”). The Sun appeared to take one year to go around
the Earth, while the Moon only took about 30 days. The other planets moved much
more slowly. In addition to this rather slow movement against the background stars
was, of course, the daily rising and setting of these objects. How could all of these
motions occur? Because these objects were important to the cultures of the time,
even foretelling the future using astrology, being able to predict their motion was
considered vital.

The ancient Greeks had developed a model for the Universe in which all of the
planets and the stars were each embedded in perfect crystalline spheres that revolved
around the Earth at uniform, but slightly different speeds. This is the “geocentric”,
or Earth-centered model. But this model did not work very well–the speed of the
planet across the sky changed. Sometimes, a planet even moved backwards! It was
left to the Egyptian astronomer Ptolemy (85 − 165 AD) to develop a model for the
motion of the planets (you can read more about the details of the Ptolemaic model
in your textbook). Ptolemy developed a complicated system to explain the motion
of the planets, including “epicycles” and “equants”, that in the end worked so well,
that no other models for the motions of the planets were considered for 1500 years!
While Ptolemy’s model worked well, the philosophers of the time did not like this
model–their Universe was perfect, and Ptolemy’s model suggested that the planets
moved in peculiar, imperfect ways.

In the 1540’s Nicholas Copernicus (1473 − 1543) published his work suggesting
that it was much easier to explain the complicated motion of the planets if the Earth
revolved around the Sun, and that the orbits of the planets were circular. While
Copernicus was not the first person to suggest this idea, the timing of his publication
coincided with attempts to revise the calendar and to fix a large number of errors
in Ptolemy’s model that had shown up over the 1500 years since the model was first
introduced. But the “heliocentric” (Sun-centered) model of Copernicus was slow to
win acceptance, since it did not work as well as the geocentric model of Ptolemy.
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Johannes Kepler (1571 − 1630) was the first person to truly understand how the
planets in our solar system moved. Using the highly precise observations by Tycho
Brahe (1546 − 1601) of the motions of the planets against the background stars,
Kepler was able to formulate three laws that described how the planets moved. With
these laws, he was able to predict the future motion of these planets to a higher pre-
cision than was previously possible. Many credit Kepler with the origin of modern
physics, as his discoveries were what led Isaac Newton (1643 − 1727) to formulate
the law of gravity. Today we will investigate Kepler’s laws and the law of gravity.

3.2 Gravity

Gravity is the fundamental force governing the motions of astronomical objects. No
other force is as strong over as great a distance. Gravity influences your everyday life
(ever drop a glass?), and keeps the planets, moons, and satellites orbiting smoothly.
Gravity affects everything in the Universe including the largest structures like super
clusters of galaxies down to the smallest atoms and molecules. Experimenting with
gravity is difficult to do. You can’t just go around in space making extremely mas-
sive objects and throwing them together from great distances. But you can model
a variety of interesting systems very easily using a computer. By using a computer
to model the interactions of massive objects like planets, stars and galaxies, we can
study what would happen in just about any situation. All we have to know are the
equations which predict the gravitational interactions of the objects.

The orbits of the planets are governed by a single equation formulated by Newton:

Fgravity =
GM1M2

R2
(1)

A diagram detailing the quantities in this equation is shown in Fig. 3.1. Here
Fgravity is the gravitational attractive force between two objects whose masses are M1

and M2. The distance between the two objects is “R”. The gravitational constant
G is just a small number that scales the size of the force. The most important
thing about gravity is that the force depends only on the masses of the two
objects and the distance between them. This law is called an Inverse Square
Law because the distance between the objects is squared, and is in the denominator
of the fraction. There are several laws like this in physics and astronomy.

Today you will be using a computer program called “Planets and Satellites” by
Eugene Butikov to explore Kepler’s laws, and how planets, double stars, and planets
in double star systems move. This program uses the law of gravity to simulate how
celestial objects move.
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Figure 3.1: The force of gravity depends on the masses of the two objects (M1, M2),
and the distance between them (R).

• Goals: to understand Kepler’s three laws and use them in conjunction with the
computer program “Planets and Satellites” to explain the orbits of objects in
our solar system and beyond

• Materials: Planets and Satellites program, a ruler, and a calculator

3.3 Kepler’s Laws

Before you begin the lab, it is important to recall Kepler’s three laws, the basic de-
scription of how the planets in our Solar System move. Kepler formulated his three
laws in the early 1600’s, when he finally solved the mystery of how planets moved in
our Solar System. These three (empirical) laws are:

I. “The orbits of the planets are ellipses with the Sun at one focus.”

II. “A line from the planet to the Sun sweeps out equal areas in equal intervals
of time.”

III. “A planet’s orbital period squared is proportional to its average distance from
the Sun cubed: P2 ∝ a3”

Let’s look at the first law, and talk about the nature of an ellipse. What is an
ellipse? An ellipse is one of the special curves called a “conic section”. If we slice
a plane through a cone, four different types of curves can be made: circles, ellipses,
parabolas, and hyperbolas. This process, and how these curves are created is shown
in Fig. 3.2.

Before we describe an ellipse, let’s examine a circle, as it is a simple form of an
ellipse. As you are aware, the circumference of a circle is simply 2πR. The radius, R,
is the distance between the center of the circle and any point on the circle itself. In
mathematical terms, the center of the circle is called the “focus”. An ellipse, as shown
in Fig. 3.3, is like a flattened circle, with one large diameter (the “major” axis) and
one small diameter (the “minor” axis). A circle is simply an ellipse that has identical
major and minor axes. Inside of an ellipse, there are two special locations, called
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Figure 3.2: Four types of curves can be generated by slicing a cone with a plane: a
circle, an ellipse, a parabola, and a hyperbola. Strangely, these four curves are also
the allowed shapes of the orbits of planets, asteroids, comets and satellites!

Figure 3.3: An ellipse with the major and minor axes identified.

“foci” (foci is the plural of focus, it is pronounced “fo-sigh”). The foci are special
in that the sum of the distances between the foci and any points on the ellipse are
always equal. Fig. 3.4 is an ellipse with the two foci identified, “F1” and “F2”.

Exercise #1: On the ellipse in Fig. 3.4 are two X’s. Confirm that that sum of
the distances between the two foci to any point on the ellipse is always the same
by measuring the distances between the foci, and the two spots identified with X’s.
Show your work. (2 points)

Exercise #2: In the ellipse shown in Fig. 3.5, two points (“P1” and “P2”) are
identified that are not located at the true positions of the foci. Repeat exercise #1,
but confirm that P1 and P2 are not the foci of this ellipse. (2 points)
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Figure 3.4: An ellipse with the two foci identified.

Figure 3.5: An ellipse with two non-foci points identified.

Now we will use the Planets and Satellites program to examine Kepler’s laws. It
is possible that the program will already be running when you get to your computer.
If not, however, you will have to start it up. If your TA gave you a CDROM, then
you need to insert the CDROM into the CDROM drive on your computer, and open
that device. On that CDROM will be an icon with the program name. It is also
possible that Planets and Satellites has been installed on the computer you are us-
ing. Look on the desktop for an icon, or use the start menu. Start-up the program,
and you should see a title page window, with four boxes/buttons (“Getting Started”,
“Tutorial”, “Simulations”, and “Exit”). Click on the “Simulations” button. We will
be returning to this level of the program to change simulations. Note that there are
help screens and other sources of information about each of the simulations we will
be running–do not hesitate to explore those options.

Exercise #3: Kepler’s first law. Click on the “Kepler’s Law button” and then the
“First Law” button inside the Kepler’s Law box. A window with two panels opens
up. The panel on the left will trace the motion of the planet around the Sun, while
the panel on the right sums the distances of the planet from the foci. Remember,
Kepler’s first law states “the orbit of a planet is an ellipse with the Sun at one focus”.
The Sun in this simulation sits at one focus, while the other focus is empty (but
whose location will be obvious once the simulation is run!).

At the top of the panel is the program control bar. For now, simply hit the “Go”
button. You can clear and restart the simulation by hitting “Restart” (do this as
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often as you wish). After hitting Go, note that the planet executes an orbit along the
ellipse. The program draws the “vectors” from each focus to 25 different positions
of the planet in its orbit. It draws a blue vector from the Sun to the planet, and a
yellow vector from the other focus to the planet. The right hand panel sums the blue
and yellow vectors. [Note: if your computer runs the simulation too quickly, or too
slowly, simply adjust the “Slow down/Speed Up” slider for a better speed.]

Describe the results that are displayed in the right hand panel for this first simulation.
(2 points).

Now we want to explore another ellipse. In the extreme left hand side of the
control bar is a slider to control the “Initial Velocity”. At start-up it is set to “1.2”.
Slide it up to the maximum value of 1.35 and hit Go.

Describe what the ellipse looks like at 1.35 vs. that at 1.2. Does the sum of the
vectors (right hand panel) still add up to a constant? (3 points)

Now let’s put the Initial Velocity down to a value of 1.0. Run the simulation.
What is happening here? The orbit is now a circle. Where are the two foci located?
In this case, what is the distance between the focus and the orbit equivalent to? (4
points)
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The point in the orbit where the planet is closest to the Sun is called “perihelion”,
and that point where the planet is furthest from the Sun is called “aphelion”. For a
circular orbit, the aphelion is the same as the perihelion, and can be defined to be
anywhere! Exit this simulation (click on “File” and “Exit”).

Exercise #4: Kepler’s Second Law: “A line from a planet to the Sun sweeps out
equal areas in equal intervals of time.” From the simulation window, click on the
“Second Law” after entering the Kepler’s Law window. Move the Initial Velocity
slide bar to a value of 1.2. Hit Go.

Describe what is happening here. Does this confirm Kepler’s second law? How?
When the planet is at perihelion, is it moving slowly or quickly? Why do you think
this happens? (4 points)

Look back to the equation for the force of gravity. You know from personal expe-
rience that the harder you hit a ball, the faster it moves. The act of hitting a ball is
the act of applying a force to the ball. The larger the force, the faster the ball moves
(and, generally, the farther it travels). In the equation for the force of gravity, the
amount of force generated depends on the masses of the two objects, and the distance
between them. But note that it depends on one over the square of the distance: 1/R2.
Let’s explore this “inverse square law” with some calculations.

• If R = 1, what does 1/R2 = ?

• If R = 2, what does 1/R2 = ?
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• If R = 4, what does 1/R2 = ?

What is happening here? As R gets bigger, what happens to 1/R2? Does 1/R2

decrease/increase quickly or slowly? (2 points)

The equation for the force of gravity has a 1/R2 in it, so as R increases (that
is, the two objects get further apart), does the force of gravity felt by the body get
larger, or smaller? Is the force of gravity stronger at perihelion, or aphelion? Newton
showed that the speed of a planet in its orbit depends on the force of gravity through
this equation:

V =
√

(G(Msun +Mplanet)(2/r − 1/a)) (2)

where “r” is the radial distance of the planet from the Sun, and “a” is the mean
orbital radius (the semi-major axis). Do you think the planet will move faster, or
slower when it is closest to the Sun? Test this by assuming that r = 0.5a at perihelion,
and r = 1.5a at aphelion, and that a=1! [Hint, simply set G(Msun + Mplanet) = 1 to
make this comparison very easy!]

Does this explain Kepler’s second law? (4 points)

What do you think the motion of a planet in a circular orbit looks like? Is there a
definable perihelion and aphelion? Make a prediction for what the motion is going to
look like–how are the triangular areas seen for elliptical orbits going to change as the
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planet orbits the Sun in a circular orbit? Why? (3 points)

Now let’s run a simulation for a circular orbit by setting the Initial Velocity to
1.0. What happened? Were your predictions correct? (3 points)

Exit out of the Second Law, and start-up the Third Law simulation.

Exercise 4: Kepler’s Third Law: “A planet’s orbital period squared is proportional
to its average distance from the Sun cubed: P2 ∝ a3”. As we have just learned, the
law of gravity states that the further away an object is, the weaker the force. We have
already found that at aphelion, when the planet is far from the Sun, it moves more
slowly than at perihelion. Kepler’s third law is merely a reflection of this fact–the
further a planet is from the Sun (“a”), the more slowly it will move. The more slowly
it moves, the longer it takes to go around the Sun (“P”). The relation is P2 ∝ a3,
where P is the orbital period in years, while a is the average distance of the planet
from the Sun, and the mathematical symbol for proportional is represented by “∝”.
To turn the proportion sign into an equal sign requires the multiplication of the a3

side of the equation by a constant: P2 = C × a3. But we can get rid of this constant,
“C”, by making a ratio. We will do this below.

In the next simulation, there will be two planets: one in a smaller orbit, which
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will represent the Earth (and has a = 1), and a planet in a larger orbit (where a is
adjustable). Start-up the Third Law simulation and hit Go. You will see that the
inner planet moves around more quickly, while the planet in the larger ellipse moves
more slowly. Let’s set-up the math to better understand Kepler’s Third Law. We
begin by constructing the ratio of of the Third Law equation (P2 = C × a3) for an
arbitrary planet divided by the Third Law equation for the Earth:

P 2
P

P 2
E

=
C × a3P
C × a3E

(3)

In this equation, the planet’s orbital period and average distance are denoted by
PP and aP , while the orbital period of the Earth and its average distance from the
Sun are PE and aE. As you know from from your high school math, any quantity
that appears on both the top and bottom of a fraction can be canceled out. So, we
can get rid of the pesky constant “C”, and Kepler’s Third Law equation becomes:

P 2
P

P 2
E

=
a3P
a3E

(4)

But we can make this equation even simpler by noting that if we use years for
the orbital period (PE = 1), and Astronomical Units for the average distance of the
Earth to the Sun (aE = 1), we get:

P 2
P

1
=
a3P
1

or P 2
P = a3P (5)

(Remember that the cube of 1, and the square of 1 are both 1!)
Let’s use equation (5) to make some predictions. If the average distance of Jupiter

from the Sun is about 5 AU, what is its orbital period? Set-up the equation:

P 2
J = a3J = 53 = 5× 5× 5 = 125 (6)

So, for Jupiter, P 2 = 125. How do we figure out what P is? We have to take the
square root of both sides of the equation:

√
P 2 = P =

√
125 = 11.2 years (7)

The orbital period of Jupiter is approximately 11.2 years. Your turn:

If an asteroid has an average distance from the Sun of 4 AU, what is its orbital period?
Show your work. (2 points)
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In the Third Law simulation, there is a slide bar to set the average distance from the
Sun for any hypothetical solar system body. At start-up, it is set to 4 AU. Run the
simulation, and confirm the answer you just calculated. Note that for each orbit of
the inner planet, a small red circle is drawn on the outer planet’s orbit. Count up
these red circles to figure out how many times the Earth revolved around the Sun
during a single orbit of the asteroid. Did your calculation agree with the simulation?
Describe your results. (2 points)

If you were observant, you noticed that the program calculated the number of orbits
that the Earth executed for you (in the “Time” window), and you do not actually
have to count up the little red circles. Let’s now explore the orbits of the nine planets
in our solar system. In the following table are the semi-major axes of the nine planets.
Note that the “average distance to the Sun” (a) that we have been using above is
actually a quantity astronomers call the “semi-major axis” of a planet. a is simply
one half the major axis of the orbit ellipse. Fill in the missing orbital periods of the
planets by running the Third Law simulator for each of them. (3 points)

Table 3.1: The Orbital Periods of the Planets

Planet a (AU) P (yr)
Mercury 0.387 0.24
Venus 0.72
Earth 1.000 1.000
Mars 1.52

Jupiter 5.20
Saturn 9.54 29.5
Uranus 19.22 84.3

Neptune 30.06 164.8
Pluto 39.5 248.3

Notice that the further the planet is from the Sun, the slower it moves, and the
longer it takes to complete one orbit around the Sun (its “year”). Neptune was
discovered in 1846, and Pluto was discovered in 1930 (by Clyde Tombaugh, a former
professor at NMSU). How many orbits (or what fraction of an orbit) have Neptune
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and Pluto completed since their discovery? (3 points)

3.4 Going Beyond the Solar System

One of the basic tenets of physics is that all natural laws, such as gravity, are the same
everywhere in the Universe. Thus, when Newton used Kepler’s laws to figure out how
gravity worked in the solar system, we suddenly had the tools to understand how stars
interact, and how galaxies, which are large groups of billions of stars, behave: the
law of gravity works the same way for a planet orbiting a star that is billions of light
years from Earth, as it does for the planets in our solar system. Therefore, we can
use the law of gravity to construct simulations for all types of situations—even how
the Universe itself evolves with time! For the remainder of the lab we will investigate
binary stars, and planets in binary star systems.

First, what is a binary star? Astronomers believe that about one half of all stars
that form, end up in binary star systems. That is, instead of a single star like the
Sun, being orbited by planets, a pair of stars are formed that orbit around each other.
Binary stars come in a great variety of sizes and shapes. Some stars orbit around each
other very slowly, with periods exceeding a million years, while there is one binary
system containing two white dwarfs (a white dwarf is the end product of the life of a
star like the Sun) that has an orbital period of 5 minutes!

To get to the simulations for this part of the lab, exit the Third Law simula-
tion (if you haven’t already done so), and click on button “7”, the “Two-Body and
Many-Body” simulations. We will start with the “Double Star” simulation. Click Go.

In this simulation there are two stars in orbit around each other, a massive one
(the blue one) and a less massive one (the red one). Note how the two stars move.
Notice that the line connecting them at each point in the orbit passes through one
spot–this is the location of something called the “center of mass”. In Fig. 3.6 is a
diagram explaining the center of mass. If you think of a teeter-totter, or a simple
balance, the center of mass is the point where the balance between both sides occurs.
If both objects have the same mass, this point is halfway between them. If one is
more massive than the other, the center of mass/balance point is closer to the more
massive object.
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Figure 3.6: A diagram of the definition of the center of mass. Here, object one (M1)
is twice as massive as object two (M2). Therefore, M1 is closer to the center of mass
than is M2. In the case shown here, X2 = 2X1.

Most binary star systems have stars with similar masses (M1 ≈ M2), but this is
not always the case. In the first (default) binary star simulation, M1 = 2M2. The
“mass ratio” (“q”) in this case is 0.5, where mass ratio is defined to be q = M2/M1.
Here, M2 = 1, and M1 = 2, so q = M2/M1 = 1/2 = 0.5. This is the number that
appears in the “Mass Ratio” window of the simulation.

Exercise 5: Binary Star systems. We now want to set-up some special binary star
orbits to help you visualize how gravity works. This requires us to access the “Input”
window on the control bar of the simulation window to enter in data for each simula-
tion. Clicking on Input brings up a menu with the following parameters: Mass Ratio,
“Transverse Velocity”, “Velocity (magnitude)”, and “Direction”. Use the slide bars
(or type in the numbers) to set Transverse Velocity = 1.0, Velocity (magnitude) =
0.0, and Direction = 0.0. For now, we simply want to play with the mass ratio.

Use the slide bar so that Mass Ratio = 1.0. Click “Ok”. This now sets up your new
simulation. Click Run. Describe the simulation. What are the shapes of the two
orbits? Where is the center of mass located relative to the orbits? What does q =
1.0 mean? Describe what is going on here. (4 points)
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Ok, now we want to run a simulation where only the mass ratio is going to be changed.
Go back to Input and enter in the correct mass ratio for a binary star system with
M1 = 4.0, and M2 = 1.0. Run the simulation. Describe what is happening in this
simulation. How are the stars located with respect to the center of mass? Why?
[Hint: see Fig. 3.6.] (4 points)

Finally, we want to move away from circular orbits, and make the orbit as elliptical as
possible. You may have noticed from the Kepler’s law simulations that the Transverse
Velocity affected whether the orbit was round or elliptical. When the Transverse
Velocity = 1.0, the orbit is a circle. Transverse Velocity is simply how fast the planet
in an elliptical orbit is moving at perihelion relative to a planet in a circular orbit of
the same orbital period. The maximum this number can be is about 1.3. If it goes
much faster, the ellipse then extends to infinity and the orbit becomes a parabola.
Go back to Input and now set the Transverse Velocity = 1.3. Run the simulation.
Describe what is happening. When do the stars move the fastest? The slowest? Does
this make sense? Why/why not? (4 points)
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The final exercise explores what it would be like to live on a planet in a binary
star system–not so fun! In the “Two-Body and Many-Body” simulations window,
click on the “Dbl. Star and a Planet” button. Here we simulate the motion of a
planet going around the less massive star in a binary system. Click Go. Describe
the simulation—what happened to the planet? Why do you think this happened? (4
points)

In this simulation, two more windows opened up to the right of the main one. These
are what the simulation looks like if you were to sit on the surface of the two stars in
the binary. For a while the planet orbits one star, and then goes away to orbit the
other one, and then returns. So, sitting on these stars gives you a different viewpoint
than sitting high above the orbit. Let’s see if you can keep the planet from wandering
away from its parent star. Click on the “Settings” window. As you can tell, now
that we have three bodies in the system, there are lots of parameters to play with.
But let’s confine ourselves to two of them: “Ratio of Stars Masses” and “Planet–Star
Distance”. The first of these is simply the q we encountered above, while the second
changes the size of the planet’s orbit. The default values of both at the start-up are
q = 0.5, and Planet–Star Distance = 0.24. Run simulations with q = 0.4 and 0.6.
Compare them to the simulations with q = 0.5. What happens as q gets larger, and
larger? What is increasing? How does this increase affect the force of gravity between
the star and its planet? (4 points)
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See if you can find the value of q at which larger values cause the planet to “stay
home”, while smaller values cause it to (eventually) crash into one of the stars (step-
ping up/down by 0.01 should be adequate). (2 points)

Ok, reset q = 0.5, and now let’s adjust the Planet–Star Distance. In the Settings
window, set the Planet–Star Distance = 0.1 and run a simulation. Note the outcome
of this simulation. Now set Planet–Star Distance = 0.3. Run a simulation. What
happened? Did the planet wander away from its parent star? Are you surprised? (4
points)

Astronomers call orbits where the planet stays home, “stable orbits”. Obviously,
when the Planet–Star Distance = 0.24, the orbit is unstable. The orbital parameters
are just right that the gravity of the parent star is not able to hold on to the planet.
But some orbits, even though the parent’s hold on the planet is weaker, are stable–the
force of gravity exerted by the two stars is balanced just right, and the planet can
happily orbit around its parent and never leave. Over time, objects in unstable orbits
are swept up by one of the two stars in the binary. This can even happen in the solar
system. If you have done the comet lab, then you saw some images where a comet
ran into Jupiter. The orbits of comets are very long ellipses, and when they come
close to the Sun, their orbits can get changed by passing close to a major planet. The
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gravitational pull of the planet changes the shape of the comet’s orbit, it speeds up,
or slows down the comet. This can cause the comet to crash into the Sun, or into
a planet, or cause it to be ejected completely out of the solar system. (You can see
an example of the latter process by changing the Planet–Star Distance = 0.4 in the
current simulation.)

49



3.5 Summary (35 points)

Please summarize the important concepts of this lab. Your summary should include:

• Describe the Law of Gravity and what happens to the gravitational force as a)
as the masses increase, and b) the distance between the two objects increases

• Describe Kepler’s three laws in your own words, and describe how you tested
each one of them.

• Mention some of the things which you have learned from this lab

• Astronomers think that finding life on planets in binary systems is unlikely. Why
do they think that? Use your simulation results to strengthen your argument.

Use complete sentences, and proofread your summary before handing in the lab.

3.6 Possible Quiz Questions

1) Briefly describe the contributions of the following people to understanding
planetary motion: Tycho Brahe, Johannes Kepler, Isaac Newton.
2) What is an ellipse?
3) What is a “focus”?
4) What is a binary star?
5) Describe what is meant by an “inverse square law”.
6) What is the definition of “semi-major axis”?

3.7 Extra Credit (ask your TA for permission before at-
tempting, 5 points)

Derive Kepler’s third law (P2 = C × a3) for a circular orbit. First, what is the circum-
ference of a circle of radius a? If a planet moves at a constant speed “v” in its orbit,
how long does it take to go once around the circumference of a circular orbit of radius
a? [This is simply the orbital period “P”.] Write down the relationship that exists be-
tween the orbital period “P”, and “a” and “v”. Now, if we only knew what the velocity
(v) for an orbiting planet was, we would have Kepler’s third law. In fact, deriving the
velocity of a planet in an orbit is quite simple with just a tiny bit of physics (go to this
page to see how it is done: http://www.go.ednet.ns.ca/∼larry/orbits/kepler.html).
Here we will simply tell you that the speed of a planet in its orbit is v = (GM/a)1/2,
where “G” is the gravitational constant mentioned earlier, “M” is the mass of the
Sun, and a is the radius of the orbit. Rewrite your orbital period equation, substi-
tuting for v. Now, one side of this equation has a square root in it–get rid of this by
squaring both sides of the equation and then simplifying the result. Did you get P2

= C × a3? What does the constant “C” have to equal to get Kepler’s third law?
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Name:

Date:

4 The Power of Light: Understanding Spectroscopy

4.1 Introduction

For most celestial objects, light is the astronomer’s only subject for study. Light from
celestial objects is packed with amazingly large amounts of information. Studying the
distribution of brightness for each wavelength (color) which makes up the light pro-
vides the temperature of a source. A simple example of this comes from flame color
comparison. Think of the color of a flame from a candle (yellow) and a flame from a
chemistry class Bunson burner (blue). Which is hotter? The flame from the Bunson
burner is hotter. By observing which color is dominant in the flame, we can determine
which flame is hotter or cooler. The same is true for stars; by observing the color of
stars, we can determine which stars are hot and which stars are cool. If we know the
temperature of a star, and how far away it is (see the “Measuring Distances Using
Parallax” lab), we can determine how big a star is.

We can also use a device, called a spectroscope, to break-up the light from an
object into smaller segments and explore the chemical composition of the source of
light. For example, if you light a match, you know that the predominant color of the
light from the match is yellow. This is partly due to the temperature of the match
flame, but it is also due to very strong emission lines from sodium. When the sodium
atoms are excited (heated in the flame) they emit yellow light.

In this lab, you will learn how astronomers can use the light from celestial objects
to discover their nature. You will see just how much information can be packed into
light! The close-up study of light is called spectroscopy.

This lab is split into three main parts:

• Experimentation with actual blackbody light sources to learn about the quali-
tative behavior of blackbody radiation.

• Computer simulations of the quantitative behavior of blackbody radiation.

• Experimentation with emission line sources to show you how the spectra of each
element is unique, just like the fingerprints of human beings.

Thus there are three main components to this lab, and they can be performed in
any order. So one third of the groups can work on the computers, while the other
groups work with the spectrographs and various light sources.

• Goals: to discuss the properties of blackbody radiation, filters, and see the
relationship between temperature and color by observing light bulbs and the
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spectra of elements by looking at emission line sources through a spectrograph.
Using a computer to simulate blackbody. radiation

• Materials: spectrograph, adjustable light source, gas tubes and power source,
computers, calculators

4.2 Blackbody Radiation

Blackbody radiation (light) is produced by any hot, dense object. By “hot” we mean
any object with a temperature above absolute zero. All things in the Universe emit
radiation, since all things in the Universe have temperatures above absolute zero.
Astronomers idealize a perfect absorber and perfect emitter of radiation and call it
a “blackbody”. This does not mean it is black in color, simply that it absorbs and
emits light at all wavelengths, so no light is reflected. A blackbody is an object which
is a perfect absorber (absorbs at all wavelengths) and a perfect emitter (emits at all
wavelengths) and does not reflect any light from its surface. Astronomical objects are
not perfect blackbodies, but some, in particular, stars, are fairly well approximated
by blackbodies.

The light emitted by a blackbody object is called blackbody radiation. This radi-
ation is characterized simply by the temperature of the blackbody object. Thus, if we
can study the blackbody radiation from an object, we can determine the temperature
of the object.

To study light, astronomers often split the light up into a spectrum. A spectrum
shows the distribution of brightness at many different wavelengths. Thus, a spectrum
can be shown using a graph of brightness vs. wavelength. A simple example of this
is if you were to look at a rainbow and record how bright each of the separate colors
were. Figure 4.1 shows what the brightness of the colors in a hot flame or hot star
might look like. At each separate color, a brightness is measured. By fitting a curve
to the data points, and finding the peak in the curve, we can determine the temper-
ature of the blackbody source.

4.3 Absorption and Emission Lines

One question which you may have considered is: how do astronomers know what
elements and molecules make up astronomical objects? How do they know that the
Universe is made up mostly of hydrogen with a little bit of helium and a tiny bit of
all the other elements we have discovered on Earth? How do astronomers know the
chemical make up of the planets in our Solar System? They do this by examining the
absorption or emission lines in the spectra of astronomical sources. [Note that the
plural of spectrum is spectra.]
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Figure 4.1: Astronomers measure the amount of light at a number of different wave-
lengths (or colors) to determine the temperature of a blackbody source. Every black-
body has the same shape, but the peak moves to the violet/blue for hot sources, and
to the red for cool sources. Thus we can determine the temperature of a blackbody
source by figuring out where the most light is emitted.

4.3.1 The Bohr Model of the Atom

In the early part of the last century, a group of physicists developed the Quantum
Theory of the Atom. Among these scientists was a Danish physicist named Niels
Bohr. His model of the atom, shown in the figure below, is the easiest to understand.
In the Bohr model, we have a nucleus at the center of the atom, which is really much,
much smaller relative to the electron orbits than is illustrated in our figure. Almost
all of the atom’s mass is located in the nucleus. For Hydrogen, the simplest element
known, the nucleus consists of just one proton. A proton has an atomic mass unit
of 1 and a positive electric charge. In Helium, the nucleus has two protons and two
other particles called neutrons which do not have any charge but do have mass. An
electron cloud surrounds the nucleus. For Hydrogen there is only one electron. For
Helium there are two electrons and in a larger atom like Oxygen, there are 8. The
electron has about 1

2000
the mass of the proton but an equal and opposite electric

charge. So protons have positive charge and electrons have negative charge. Because
of this, the electron is attracted to the nucleus and will thus stay as close to the
nucleus as possible.

In the Bohr model, Figure 4.2, the electron is allowed to exist only at certain dis-
tances from the nucleus. This also means the electron is allowed to have only certain
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orbital energies. Often the terms orbits, levels, and energies are used interchangeably
so try not to get confused. They all mean the same thing and all refer to the electrons
in the Bohr model of the atom.

Figure 4.2: In the Bohr model, the negatively charged electrons can only orbit the
positively charged nucleus in specific, “quantized”, orbits.

Now that our model is set up let’s look at some situations of interest. When
scientists studied simple atoms in their normal, or average state, they found that the
electron was found in the lowest level. They named this level the ground level. When
an atom is exposed to conditions other than average, say for example, putting it in
a very strong electric field, or by increasing its temperature, the electron will jump
from inner levels toward outer levels. Once the abnormal conditions are taken away,
the electron jumps downward towards the ground level and emits some light as it
does so. The interesting thing about this light is that it comes out at only particular
wavelengths. It does not come out in a continuous spectrum, but at solitary wave-
lengths. What has happened here?

After much study, the physicists found out that the atom had taken-in energy
from the collision or from the surrounding environment and that as it jumps down-
ward in levels, it re-emits the energy as light. The light is a particular color because
the electron really is allowed only to be in certain discrete levels or orbits. It cannot
be halfway in between two energy levels. This is not the same situation for large
scale objects like ourselves. Picture a person in an elevator moving up and down
between floors in a building. The person can use the emergency stop button to stop
in between any floor if they want to. An electron cannot. It can only exist in certain
energy levels around a nucleus.
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Now, since each element has a different number of protons and neutrons in its
nucleus and a different number of electrons, you may think that studying “electron
gymnastics” would get very complicated. Actually, nature has been kind to us be-
cause at any one time, only a single electron in a given atom jumps around. This
means that each element, when it is excited, gives off certain colors or wavelengths.
This allows scientists to develop a color fingerprint for each element. This even
works for molecules. These fingerprints are sometimes referred to as spectral lines.
The light coming from these atoms does not take the shape of lines. Rather, each
atom produces its own set of distinct colors. Scientists then use lenses and slits to
produce an image in the shape of a line so that they can measure the exact wavelength
accurately. This is why spectral lines get their name, because they are generally stud-
ied in a linear shape, but they are actually just different wavelengths of light.

4.3.2 Kirchoff’s Laws

Continuous spectra are the same as blackbody spectra, and now you know about spec-
tral lines. But there are two types of spectral lines: absorption lines and emission
lines. Emission lines occur when the electron is moving down to a lower level, and
emits some light in the process. An electron can also move up to a higher level by
absorbing the right wavelength of light. If the atom is exposed to a continuous spec-
trum, it will absorb only the right wavelength of light to move the electron up. Think
about how that would affect the continuous spectrum. One wavelength of light would
be absorbed, but nothing would happen to the other colors. If you looked at the
source of the continuous spectrum (light bulb, core of a star) through a spectrograph,
it would have the familiar Blackbody spectrum, with a dark line where the light had
been absorbed. This is an absorption line.

The absorption process is basically the reverse of the emission process. The elec-
tron must acquire energy (by absorbing some light) to move to a higher level, and it
must get rid of energy (by emitting some light) to move to a lower level. If you’re
having a hard time keeping all this straight, don’t worry. Gustav Kirchoff made it
simple in 1860, when he came up with three laws describing the processes behind the
three types of spectra. The laws are usually stated as follows:

• I. A dense object will produce a continuous spectrum when heated.

• II. A low-density, gas that is excited (meaning that the atoms have electrons
in higher levels than normal) will produce an emission-line spectrum.

• III. If a source emitting a continuous spectrum is observed through a cooler,
low-density gas, an absorption-line spectrum will result.
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A blackbody produces a continuous spectrum. This is in agreement with Kir-
choff’s first law. When the light from this blackbody passes through a cloud of cooler
gas, certain wavelengths are absorbed by the atoms in that gas. This produces an
absorption spectrum according to Kirchoff’s third law. However, if you observe the
cloud of gas from a different angle, so you cannot see the blackbody, you will see the
light emitted from the atoms when the excited electrons move to lower levels. This
is the emission spectrum described by Kirchoff’s second law.

Kirchoff’s laws describe the conditions that produce each type of spectrum, and
they are a helpful way to remember them, but a real understanding of what is hap-
pening comes from the Bohr model.

In the second half of this lab you will be observing the spectral lines produced by
several different elements when their gaseous forms are heated. The goal of this sub-
section of the lab is to observe these emission lines and to understand their formation
process.

4.4 Creating a Spectrum

Light which has been split up to create a spectrum is called dispersed light. By dis-
persing light, one can see how pure white light is really made up of all possible colors.
If we disperse light from astronomical sources, we can learn a lot about that object.
To split up the light so you can see the spectrum, one has to have some kind of tool
which disperses the light. In the case of the rainbow mentioned above, the dispersing
element is actually the raindrops which are in the sky. Another common dispersing
element is a prism.

We will be using an optical element called a diffraction grating to split a source
of white light into its component colors. A diffraction grating is a bunch of really,
really, small rectangular openings called slits packed close together on a single sheet
of material (usually plastic or glass). They are usually made by first etching a piece of
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glass with a diamond and a computer driven etching machine and then taking either
casts of the original or a picture of the original.

The diffraction grating we will be using is located at the optical entrance of an
instrument called a spectroscope. The image screen inside the spectroscope is where
the dispersed light ends up. Instead of having all the colors land on the same spot,
they are dispersed across the screen when the light is split up into its component
wavelengths. The resultant dispersed light image is called a spectrum.

4.5 Observing Blackbody Sources with the Spectrograph

In part one of this lab, we will study a common blackbody in everyday use: a simple
white light bulb. Your Lab TA will show you a regular light bulb at two different
brightnesses (which correspond to two different temperatures). The light bulb emits
at all wavelengths, even ones that we can’t see with our human eyes. You will also
use a spectroscope to observe emission line sources.

1. First, get a spectroscope from your lab instructor. Study Figure 4.3 figure out
which way the entrance slit should line up with the light source. DO NOT
TOUCH THE ENTRANCE SLIT OR DIFFRACTION GRATING!
Touching the plastic ends degrades the effectiveness and quality of the spectro-
scope.

Figure 4.3:

2. Observe the light source at the brighter (hotter) setting.
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3. Do you see light at all different wavelengths/colors or only a few discrete wave-
lengths? (2 points)

4. Of all of the colors which you see in the spectrographs, which color appears the
brightest?(3 points)

5. Now let us observe the light source at a cooler setting. Do you see light at all
different wavelengths/colors or only a few discrete wavelengths? Of all of the
colors which you see in the spectrographs, which color appears the brightest?
(3 points)

6. Describe the changes between the two light bulb observations. What happened
to the spectrum as the brightness and temperature of the light bulb increased?
Specifically, what happened to the relative amount of light at different wave-
lengths?(5 points)

7. Betelgeuse is a Red Giant Star found in the constellation Orion. Sirius, the
brightest star in the sky, is much hotter and brighter than Betelgeuse. Describe
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how you might expect the colors of these two stars to differ. (4 points)

4.6 Quantitative Behavior of Blackbody Radiation

This subsection, which your TA may make optional (or done as one big group), should
be done outside of class on a computer with network access, we will investigate how
changing the temperature of a source changes the characteristics of the radiation
which is emitted by the source. We will see how the measurement of the color of
an object can be used to determine the object’s temperature. We will also see how
changing the temperature of a source also affects the source’s brightness.

To do this, we will use an online computer program which simulates the spectrum
for objects at a given temperature. This program is located here:

http://www.mhhe.com/physsci/astronomy/applets/Blackbody/

applet_files/BlackBody.html

The program just produces a graph of wavelength on the x-axis vs. brightness
on the y-axis; you are looking at the relative brightness of this source at different
wavelengths.

The program is simple to use. There is a sliding bar on the bottom of the “applet”
that allows you to set the temperature of the star. Play around with it a bit to get
the idea. Be aware that the y-axis scale of the plot will change to make sure that
none of the spectrum goes off the top of the plot; thus if you are looking at objects
of different temperature, the y-scale can be different.

Note that the temperature of the objects are measured in units called degrees
Kelvin (K). These are very similar to degrees Centigrade/Celsius (C); the only dif-
ference is that: K = C + 273. So if the outdoor temperature is about 20 C (68
Fahrenheit), then it is 293 K. Temperatures of stars are measured in thousands of
degrees Kelvin; they are much hotter than it is on Earth!

1. Set the object to a temperature of around 6000 degrees, which is the temperature
of the Sun. Note the wavelength, and the color of the spectrum at the peak of
the blackbody curve.
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2. Now set the temperature to 3000 K, much cooler than the Sun. How do the
spectra differ? Consider both the relative amount of light at different wave-
lengths as well as the overall brightness. Now set the temperature to 12,000 K,
hotter than Sun. How do the spectra differ? (5 points)

3. You can see that each blackbody spectrum has a wavelength where the emission
is the brightest (the “top” of the curve). Note that this wavelength changes as
the temperature is changed. Fill in the following small table of the wavelength
(in “nanometers”) of the peak of the curve for objects of several different tem-
peratures. You should read the wavelengths at the peak of the curve by looking
at the x-axis value of the peak. (5 points)

Temperature Peak Wavelength

3000
6000
12000
24000

4. Can you see a pattern from your table? For example, consider how the peak
wavelength changes as the temperature increases by a factor of 2, a factor of
3, a factor of 4, etc. Can you come up with a mathematical expression which
relates the peak wavelength to the temperature? (3 points)

5. Where do you think the peak wavelength would be for objects on Earth, at a
temperature of about 300 degrees K? (2 points)
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4.7 Spectral Lines Experiment

4.7.1 Spark Tubes

In space, atoms in a gas can get excited when light from a continuous source heats
the gas. We cannot do this easily because it requires extreme temperatures, but we
do have special equipment which allows us to excite the atoms in a gas in another
way. When two atoms collide they can exchange kinetic energy (energy of motion)
and one of the atoms can become excited. This same process can occur if an atom
collides with a high speed electron. We can generate high speed electrons simply -
it’s called electricity! Thus we can excite the atoms in a gas by running electricity
through the gas.

The instrument we will be using is called a spark tube. It is very similar to the
equipment used to make neon signs. Each tube is filled with gas of a particular
element. The tube is placed in a circuit and electricity is run through the circuit.
When the electrons pass through the gas they collide with the atoms causing them
to become excited. So the electrons in the atoms jump to higher levels. When these
excited electrons cascade back down to the lower levels, they emit light which we can
record as a spectrum.

4.7.2 Emission-line Spectra Experiment

For the third, and final subsection of this lab you will be using the spectrographs to
look at the spark tubes that are emission line sources.

• The TA will first show you the emission from hot Hydrogen gas. Notice how
simple this spectrum is. On the attached graphs, make a drawing of the lines
you see in the spectrum of hydrogen. Be sure to label the graph so you remember
which element the spectrum corresponds to. (4 points)

• Next the TA will show you Helium. Notice that this spectrum is more compli-
cated. Draw its spectrum on the attached sheet.(4 points)

• Depending on which tubes are available, the TA will show you at least 3 more
elements. Draw and label these spectra on your sheet as well.(4 points)

4.7.3 The Unknown Element

Now your TA will show you one of the elements again, but won’t tell you which one.
This time you will be using a higher quality spectroscope (the large gray instrument)
to try to identify which element it is by comparing the wavelengths of the spectral
lines with those in a data table. The gray, table-mounted spectrograph is identical
in nature to the handheld spectrographs, except it is heavier, and has a more stable
wavelength calibration. When you look through the gray spectroscope you will see
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that there is a number scale at the bottom of the spectrum. These are the wavelengths
of the light in “nanometers” (1 nm = 10−9 meter). Look through this spectrograph
at the unknown element and write down the wavelengths of the spectral lines that
you can see in the table below, and note their color.

Table 4.1: Unknown Emission Line Source

Observed Wavelength (nm) Color of Line

Now, compare the wavelengths of the lines in your data table to each of the three
elements listed below. In this next table we list the wavelengths (in nanometers) of
the brightest emission lines for hydrogen, helium and argon. Note that most humans
cannot see light with a wavelength shorter than 400 nm or with a wavelength longer
than 700 nm.

Table 4.2: Emission Line Wavelengths

Hydrogen Helium Argon
656.3 728.1 714.7
486.1 667.8 687.1
434.0 587.5 675.2
410.2 501.5 560.6
397.0 492.1 557.2
388.9 471.3 549.5

Which element is the unknown element? (5 points)

4.8 Questions

1. Describe in detail why the emission or absorption from a particular electron
would produce lines only at specific wavelengths rather than at all wavelengths
like a blackbody. (Use the Bohr model to help you answer this question.) (5
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points)

2. What causes a spectrum to have more lines than another spectrum (for example,
Helium has more lines than Hydrogen)? (4 points)

3. Referring to Fig. 4.4, does the electron transition in the atom labeled “A” cause
the emission of light, or require the absorption of light? (2 points)

4. Referring to Fig. 4.4, does the electron transition in the atom labeled “B” cause
the emission of light, or require the absorption of light? (2 points)
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5. Comparing the atom labeled “C” to the atom labeled “D”, which transition
(that occurring in C, or D) releases the largest amount of energy? (3 points)

Figure 4.4: Electron transitions in an atom (the electrons are the small dots, the
nucleus the large black dots, and the circles are possible orbits.
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4.9 Summary (35 points)

Summarize the important ideas covered in this lab. Some questions to answer are:

• What information you can learn about a celestial object just by measuring the
peak of its blackbody spectrum?

• What does a blackbody spectrum look like?

• How does the peak wavelength change as the temperature of a blackbody
changes?

• How can you quantitatively measure the color of an object?

• Do the color of items you see around you on Earth (e.g. a red and blue shirt)
tell you something about the temperature of the object? Why or why not?

• What information can you learn about an astronomical object from its spec-
trum?

• Explain how you would get this information from a spectrum.

Use complete sentences, and proofread your summary before handing in the lab.

4.10 Possible Quiz Questions

1. What is meant by the term “blackbody”?

2. What type of sources emit a blackbody spectrum?

3. How is an emission line spectrum produced?

4. How is an absorption line spectrum produced?

5. What type of instrument is used to produce a spectrum?

4.11 Extra Credit (ask your TA for permission before at-
tempting, 5 points)

Research how astronomers use the spectra of binary stars to determine their masses.
Write a one page paper describing this technique, including a figure detailing what is
happening.
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Name:

Date:

5 Optics

5.1 Introduction

Unlike other scientists, astronomers are far away from the objects they want to ex-
amine. Therefore astronomers learn everything about an object by studying the light
it emits. Since objects of astronomical interest are far away, they appear very dim
and small to us. Thus astronomers must depend upon telescopes to gather more
information. Lenses and mirrors are used in telescopes which are the instruments
astronomers use to observe celestial objects. Therefore it is important for us to have
a basic understanding of optics in order to optimize telescopes and interpret the in-
formation we receive from them.

The basic idea of optics is that mirrors or lenses can be used to change the direc-
tion which light travels. Mirrors change the direction of light by reflecting the light,
while lenses redirect light by refracting, or bending the light.

The theory of optics is an important part of astronomy, but it is also very useful in
other fields. Biologists use microscopes with multiple lenses to see very small objects.
People in the telecommunications field use fiber optic cables to carry information at
the speed of light. Many people benefit from optics by having their vision corrected
with eyeglasses or contact lenses.

This lab will teach you some of the basic principles of optics which will allow you
to be able to predict what mirrors and lenses will do to the light which is incident on
them. At the observatory you use real telescopes, so the basic skills you learn in this
lab will help you understand telescopes better.

• Goals: to discuss the properties of mirrors and lenses, and demonstrate them
using optics; build a telescope

• Materials: optical bench, ray trace worksheet, meterstick

5.2 Discussion

The behavior of light depends on how it strikes the surface of an object. All angles
are measured with respect to the normal direction. The normal direction is defined
as a line which is perpendicular to the surface of the object. The angle between the
normal direction and the surface of the object is 90◦. Some important definitions are
given below. Pay special attention to the pictures in Figure 5.1 since they relate to
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the reflective (mirrors) and refractive (lenses) optics which will be discussed in this
lab.

Figure 5.1: The definition of the “normal” direction n, and other angles found in
optics.

• n = line which is always perpendicular to the surface; also called the normal

• θI = angle of incidence; the angle between the incoming light ray and the normal
to the surface

• θR = angle of reflection; the angle between the outgoing light ray and the normal
to the surface

• αR = angle of refraction; the angle between the transmitted light ray and the
normal direction

5.3 Reflective Optics: Mirrors

How do mirrors work? Let’s experiment by reflecting light off of a simple flat mirror.

As part of the equipment for this lab you have been given a device that has a large
wooden protractor mounted in a stand that also has a flat mirror. Along with this
set-up comes a “Laser Straight” laser alignment tool. Inside the Laser Straight is a
small laser. There is a small black switch which turns the laser on and off. Keep it off,
except when performing the following exercise (always be careful around lasers–they
can damage your eyes if you stare into them!).

With this set-up, we can explore how light is reflected off of a flat mirror. Turn
on the Laser Straight, place it on the wooden part of the apparatus outside the edge
of the protractor so that the laser beam crosses across the protractor scale and inter-
cepts the mirror. Align the laser at some angle on the protractor, making sure the
laser beam passes through the vertex of the protractor. Note how the “incident” laser
beam is reflected. Make a sketch of what you observe in the space below.
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Table 5.1: Data Table

Angle of Incidence Angle of Reflection
20o

30o

45o

60o

75o

90o

Now experiment using different angles of incidence by rotating the Laser Straight
around the edge of the protractor, always insuring the laser hits the mirror exactly
at the vertex of the protractor. Note that an angle of incidence of 90o corresponds to
the “normal” defined above (see Fig. 5.1a). Fill in Table 5.1 with the data for angle
of incidence vs. angle of reflection. (3 pts)

What do you conclude about how light is reflected from a mirror? (2 pts)

The law governing the behavior of light when it strikes a mirror is known as the
Law of Reflection:

angle of incidence = angle of reflection

θI = θR

OK, now what happens if you make the mirror curved? First let’s consider a
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concave mirror, one which is curved away from the light source. Try to think about
the curved mirror as being made up of lots of small subsections of flat mirrors, and
make a prediction for what you will see if you put a curved mirror in the light path.
You might try to make a drawing in the space below:

At the front of the classroom is in fact just such a device: A curved wooden base
to which are glued a large number of flat mirrors, along with a metal stand that has
three lasers mounted in it, and the “disco5000” smoke machine. Have your TA turn
on the lasers, align them onto the multi-mirror apparatus, and spew some smoke!
Was your prediction correct?

Also at the front of the room are two large curved mirrors. There are two types
of curved mirrors, “convex” and “concave”. In a convex mirror, the mirror is curved
outwards, in a concave mirror, the mirror is curved inwards (“caved” in). Light that is
reflected from these two types of mirrors behaves in different ways. In this subsection
of the lab, you will investigate how light behaves when encountering a curved mirror.

1) Have your TA place the laser apparatus in front of the convex mirror, and spew
some more smoke. BE CAREFUL NOT TO LET THE LASER LIGHT
HIT YOUR EYE. What happens to the laser beams when they are reflected off
of the convex mirror? Make a drawing of how the light is reflected (using the
attached work sheet, the diagram labeled “Convex Mirror” in Figure 5.4). (5 pts)

2) Now have your TA replace the convex mirror with the concave mirror. Now what
happens to the laser beams? Draw a diagram of what happens (using the same
worksheet, in the space labeled “Concave Mirror”). (5 pts)

Note that there are three laser beams. Using a piece of paper, your hand, or some
other small opaque item, block out the top laser beam on the stand. Which of the
reflected beams disappeared? What happens to the images of the laser beams upon
reflection? Draw this result (5 pts):
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The point where the converging laser beams cross is called the “focus”. From these
experiments, we can draw the conclusion that concave mirrors focus light, convex
mirrors diverge light. Both of the mirrors are 61 cm in diameter. Using a meter
stick, how far from the mirror is the convergent point of the reflected light (“where
is the best focus achieved”)? (3 pts)

This distance is called the “focal length”. For concave mirrors the focal length is
one half of the “radius of curvature” of the mirror. If you could imagine a spherical
mirror, cut the sphere in half. Now you have a hemispherical mirror. The radius of
the hemisphere is the same as the radius of the sphere. Now, imagine cutting a
small cap off of the hemisphere, now you have a concave mirror, but it is a piece of a
sphere that has the same radius as before!

What is the radius of curvature of the big concave mirror? (1 pt)

Ok, with the lasers off, look into the concave mirror, is your face larger or smaller?
Does a concave mirror appear to magnify, or demagnify your image. How about the
convex mirror, does it appear to magnify, or demagnify? (1 pt):

5.4 Refractive Optics: Lenses

How about lenses? Do they work in a similar way?

For this subsection of the lab, we will be using an “optical bench” that has a
light source on one end, and a projection (imaging) screen on the other end. To start
with, there will be three lenses attached mounted on the optical bench. Loosen the
(horizontal) thumbscrews and remove the three lenses from the optical bench. Two
of the lenses have the same diameter, and one lens is larger. Holding one of the lenses
by the steel shaft, examine whether this lens can be used as a “magnifying glass”,
that is when you look through it, do objects appear bigger, or smaller? You will find
that two of the lenses are “positive” lenses in that they magnify objects, and one is
a “negative” lens that acts to “de-magnify” objects. Note how easy it is to decide
which lenses are positive and which one is the negative lens.

Now we are going to attempt to measure the “focal lengths” of these lenses. First,
remount the smaller positive lens back on the optical bench. Turn on the light by
simply connecting the light source to the battery or transformer using the alligator
clips (be careful not to let the alligator clips touch each other or else the transformer
will be damaged). Take the smaller positive lens move it to the middle of the optical
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bench (tightening or loosing the vertical clamping screw to allow you to slide it back
and forth). At the one end of the optical bench mount the white plastic viewing
screen. It is best to mount this at a convenient measurement spot–let’s choose to
align the plastic screen so that it is right at the 10 cm position on the meter stick.
Now slowly move the lens closer to the screen. As you do so, you should see a circle
of light that decreases in size until you reach “focus” (for this to work, however, your
light source and lens have to be at the same height above the meter stick!). Measure
the distance between the lens and the plastic screen. Write down this number, we
will call it “a”.

The distance “a” = cm (1 pt)

Now measure the distance between the lens and the front end of the light source.

Write down this number, we will call it “b”:

The distance “b” = cm (1 pt)

To determine the focal length of a lens (“F”), there is a formula called “the lens
maker’s formula”:

1

F
=

1

a
+

1

b
(8)

Calculate the focal length of the small positive lens (2 pts): F = cm

Now replace the positive lens with the small negative lens. Repeat the process. Can
you find a focus with this lens? What appears to be happening? (4 pts)

How does the behavior of these two lenses compare with the behavior of mirrors?
Draw how light behaves when encountering the two types of lenses using Figure 5.5.
Note some similarities and differences between what you have drawn in Fig. 5.4, and
what you drew in Fig. 5.5 and write them in the space below. (5 pts)
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Ok, now let’s go back and mount the larger lens on the optical bench. This lens
has a very long focal length. Remove the light source from the optical bench. Now
mount the big lens exactly 80 cm from the white screen. Holding the light source
“out in space”, move it back and forth until you can get the best focus (Note that this
focus will not be a point, but will be a focused image of the filament in the light bulb
and show-up as a small, bright line segment. This is a much higher power lens, so the
image is not squished down like occurred with the smaller positive lens). Using the
wooden meter stick, have your lab partners measure the distance between the light
source and the lens. This is hard to do, but you should get a number that is close to
80 cm. Assuming that a = b = 80 cm, use the lens maker’s formula to calculate F:

The focal length of the large lens is F = cm (2 pts)

5.5 Making a Telescope

As you have learned in class, Galileo is given credit as the first person to point a tele-
scope at objects in the night sky. You are now going to make a telescope just like that
used by Galileo. Remove the white screen (and light source) from the optical bench
and mount (and lock) the large positive lens at the 10 cm mark on the yardstick scale.
Now mount the small negative lens about 40 cm away from the big lens. Looking at
the “eyechart” mounted in the lab room (maybe go to the back of the room if you
are up front–you want to be as far from the eyechart as possible), focus the telescope
by moving the little lens backwards or forwards. Once you achieve focus, let your
lab partners look through the telescope too. Given that everyone’s eyes are different,
they may need to re-focus the little lens. Write down the distance “N” between the
two lenses:

The distance between the two lenses is N = cm (2 pts)

Describe what you see when you look through the telescope: What does the im-
age look like? Is it distorted? Are there strange colors? What is the smallest set of
letters you can read? Is the image right side up? Any other interesting observations?
(5 pts):
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This is exactly the kind of telescope that Galileo used. Shortly after Galileo’s ob-
servations became famous, Johannes Kepler built his own telescopes, and described
how they worked. Kepler suggested that you could make a better telescope using two
positive lenses. Let’s do that. Remove the small negative lens and replace it with
the small positive lens. Like before, focus your telescope on the eyechart, and let
everyone in your group do the same. Write down the distance “P” between the two
lenses after achieving best focus:

The distance between the two lenses is P = cm (2 pts)

Describe what you see: What does the image look like? Is it distorted? Are there
strange colors? What is the smallest set of letters you can read? Is the image right
side up? Any other interesting observations? (5 pts):

Compare the two telescopes. Which is better? What makes it better? Note that
Kepler’s version of the telescope did not become popular until many years later.
Why do you think that is? (5 pts):

5.5.1 The Magnifying and Light Collecting Power of a Telescope

Telescopes do two important things: they collect light, and magnify objects. Astro-
nomical objects are very far away, and thus you must magnify the objects to actually
see any detail. Telescopes also collect light, allowing you to see fainter objects than
can be seen by your eye. It is easy to envision this latter function as two different size
buckets sitting out in the rain. The bigger diameter bucket will collect more water
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than the smaller bucket. In fact, the amount of water collected goes as the area of
the top of the bucket. If we have circular buckets, than given that the area of a circle
is πR2, a bucket that is twice the radius, has four times the area, and thus collects
four times the rain. The same relationship is at work for your eye and a telescope.
The radius of a typical human pupil is 4 mm, while the big lens you have been using
has a radius of 20 mm. Thus, the telescopes that you built collect 25 times as much
light as your eyes.

Determining the magnification of a telescope is also very simple:

M =
F

f
(9)

Where “M” is the magnification, “F” is the focal length of the “objective” lens
(the bigger of the two lenses), and “f” is the focal length of the “eyepiece” (the smaller
of the two lenses). You have calculated both “F” and “f” in the preceding for the two
positive lenses, and thus can calculate the magnification of the “Kepler” telescope:

The magnification of the Kepler telescope is M = times. (1 pt)

Ok, how about the magnification of the Galileo telescope? The magnification for
the Galileo telescope is calculated the same way:

M =
F

f
(10)

But remember, we could not measure a focal length (f) for the negative lens. How
can this be done? With specialized optical equipment it is rather easy to measure the
focal length of a negative lens. But since we do not have that equipment, we have
to use another technique. In the following two figures we show a “ray diagram” for
both the Kepler and Galileo telescopes.

Earlier, we had you make various measurements of the lenses, and measure sepa-
rations of the lenses in both telescopes once they were focused. If you look at Figure
5.2 and Figure 5.3, you will see that there is a large “F”. This is the focal length of
the large, positive lens (the “objective”). In Kepler’s telescope, when it is focused,
you see that the separation between the two lenses is the sum of the focal lengths of
the two lenses. We called this distance “P”, above. You should confirm that the “P”
you measured above is in fact equal (or fairly close) to the sum of the focal lengths of
the two positive lenses: P = f + F (where little “f” is the focal length of the smaller
positive lens).
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Figure 5.2: The ray diagram for Kepler’s telescope.

Figure 5.3: The ray diagram for Galileo’s telescope.

Ok, now look at Figure 5.3. Note that when this telescope is focused, the sepa-
ration between the two lenses in the Galileo telescope is N = F − f (where F and f
have the same definition as before).

Find “f” for the Galileo telescope that you built, and determine the magnification
of this telescope (3 pts):

Compare the magnification of your Galileo telescope to that you calculated for
the Kepler telescope (2 pts):
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What do you think of the quality of images that these simple telescopes produce?
Note how hard it is to point these telescopes. It was hard work for Galileo, and the
observers that followed him, to unravel what they were seeing with these telescopes.
You should also know that the lenses you have used in this class, even though they are
not very expensive, are far superior to those that could be made in the 17th century.
Thus, the simple telescopes you have constructed today are much better than what
Galileo used!
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5.6 Summary (35 points)

Please summarize the important concepts of this lab.

• Describe the properties of the different types of lenses and mirrors discussed in
this lab

• What are some of the differences between mirrors and lenses?

• Why is the study of optics important in astronomy?

Use complete sentences, and proofread your lab before handing it in.

5.7 Possible Quiz Questions

1) What is a “normal”?
2) What is a concave mirror?
3) What is a convex lens?
4) Why do astronomers need to use telescopes?

5.8 Extra Credit (ask your TA for permission before at-
tempting, 5 points )

Astronomers constantly are striving for larger and larger optics so that they can
collect more light, and see fainter objects. Galileo’s first telescope had a simple
lens that was 1” in diameter. The largest telescopes on Earth are the Keck 10 m
telescopes (10 m = 400 inches!). Just about all telescopes use mirrors. The reason
is that lenses have to be supported from their edges, while mirrors can be supported
from behind. But, eventually, a single mirror gets too big to construct. For this
extra credit exercise look up what kind of mirrors the 8 m Gemini telescopes have
(at http://www.gemini.edu) versus the mirror system used by the Keck telescopes
(http://keckobservatory.org/about/the observatory). Try to find out how they were
made using links from those sites. Write-up a description of the mirrors used in these
two telescopes. Do you think the next generation of 30 or 100 m telescopes will be
built, like Gemini, or Keck? Why?
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Figure 5.4: The worksheet needed in subsection 2
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Figure 5.5: The worksheet needed in subsection 3. The positive lenses used in this
lab are “double convex” lenses, while the negative lens is a “double concave” lens.
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Name:

Date:

6 Measuring Distances Using Parallax

6.1 Introduction

How do astronomers know how far away a star or galaxy is? Determining the distances
to the objects they study is one of the the most difficult tasks facing astronomers.
Since astronomers cannot simply take out a ruler and measure the distance to any
object, they have to use other methods. Inside the solar system, astronomers can
simply bounce a radar signal off of a planet, asteroid or comet to directly measure
the distance to that object (since radar is an electromagnetic wave, it travels at the
speed of light, so you know how fast the signal travels–you just have to count how
long it takes to return and you can measure the object’s distance). But, as you will
find out in your lecture sessions, some stars are hundreds, thousands or even tens of
thousands of “light years” away. A light year is how far light travels in a single year
(about 9.5 trillion kilometers). To bounce a radar signal of a star that is 100 light
years away would require you to wait 200 years to get a signal back (remember the
signal has to go out, bounce off the target, and come back). Obviously, radar is not
a feasible method for determining how far away stars are.

In fact, there is one, and only one direct method to measure the distance to a
star: “parallax”. Parallax is the angle that something appears to move when the
observer looking at that object changes their position. By observing the size of this
angle and knowing how far the observer has moved, one can determine the distance
to the object. Today you will experiment with parallax, and appreciate the small
angles that astronomers must measure to determine the distances to stars.

To introduce you to parallax, perform the following simple experiment:

Hold your thumb out in front of you at arm’s length and look at it with your left
eye closed. Now look at it with your right eye closed. As you look at your thumb,
alternate which eye you close several times. You should see your thumb move relative
to things in the background. Your thumb is not moving but your point of view is
moving, so your thumb appears to move.

• Goals: to discuss the theory and practice of using parallax to find the distances
to nearby stars, and use it to measure the distance to objects in the classroom

• Materials: classroom “ruler”, worksheets, ruler, protractor, calculator, small
object
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6.2 Parallax in the classroom

The “classroom parallax ruler” will be installed/projected on one side of the class-
room. For the first part of this lab you will be measuring motions against this ruler.

Now work in groups: have one person stand at one wall and have the others stand
somewhere in between along the line that goes straight to the other wall, and hold
up a skewer or a pencil at the right height so the observer (person against the wall)
can see it against the background ruler. The observer should blink his/her eyes and
measure the number of lines on the background ruler against which the object ap-
pears to move. Note that you can estimate the motion measurement to a
fraction of tick mark, e.g., your measurement might be 2 1/2 tick marks).
Do this for three different distances, with the closest being within a few feet of the
observer, and the furthest being at most half the classroom away. Leave the object
(or a mark) where the object was located each of the three times, so you can go back
later and measure the distances. Switch places and do it again. Each person should
estimate the motion for each of the three distances.

How many tick marks did the object move at the closest distance? (2 points):

How many tick marks did the object move at the middle distance? (2 points):

How many tick marks did the object move at the farthest distance? (2 points):

What is your estimate of the uncertainty in your measurement of the apparent mo-
tion? For example, do you think your recorded measurements could be off by half a
tick mark? a quarter of a tick mark? You might wish to make the measurement sev-
eral times to get some estimate of the reliability of your measurements. (2 points)

The apparent motion of the person against the background ruler is what we are
calling parallax. It is caused by looking at an object from two different vantage points,
in this case, the difference in the location of your two eyes. Qualitatively, what do
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you see? As the object gets farther away, is the apparent motion smaller or larger?

What if the vantage points are further apart? For example, imagine you had a
huge head and your eyes were a foot apart rather than several inches apart. What
would you predict for the apparent motion? Try the experiment again, this time
using the object at one of the distances used above, but now measuring the apparent
motion by using just one eye, but moving your whole head a few feet from side to
side to get more widely separated vantage points.

How many tick marks did the person move from the more widely separated vantage
points?
For an object at a fixed distance, how does the apparent motion change as you

observe from more widely separated vantage points?

6.3 Measuring distances using parallax

We have seen that the apparent motion depends on both the distance to an object
and also on the separation of the two vantage points. We can then turn this around:
if we can measure the apparent motion and also the separation of the two vantage
points, we should be able to infer the distance to an object. This is very handy: it
provides a way of measuring a distance without actually having to go to an object.
Since we can’t travel to them, this provides the only direct measurement of the dis-
tances to stars.

We will now see how parallax can be used to determine the distances to the
objects you looked at just based on your measurements of their apparent motions
and a measurement of the separation of your two vantage points (your two eyes).

6.3.1 Angular motion of an object

How can we measure the apparent motion of an object? As with our background
ruler, we can measure the motion as it appears against a background object. But
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what are the appropriate units to use for such a measurement? Although we can
measure how far apart the lines are on our background ruler, the apparent motion
is not really properly measured in a unit of length; if we had put our parallax ruler
further away, the apparent motion would have been the same, but the number of tick
marks it moved would have been larger.

The apparent motion is really an angular motion. As such, it can be measured in
degrees, with 360 degrees in a circle.

Figure out the angular separation of the tick marks on the ruler as seen from the
opposite side of the classroom. Do this by putting one eye at the origin of one of the
tripod-mounted protractors and measuring the angle from one end of the background
ruler to the other end of the ruler. You might lay a pencil from your eye at the origin
of the protractor toward each end and use this to measure the the total angle. Divide
this angle by the total number of tick marks to figure out the angle for each tick mark.

Number of degrees for the entire background ruler:

Number of tick marks in the whole ruler:

Number of degrees in each tick mark:

Convert your measurements of apparent motion in tick marks above to angular
measurements by multiplying the number of tick marks by the number of degrees per
tick mark:

How many degrees did the object appear to move at the closest distance? (2 points):

How many degrees did the object appear to move at the middle distance? (2 points):

How many degrees did the object appear to move at the farthest distance? (2
points):

Based on your estimate of the uncertainty in the number of tick marks each object
moved, what is your estimate of the uncertainty in the number of degrees that each
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object moved? (2 points)

6.3.2 Distance between the vantage points

Now you need to measure the distance between the two different vantage points, in
this case, the distance between your two eyes. Have your partner measure this with
a ruler. Since you see out of the pupil part of your eyes, you want to measure the
distance between the centers of your two pupils.

What is the distance between your eyes? (2 points)

6.3.3 Using parallax measurements to determine the distance to an ob-
ject

To determine the distance to an object for which you have a parallax measurement,
you can construct an imaginary triangle between the two different vantage points and
the object, as shown in Figure 6.1.

Figure 6.1: Parallax triangle

The angles you have measured correspond to the angle α on the diagram, and
the distance between the vantage points (your pupils) corresponds to the distance b
on the diagram. The distance to the object, which is what you want to figure out, is d.
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The three quantities b, d, and α are related by a trigonometric function called the
tangent. Now, you may have never heard of a tangent, if so don’t worry–we will show
you how to do this using another easy (but less accurate) way! But for those of you
who are familiar with a little basic trigonometry, here is how you find the distance
to an object using parallax: If you split your triangle in half (dotted line), then the
tangent of (α/2) is equal to the quantity (b/2)/d:

tan
(α

2

)
=

(b/2)

d

Rearranging the equation gives:

d =
(b/2)

tan (α/2)

You can determine the tangent of an angle using your calculator by entering the
angle and then hitting the button marked tan. There are several other units for mea-
suring angles besides degrees (for example, radians), so you have to make sure that
your calculator is set up to use degrees for angles before you use the tangent
function.

The “Non-Tangent” way to figure out distances from angles

Because the angles in astronomical parallax measurement are very small, as-
tronomers do not have to use the tangent function to determine distances from
angles–they use something called the “small angle approximation formula”:

θ

57.3
=

(b/2)

d

In this equation, we have defined θ = α/2, where α is the same angle as in the
earlier equations (and in Fig. 6.1). Rearranging the equation gives:

d =
57.3× (b/2)

θ

To use this equation your parallax angle “θ” has to be in degrees. (If you are in-
terested in where this equation comes from, talk to your TA, or look up the definition
of “radian” and “small angle formula” on the web.) Now you can proceed to the next
step!

Combine your measurements of angular distances and the distance between the
vantage points to determine the three different distances to your partner. The units
of the distances which you determine will be the same as the units you used to mea-
sure the distance between your eyes; if you measured that in inches, then the derived
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distances will be in inches.

Distance when object was at closest distance: (2 points)

Distance when object was at middle distance: (2 points)

Distance when object was at farthest distance: (2 points)

Based on your estimate of the uncertainty in the angular measurements and also on
the uncertainty of your measurement of the separation of your eyes, estimate the
uncertainty in your measurements of the distances to the objects. To do so, you
might wish to redo the calculation allowing each of your measurements to change by
your estimated errors. (2 points)

Now go and measure the actual distances to the locations of the objects using a
yardstick, meterstick, or tape measure. How well did the parallax distances work?
Are the differences between the actual measurements and your parallax measure-
ments within your estimated errors? If not, can you think of any reasons why your
measurements might have some additional error in them? (5 points)

6.4 Using Parallax to measure distances on Earth, and within
the Solar System

We just demonstrated how parallax works in the classroom, now lets move to a larger
scale then the classroom. Using the small angle formula, and your eyes, what would
be the parallax angle (in degrees) for Organ Summit, the highest peak in the Organ
mountains, if the Organ Summit is located 12 miles (or 20 km) from this classroom?
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[Hint: there are 5280 feet in a mile, and 12 inches in a foot. There are 1,000 meters
in a km.]: (2 points)

You should have gotten a tiny angle! The smallest angle that the best human
eyes can resolve is about 0.02 degrees. Obviously, our eyes provide an inadequate
baseline for measuring this large of a distance. How can we get a bigger baseline?
Well surveyors use a “transit” to carefully measure angles to a distant object. A
transit is basically a small telescope mounted on a (fancy!) protractor. By locating
the transit at two different spots separated by 100 yards (and carefully measuring
this baseline!), they can get a much larger parallax angle, and thus it is fairly easy
to measure the distances to faraway trees, mountains, buildings or other large objects.

How about an object in the Solar System? We will use Mars, the planet that comes
closest to Earth. At favorable oppositions, Mars gets to within about 0.4 AU of
the Earth. Remember, 1 AU is the average distance between the Earth and Sun:
149,600,000 km. Calculate the parallax angle for Mars (using the small angle approx-
imation) using a baseline of 1000 km. (2 points)

Ouch! Also a very small angle.

6.5 Distances to stars using parallax, and the “Parsec”

Because stars are very far away, the parallax motion will be very small. For exam-
ple, the nearest star is about 1.9 × 1013 miles or 1.2 × 1018 inches away! At such a
tremendous distance, the apparent angular motion is very small. Considering the two
vantage points of your two eyes, the angular motion of the nearest star corresponds
to the apparent diameter of a human hair seen at the distance of the Sun! This is a
truly tiny angle and totally unmeasurable by your eye.

Like a surveyor, we can improve our situation by using two more widely separated
vantage points. The two points farthest apart we can use from Earth is to use two
opposite points in the Earth’s orbit about the Sun. In other words, we need to observe
a star at two different times separated by six months. The distance between our two
vantage points, b, will then be twice the distance between the Earth and the Sun: “2
AU”. Figure 6.2 shows the idea.

Using 299.2 million km as the distance b, we find that the apparent angular motion
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Figure 6.2: Parallax Method for Distance to a Star

(α) of even the nearest star is only about 0.0004 degrees. This is also unobservable
using your naked eye, which is why we cannot directly observe parallax by looking
at stars with our naked eye. However, this angle is relatively easy to measure using
modern telescopes and instruments.

Time to talk about a new distance unit, the “Parsec”. Before we do so, we have
to review the idea of smaller angles than degrees. Your TA or professor might already
have mentioned that a degree can be broken into 60 arcminutes. Thus, instead of say-
ing the parallax angle is 0.02 degrees, we can say it is 1.2 arcminutes. But note that
the nearest star only has a parallax angle of 0.024 arcminutes. We need to switch to a
smaller unit to keep from having to use scientific notation: the arcsecond. There are
60 arcseconds in an arcminute, thus the parallax angle (α) for the nearest star is 1.44
arcseconds. To denote arcseconds astronomers append a single quotation mark (”) at
the end of the parallax angle, thus α = 1.44” for the nearest star. But remember, in
converting an angle into a distance (using the tangent or small angle approximation)
we used the angle α/2. So when astronomers talk about the parallax of a star they
use this angle, α/2, which we called “θ” in the small angle approximation equation.

How far away is a star that has a parallax angle of θ = 1”? The answer is 3.26
light years, and this distance is defined to be “1 Parsec”. The word Parsec comes
from Parallax Second. An object at 1 Parsec has a parallax of 1”. An object at
10 Parsecs has a parallax angle of 0.1”. Remember, the further away an object is,
the smaller the parallax angle. The nearest star (Alpha Centauri) has a parallax of
θ = 0.78”, and is thus at a distance of 1/θ = 1/0.78 = 1.3 Parsecs. Depending on
your professor, you might hear the words Parsec, kiloparsec, Megaparsec and even
Gigaparsec in your lecture classes. These are just shorthand methods of talking about
distances in astronomy. A kiloparsec is 1,000 Parsecs, or 3,260 light years. A Mega-
parsec is one million parsecs, and a Gigaparsec is one billion parsecs. To convert to
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light years, you simply have to multiply by 3.26. The Parsec is a strange unit, but
you have already encountered other strange units this semester!

Let’s work some examples:

• If a star has a parallax angle of θ = 0.25”, what is its distance in Parsecs? (1
point)

• If a star is at a distance of 5 Parsecs, what is its parallax angle? (1 point)

• If a star is at a distance of 5 Parsecs, how many light years away is it? (1
point)

6.6 Questions

1. How does the parallax angle change as an object is moved further away? Given
that you can usually only measure an angular motion to some accuracy, would
it be easier to measure the distance to a nearby star or a more distant star?
Why? (4 points)

2. Relate the experiment you did in lab to the way parallax is used to measure the
distances to nearby stars in astronomy. Describe the process an astronomer has
to go through in order to determine the distance to a star using the parallax
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method. What do your two eyes represent in that experiment? (5 points)

3. Imagine that you observe a star field twice one year, separated by six months
and observe the configurations of stars shown in Figure 6.3:

Figure 6.3: Star field seen at two times of year six months apart.

The star marked P appears to move between your two observations because of
parallax. So you can consider the two pictures to be like our lab experiment
where the left picture is what is seen by one eye and the right picture what
is seen by the other eye. All the stars except star P do not appear to change
position; they correspond to the background ruler in our lab experiment. If
the angular distance between stars A and B is 0.5 arcminutes (remember, 60
arcminutes = 1 degree), then how far away would you estimate that star P is?
Proceed by estimating the amount that star P moves between the two pictures
relative to the distance between stars A and B. This gives you the apparent
angular motion. You also know the distance between the two vantage points
(which is the Earth at two opposite sides of its orbit) from the number given
above). You can then use the parallax equation to estimate the distance to star
P . (11 points)
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4. Imagine that you did the classroom experiment by putting your partner all the
way against the far wall. How big would the apparent motion be relative to the
tick marks? What would you infer about the distance to your partner? Why
do you think this estimate is incorrect? What can you infer about where the
background objects in a parallax experiment need to be located? (7 points)

94



6.7 Summary (35 points)

Please summarize the important concepts discussed in this lab. Your summary should
include:

• A brief description on the basic principles of parallax and how astronomers can
use parallax to determine the distance to nearby stars

Also think about and answer the following questions:

• Does the parallax method work for all stars we can see in our Galaxy and why?

• Why do you think it is important for astronomers to determine the distances
to the stars which they study?

Use complete sentences, and proofread your summary before handing in the lab.

6.8 Possible Quiz Questions

1) How do astronomers measure distances to stars?
2) How can astronomers measure distances inside the Solar System?
3) What is an Astronomical Unit?
4) What is an arcminute?
5) What is a Parsec?

6.9 Extra Credit (ask your TA for permission before at-
tempting, 5 points )

Use the web to find out about the planned GAIA Mission. What are the goals of
GAIA? How accurately can it measure a parallax? Discuss the units of milliarcseconds
(“mas”) and microarcseconds. How much better is GAIA than the best ground-based
parallax measurement programs?
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Name:

Date:

7 Our Sun

7.1 Introduction

The Sun is a very important object for all life on Earth. The nuclear reactions which
occur in its core produce the energy which plants and animals need to survive. We
schedule our lives around the rising and setting of the Sun in the sky. During the
summer, the Sun is higher in the sky and thus warms us more than during the win-
ter, when the Sun stays low in the sky. But the Sun’s effect on Earth is even more
complicated than these simple examples.

The Sun is the nearest star to us, which is both an advantage and a disadvan-
tage for astronomers who study stars. Since the Sun is very close, and very bright,
we know much more about the Sun than we know about other distant stars. This
complicates the picture quite a bit since we need to better understand the physics
going in the Sun in order to comprehend all our detailed observations. This differ-
ence makes the job of solar astronomers in some ways more difficult than the job of
stellar astronomers, and in some ways easier! It’s a case of having lots of incredibly
detailed data. But all of the phenomena associated with the Sun are occurring on
other stars, so understanding the Sun’s behavior provides insights to how other stars
might behave.

Figure 7.1: A diagram of the various layers/components of the Sun, as well as the
appearance and location of other prominent solar features.
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• Goals: to discuss the layers of the Sun and solar phenomena; to use these
concepts in conjunction with pictures to deduce characteristics of solar flares,
prominences, sunspots, and solar rotation

• Materials: You will be given a Sun image notebook, a bar magnet with iron
filings and a plastic tray. You will need paper to write on, a ruler, and a
calculator

7.2 Layers of the Sun

One of the things we know best about the Sun is its overall structure. Figure 7.1 is a
schematic of the layers of the Sun’s interior and atmosphere. The interior of the Sun
is made up of three distinct regions: the core, the radiative zone, and the convective
zone. The core of the Sun is very hot and dense. This is the only place in the Sun
where the temperature and pressure are high enough to support nuclear reactions.
The radiative zone is the region of the sun where the energy is transported through
the process of radiation. Basically, the photons generated by the core are absorbed
and emitted by the atoms found in the radiative zone like cars in stop and go traffic.
This is a very slow process. The convective zone is the region of the Sun where energy
is transported by rising “bubbles” of material. This is the same phenomenon that
takes place when you boil a pot of water. The hot bubbles rise to the top, cool, and
fall back down. This gives the the surface of the Sun a granular look. Granules are
bright regions surrounded by darker narrow regions. These granules cover the entire
surface of the Sun.

The atmosphere of the Sun is also comprised of three layers: the photosphere, the
chromosphere, and the corona. The photosphere is a thin layer that forms the visible
surface of the Sun. This layer acts as a kind of insulation, and helps the Sun retain
some of its heat and slow its consumption of fuel in the core. The chromosphere is
the Sun’s lower atmosphere. This layer can only be seen during a solar eclipse since
the photosphere is so bright. The corona is the outer atmosphere of the Sun. It is
very hot, but has a very low density, so this layer can only be seen during a solar
eclipse (or using specialized telescopes). More information on the layers of the Sun
can be found in your textbook.

7.3 Sunspots

Sunspots appear as dark spots on the photosphere (surface) of the Sun (see Figure
7.2). They last from a few days to over a month. Their average size is about the size
of the Earth, although some can grow to many times the size of the Earth! Sunspots
are commonly found in pairs. How do these spots form?

The formation of sunspots is attributed to the Sun’s differential rotation. The
Sun is a ball of gas, and therefore does not rotate like the Earth, or any other solid
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Figure 7.2: A large group of Sunspots. The “umbra” is the darker core of a sunspot,
while the “penumbra” is its lighter, frilly edges.

object. The Sun’s equator rotates faster than its poles. It takes roughly 25 days for
material to travel once around the equator, but about 35 days for it to travel once
around near the north or south poles. This differential rotation acts to twist up the
magnetic field lines inside the Sun. At times, the lines can get so twisted that they
pop out of the photosphere. Figure 7.3 illustrates this concept. When a magnetic
field loop pops out, the places where it leaves and re-enters the photosphere are cooler
than the rest of the Sun’s surface. These cool places appear darker, and therefore are
called “sunspots”.

Figure 7.3: Sunspots are a result of the Sun’s differential rotation.

The number of sunspots rises and falls over an 11 year period. This is the amount
of time it takes for the magnetic lines to tangle up and then become untangled again.
This is called the Solar Cycle. Look in your textbook for more information on
sunspots and the solar cycle.
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7.4 Solar Phenomenon

The Sun is a very exciting place. All sorts of activity and eruptions take place in it
and around it. We will now briefly discuss a few of these interesting phenomena. You
will be analyzing pictures of prominences during this lab.

Prominences are huge loops of glowing gas protruding from the chromosphere.
Charged particles spiral around the magnetic field lines that loop out over the surface
of the Sun, and therefore we see bright loops above the Sun’s surface. Very energetic
prominences can break free from the magnetic field lines and shoot out into space.

Flares are brief but bright eruptions of hot gas in the Sun’s atmosphere. These
eruptions occur near sunspot groups and are associated with the Sun’s intertwined
magnetic field lines. A large flare can release as much energy as 10 billion megatons
of TNT! The charged particles that flares emit can disrupt communication systems
here on Earth.

Another result of charged particles bombarding the Earth is the Northern Lights.
When the particles reach the Earth, they latch on to the Earth’s magnetic field lines.
These lines enter the Earth’s atmosphere near the poles. The charged particles from
the Sun then excite the molecules in Earth’s atmosphere and cause them to glow.
Your textbook will have more fascinating information about these solar phenomena.

7.5 Lab Exercises

There are three main exercises in this lab. The first part consists of a series of “sta-
tions” in a three ring binder where you examine some pictures of the Sun and answer
some questions about the images that you see. Use the information that you have
learned from lectures and your book to give explanations for the different phenomena
that you see at each station. In the second exercise you will learn about magnetic
fields using a bar magnet and some iron filings. Finally, for those labs that occur dur-
ing daylight hours (i.e., starting before 5 pm!), you will actually look at the Sun using
a special telescope to see some of the phenomena that were detailed in the images in
the first exercise of this lab (for those students in nighttime labs, arrangements might
be made so as to observe the Sun during one of your lecture sessions). During this
lab you will use your own insight and knowledge of basic physics and astronomy to
obtain important information about the phenomena that we see on the Sun, just as
solar astronomers do. As with all of the other exercises in this lab manual, if there
is not sufficient room to write in your answers into this lab, do not hesitate to use
additional sheets of paper. Do not try to squeeze your answers into the tiny blank
spaces in this lab description if you need more space then provided! Don’t forget to
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SHOW ALL OF YOUR WORK.

One note of caution about the images that you see: the colors of the pictures
(especially those taken by SOHO) are not true colors, but are simply colors used by
the observatories’ image processing teams to best enhance the features shown in the
image.

7.5.1 Exercise #1: Getting familiar with the Size and Appearance of the
Sun

Station 1: In this first station we simply present some images of the Sun to famil-
iarize yourself with what you will be seeing during the remainder of this lab. Note
that this station has no questions that you have to answer, but you still should take
time to familiarize yourself with the various features visible on/near the Sun, and get
comfortable with the specialized, filtered image shown here.

• The first image in this station is a simple “white light” picture of the Sun
as it would appear to you if you were to look at it in a telescope that was
designed for viewing the Sun. Note the dark spots on the surface of the Sun.
These are “sunspots”, and are dark because they are cooler than the rest of the
photosphere.

• When we take a very close-up view of the Sun’s photosphere we see that it is
broken up into much smaller “cells”. This is the “solar granulation”, and is
shown in picture #2. Note the size of these granules. These convection cells
are about the size of New Mexico!

• To explore what is happening on the Sun more fully requires special tools. If you
have had the spectroscopy lab, you will have seen the spectral lines of elements.
By choosing the right element, we can actually probe different regions in the
Sun’s atmosphere. In our first example, we look at the Sun in the light of the
hydrogen atom (“H-alpha”). This is the red line in the spectrum of hydrogen.
If you have a daytime lab, and the weather is good, you will get to see the Sun
just like it appears in picture #3. The dark regions in this image is where cool
gas is present (the dark spot at the center is a sunspot). The dark linear, and
curved features are “prominences”, and are due to gas caught in the magnetic
field lines of the underlying sunspots. They are above the surface of the Sun,
so they are a little bit cooler than the photosphere, and therefore darker.

• Picture #4 shows a “loop’ prominence located at the edge (or “limb”) of the
Sun (the disk of the Sun has been blocked out using a special telescope called a
“coronograph” to allow us to see activity near its limb). If the Sun cooperates,
you may be able to see several of these prominences with the solar telescope.
You will be returning to this image in Exercise #2.
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Station 2: Here are two images of the Sun taken by the SOHO satellite several
days apart (the exact times are at the top of the image). (8 points)

• Look at the sunspot group just below center of the Sun in image 1, and then
note that it has rotated to the western (right-hand) limb of the Sun in image
2. Since the sunspot group has moved from center to limb, you then know that
the Sun has rotated by one quarter of a turn (90◦).

• Determine the precise time difference between the images. Use this information
plus the fact that the Sun has turned by 90 degrees in that time to determine
the rotation rate of the Sun. If the Sun turns by 90 degrees in time t, it would
complete one revolution of 360 degrees in how much time?

• Does this match the rotation rate given in your textbook or in lecture? Show
your work.

In the second photograph of this station are two different images of the Sun: the one
on the left is a photo of the Sun taken in the near-infrared at Kitt Peak National
Observatory, and the one on the right is a “magnetogram” (a picture of the magnetic
field distribution on the surface of the Sun) taken at about the same time. (Note that
black and white areas represent regions with different polarities, like the north and
south poles of the bar magnet used in the second part of this lab.) (7 points)

• What do you notice about the location of sunspots in the photo and the location
of the strongest magnetic fields, shown by the brightest or darkest colors in the
magnetogram?
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• Based on this answer, what do you think causes sunspots to form? Why are
they dark?

Station 3: Here is a picture of the corona of the Sun, taken by the SOHO satellite in
the extreme ultraviolet. (An image of the Sun has been superimposed at the center
of the picture. The black ring surrounding it is a result of image processing and is
not real.) (10 points)

• Determine the diameter of the Sun, then measure the minimum extent of the
corona (diagonally from upper left to lower right).

• If the photospheric diameter of the Sun is 1.4 million kilometers (1.4 x 106 km),
how big is the corona? (HINT: use unit conversion!)

• How many times larger than the Earth is the corona? (Earth diameter=12,500
km)

Station 4: This image shows a time-series of exposures by the SOHO satellite show-
ing an eruptive prominence. (15 points)

• As in station 3, measure the diameter of the Sun and then measure the distance
of the top of the prominence from the edge of the Sun in the first (earliest)
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image. Then measure the distance of the top of the prominence from the edge
of the Sun in the last image.

• Convert these values into real distances based on the linear scale of the images.
Remember the diameter of the Sun is 1.4 x 106 kilometers.

• The velocity of an object is the distance it travels in a certain amount of time
(vel=dist/time). Find the velocity of the prominence by subtracting the two
distances and dividing the answer by the amount of time between the two
images.

• In the most severe of solar storms, those that cause flares, and “coronal mass
ejections” (and can disrupt communications on Earth), the material ejected in
the prominence (or flare) can reach velocities of 2,000 kilometers per second. If
the Earth is 150 x 106 kilometers from the Sun, how long (hours or days) would
it take for this ejected material to reach the Earth?

Station 5: This is a plot of where sunspots tend to occur on the Sun as a function of
latitude (top plot) and time (bottom plot). What do you notice about the distribution
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sunspots? How long does it take the pattern to repeat? What does this length of
time correspond to? (3 points)

7.5.2 Exercise #2: Exploring Magnetic Fields

The magnetic field of the Sun drives most of the solar activity. In this subsection
we compare the magnetic field of sunspots to that of a bar magnet (and an optional
exercise that shows that a magnetic field is generated by an electric current). During
this exercise you will be using a plastic tray in which you will sprinkle iron filings
(small bits of iron) to trace the magnetic field of a bar magnet. This can be messy,
so be careful as we only have a finite supply of these iron filings, and the other lab
subsections will need to re-use the ones supplied to you.

• First, let’s explore the behavior of a compass in the presence of a magnetic field.
Grab the bar magnet and wave the “north pole” (the red end of the bar magnet
with the large “N”) of the magnet by the compass. Which end of the compass
needle (or arrow) seems to be attracted by the north pole of the magnet? (1
point)

• Ok, reverse the bar magnet so the south pole (white end) is the one closest to
the compass. Which end of the compass needle is attracted to the south pole
of the bar magnet? (1 point)

• The compass needle itself is a little magnet, and the pointy, arrow end of the
compass needle is the north pole of this little magnet. Knowing this, what does
this say about magnets? Which pole is attracted to which pole (and vice versa)?
(1 point)
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• As you know, a compass can be used to find your way if you are lost because
the needle always points towards the North Pole of the Earth. The Earth has
its own magnetic field generated deep in its molten iron core. This field acts
just like that of a bar magnet. But given your answer to the last question, and
the fact that the “north pole” of the compass needle points to the North Pole of
the Earth, what is the actual “polarity” of the Earth’s “magnetic North” pole?
(1 point)

We have just demonstrated the power of attraction of a magnetic field. What does
a magnetic field look like? In this subsection we use some iron filings, a plastic tray,
and the bar magnet to explore the appearance of a magnetic field, and compare that
to what we see on the Sun.

• Place the bar magnet on the table, and center the plastic tray on top of the bar
magnet. Gently sprinkle the iron filings on to the plastic tray so that a thin
coating covers the entire tray. Sketch the pattern traced-out by the magnetic
filings below, and describe this pattern. (2 points)

106



• The iron filings trace the magnetic field lines of the bar magnet. The field lines
surround the magnet in all dimensions (though we can only easily show them
in two dimensions). Your TA will show you a device that has a bar magnet
inside a plastic case to demonstrate the three dimensional nature of the field.
Compare the pattern of the iron filings around the bar magnet to the picture
of the sunspot shown in Figure 7.4. They are similar! What does this imply
about sunspots? (3 points)

Figure 7.4: The darker region of this double sunspot is called the “umbra”, while the
less dark, filamentary region is called the “penumbra”. For this sunspot, one umbra
has a “North polarity”, while the other has a “South polarity”.

• Now, lets imagine what a fully three dimensional magnetic field looks like. The
pattern of the iron filings around the bar magnet would also exist into the space
above the bar magnet, but we cannot suspend the iron filings above the magnet.
Complete Figure 7.5 by drawing-in what you imagine the magnetic field lines
look like above the bar magnet. (3 points)
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Figure 7.5: Draw in the field lines above this bar magnet.

• Compare your drawing, above, to the image of the loop prominence seen in
station #1 of Exercise #1. What are their similarities—imagine if the magnetic
field lines emitted light, what would you expect to see? (2 points)

If a sunspot pair is like a little bar magnet on the surface of the Sun, the field extends
up into the atmosphere, and along the magnetic field charged particles can collect,
and we see light emitted by these moving particles (mostly ionized hydrogen). Note
that we do not always see the complete set of field lines in prominences because of
the lack of material high in the Sun’s atmosphere—but the bases of the prominences
are visible, and are located just above the sunspot.

*************If the weather is clear, and your TA is ready, you can proceed to
Exercise #3 to look at the Sun with a special solar telescope.************

7.5.3 Optional Exercise: Generating a magnetic field with an electric
current

If yours is a nighttime lab, or the weather is poor, you may not be able to complete
exercise #3. If this is the case, we offer this alternative exercise on how magnetic
fields are created.

How are magnetic fields generated? There are two general categories of mag-
netism, one is due to intrinsically magnetic materials such as the bar magnet you
have been playing with, and the other are magnetic fields generated by electric cur-
rents. The mechanism for why some materials are magnetic is complicated, and
requires an understanding of the atomic/molecular structure of materials, and is be-
yond the scope of this class. The second type of magnetism, that caused by electric
currents, is more relevant for understanding solar activity.

Electricity and magnetism are intimately related, in fact, scientists talk about the
theory of “Electromagnetism”. An electric current, which is (usually) composed of
moving electrons, generates a magnetic field. A moving magnetic field, can generate
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an electric current. The magnetic fields of both the Earth and the Sun are generated
because they have regions deep inside them that act as electromagnetic fluids. In the
Earth’s core, it is very hot, and the iron there is molten. Due to the rotation of the
Earth, this molten iron fluid is rotating very quickly. Thus, the liquid iron core acts
like a current flowing around a wire and can generate a magnetic field. A similar pro-
cess occurs in the Sun. The gas in the interior of the Sun is “ionized” (the electrons
are no longer bound to the protons), and thus the rotation of the Sun spins this ion-
ized gas around generating an electric current that, in turn, generates a magnetic field.

In this exercise you will be using a voltage source (either a battery or low voltage
transformer) to generate an electric current to produce a magnetic field. For our “elec-
tromagnet” we will simply use a bolt wound with wire. The current flows through the
wire, which generates a magnetic field that is carried by the nail. (Warning: the
wire and/or bolt can get fairly hot if you leave the current on too long, so
be careful!)

• Take the two ends of the wire that is wound around the bolt and hook them
to the terminals of the lantern battery (or 6V transformer). You now have an
electromagnet. Move the compass slowly around the electromagnet. Describe
its behavior, does it act like the bar magnet? (2 points)

• Using the experience gained from Exercise #2, which end of the nail is the
“North” pole of the electromagnet? Switch the wire leads so that they wires
are connected in an opposite way. What happens? (2 points).

• Just as you did for the bar magnet, place the white plastic tray on top of the
electromagnet and gently sprinkle the iron filings into the tray (sprinkle them
very lightly, and gently tap the white tray to get them to align–your electro-
magnet is not quite as strong as the bar magnet). Draw the resulting pattern
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below. (2 points)

• Does the pattern you have just drawn resemble the one generated by the mag-
netic field? Describe your results. (2 points)

7.5.4 Exercise #3: Looking at the Sun

The Sun is very bright, and looking at it with either the naked eye or any optical
device is dangerous—special precautions are necessary to enable you to actually look
at the Sun. To make the viewing safe, we must eliminate 99.999% of the light from
the Sun to reduce it to safe levels. In this exercise you will be using a very special
telescope designed for viewing the Sun. This telescope is equipped with a hydrogen
light filter. It only allows a tiny amount of light through, isolating a single emission
line from hydrogen (“H-alpha”). In your lecture session you will learn about the emis-
sion spectrum of hydrogen, and in the spectroscopy lab you get to see this red line of
hydrogen using a spectroscope. Several of the pictures in Exercise #1 were actually
obtained using a similar filter system. This filter system gives us a unique view of
the Sun that allows us to better see certain types of solar phenomena, especially the
“prominences” you encountered in Exercise #1.

• In the “Solar Observation Worksheet” below, draw what you see on and near
the Sun as seen through the special solar telescope. (8 points)

Note: Kitt Peak Vacuum Telescope images are courtesy of KPNO/NOAO. SOHO Ex-

treme Ultraviolet Imaging Telescope images courtesy of the SOHO/EIT consortium. SOHO

Michelson Doppler Imager images courtesy of the SOHO/MDI consortium. SOHO is a

project of international cooperation between the European Space Agency (ESA) and NASA.
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7.6 Summary (35 points)

Please summarize the important concepts discussed in this lab.

• Discuss the different types of phenomena and structures you looked at in the
lab

• Explain how you can understand what causes a phenomenon to occur by looking
at the right kind of data

• List the six layers of the Sun (in order) and give their temperatures.

• What causes the Northern (and Southern) Lights, also known as “Aurorae”?

Use complete sentences and, proofread your summary before turning it in.

Possible Quiz Questions
1) What are sunspots, and what leads to their formation?
2) Name the three interior regions of the Sun.
3) What is differential rotation?
4) What is the “photosphere”?
5) What are solar flares?

7.7 Extra Credit (ask your TA for permission before at-
tempting, 5 points)

Look-up a plot of the number of sunspots versus time that spans the last four hundred
years. For about 50 years, centered around 1670, the Sun was unusually “quiet”, in
that sunspots were rarely seen. This event was called the “Maunder minimum” (after
the discoverer). At the same time as this lack of sunspots, the climate in the northern
hemisphere was much colder than normal. The direct link between sunspots and the
Earth’s climate has not been fully established, but there must be some connection
between these two events. Near 1800 another brief period of few sunspots, the “Dalton
minimum” was observed. Looking at recent sunspot numbers, some solar physicists
have suggested the Sun may be entering another period like the Dalton minimum.
Search for the information these scientists have used to make this prediction. Describe
the climate in the northern hemisphere during the last Dalton minimum. Are there
any good ideas on the link between sunspot number and climate that you can find?
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Name:

Date:

8 The Hertzsprung-Russell Diagram

8.1 Introduction

As you may have learned in class, the Hertzsprung-Russell Diagram, or the “HR dia-
gram”, is one of the most important tools used by astronomers: it helps us determine
both the ages of star clusters and their distances. In your Astronomy 110 textbooks
the type of HR diagram that you will normally encounter plots the Luminosity of a
star (in solar luminosity units, LSun) versus its temperature (or spectral type). An
example is shown here:

The positions of the various main types of stars are labeled in this HR diagram.
The Sun has a temperature of 5,800 K, and a luminosity of 1 LSun. The Sun is a main
sequence “G” star. All stars cooler than the Sun are plotted to the right of the Sun in
this diagram. Cool main sequence stars (with spectral types of K and M) are plotted
to the lower right of the Sun. Hotter main sequence stars (O, B, A, and F stars) are
plotted to the upper left of the Sun’s position. As the Sun runs out of hydrogen fuel
in its center, it will become a red giant star–a star that is cooler than the Sun, but
100× more luminous. Red giants are plotted to the upper right of the Sun’s position.
As the Sun runs out of all of its fuel, it sheds its atmosphere and ends its days as a
white dwarf. White dwarfs are hotter, and much less luminous than the Sun, so they
are plotted to the lower left of the Sun’s position in the HR diagram.

The HR diagrams for clusters can be very different depending on their ages. In
the following examples, we show the HR diagram of a hypothetical cluster of stars
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at a variety of different ages. When the star cluster is very young, (see Fig. 8.1)
only the hottest stars have made it to the main sequence. In the HR diagram below,
the G, K, and M stars (stars that have temperatures below 6,000 K) are still not on
the main sequence, while those stars hotter than 7,000 K (O, B, A, and F stars) are
already fusing hydrogen into helium at their cores:

Figure 8.1: The HR diagram of a cluster of stars that is 1 million years old.

In the next HR diagram, Figure 8.2, we see a much older cluster of stars (100
million years = 100 Myr). In this older cluster, some of the hottest and most massive
stars (the O and B stars) have evolved into red supergiants. The position of the
“main sequence turn off” allows us to estimate the age of a cluster.

Figure 8.2: The HR diagram of a cluster of stars that is 100 million years old.

In the final HR diagram, Figure 8.3, we have a much older cluster (10 billion years
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old = 10 Gyr), now stars with one solar mass are becoming red giants, and we say
the main sequence turn-off is at spectral type G (T = 5,500 K).

Figure 8.3: The HR diagram of a cluster of stars that is 10 billion years old.

Some white dwarfs (produced by evolved A and F stars) now exist in the cluster.
Thus, the HR diagram for a cluster of stars is useful for determining its age.

8.2 Magnitudes and Color Index

While the HR diagrams presented in your class lectures or textbook allow us to pro-
vide a very nice description of the evolution of stars and star clusters, astronomers
do not actually directly measure either the temperatures or luminosities of stars. Re-
member that luminosity is a measure the total amount of energy that a star emits.
For the Sun it is 1026 Watts. But how much energy appears to be coming from an
object depends on how far away that object is. Thus, to determine a star’s lumi-
nosity requires you to know its distance. For example, the two brightest stars in the
constellation Orion (see the “Constellation Highlight” for February from the Ast110
homepage link), the red supergiant Betelgeuse and the blue supergiant Rigel, ap-
pear to have about the same brightness. But Rigel is six more times luminous than
Betelgeuse–Rigel just happens to be further away, so it appears to have the same
brightness even though it is pumping out much more energy than Betelgeuse. The
“Dog star” Sirius, located to the southeast of Orion, is the brightest star in the sky
and appears to be about 5 times brighter than either Betelgeuse or Rigel. But in
fact, Sirius is a nearby star, and actually only emits 22× the luminosity of the Sun,
or about 1/2000th the luminosity of Rigel!

Therefore, without a distance, it is impossible to determine a star’s luminosity–
and remember that it is very difficult to measure the distance to a star. We can,

115



however, measure the relative luminosity of two (or more) stars if they are at the
same distance: for example if they are both in a cluster of stars. If two stars are at
the same distance, then the difference in their apparent brightness is a measurement
of the true differences in their luminosities. To measure the apparent brightness of a
star, astronomers use the ancient unit of “magnitude”. This system was first devel-
oped by the Greek astronomer Hipparcos (ca. 190 to 120 BC). Hipparcos called the
brightest stars “stars of the first magnitude”. The next brightest were called “stars of
the second magnitude”. His system progressed all the way down to “stars of the sixth
magnitude”, the faintest stars you can see with the naked eye from a dark location.

Astronomers adopted this system and made it more rigorous by defining a five
magnitude difference to be exactly equal to a factor of 100 in brightness. That is, a
first magnitude star is 100X brighter than a sixth magnitude star. If you are good
with mathematics, you will find that a difference of one magnitude turns out to be
a factor of 2.5 (2.5 × 2.5 × 2.5 × 2.5 × 2.5 = 100, we say that the fifth root of
100 = 1001/5 = 2.5). Besides this peculiar step size, it is also important to note that
the magnitude system is upside down: usually when we talk about something being
bigger, faster, or heavier, the quantity being measured increases with size (a car going
100 mph is going faster than one going 50 mph, etc.). In the magnitude system, the
brighter the object, the smaller its magnitude! For example, Rigel has an apparent
magnitude of 0.2, while the star Sirius (which appears to be 4.5 times brighter than
Rigel) has a magnitude of −1.43.

Even though they are a bit screwy, and cause much confusion among Astronomy
110 students, astronomers use magnitudes because of their long history and tradition.
So, when astronomers measure the brightness of a star, they measure its apparent
magnitude. How bright that star appears to be on the magnitude scale. Usually,
astronomers will measure the brightness of a star in a variety of different color filters
to allow them to determine its temperature. This technique, called “multi-wavelength
photometry”, is simply the measurement of how much light is detected on Earth at
a specific set of wavelengths from a star of interest. Most astronomers use a system
of five filters, one each for the ultraviolet region (the “U filter”), the blue region (the
“B filter”), the visual (“V”, or green) region, the yellow-red region (“R”), and the
near-infrared region (“I”). Generally, when doing real research, astronomers measure
the apparent magnitude of a star in more than one filter. [Note: because the name
of the filter can some times get confused with spectral types, filter names will be
italicized to eliminate any possible confusion.]

To determine the temperature of a star, measurements of the apparent brightness
in at least two filters is necessary. The difference between these two measurements is
called the “color index”. For example, the apparent magnitude in the B filter minus
the apparent magnitude in the V filter, (B−V ), is one example of a color index (it is
also the main color index used by astronomers to measure the temperature of stars,
but any two of the standard filters can be used to construct a color index). Let us
take Polaris (the “North Star”) as an example. Its apparent B magnitude is 2.59, and
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Table 8.1: The (B − V ) Color Index for Main Sequence Stars
Spectra Type (B − V ) Spectral Type (B − V )
O and B Stars −0.40 to −0.06 G Stars 0.59 to 0.76

A Stars 0.00 to 0.20 K Stars 0.82 to 1.32
F Stars 0.31 to 0.54 M Stars 1.41 to 2.00

its apparent V magnitude is 2.00, so the color index for Polaris is (B − V ) = 2.59 −
2.00 = 0.59. In Table 8.1, we list the (B − V ) color index for main sequence stars.
We see that Polaris has the color of a G star.

In Table 8.1, we see that O and B stars have negative (B − V ) color indices. We
say that O and B stars are “Blue”, because they emit more light in the B filter than
in the V filter. We say that K and M stars are very red, as they emit much more V
light than B light (and even more light in the R and I filters!). A-stars emit the same
amount of light at B and V, while F and G stars emit slightly more light at V than
at B . With this type of information, we can now figure out the spectral types, and
hence temperatures of stars by using photometry.

8.3 The Color-Magnitude HR Diagram

To construct HR diagrams of star clusters, astronomers measure the apparent bright-
ness of stars in two different color filters, and then plot the data into a “Color-
Magnitude” diagram, plotting the apparent V magnitude versus the color index
(B − V ) as shown below. Figure 8.4 shows a color-magnitude diagram for a globular
cluster. You might remember from class (or will soon be told!) that globular clusters
are old, and that the low mass stars are evolving off the main sequence and becoming
red giants. The main sequence turnoff for this globular cluster is at a color index of
about (B − V ) = 0.4, the color of F stars. An F star has a mass of about 1.5 MSun,
thus stars with masses near 1.5 MSun are evolving off the main sequence to become
red giants, so this globular cluster is about 7 billion years old.

8.4 The Color-Magnitude Diagram for the Pleiades

In today’s lab, you and your lab partners will construct a color magnitude diagram
for the Pleiades star cluster. The Pleiades, sometimes known as the “Seven Sisters”
(see the constellation highlight for January at the back of this lab manual), is a star
cluster located in the wintertime constellation of Taurus, and can be seen with the
naked eye. A wide-angle photograph of the Pleiades is shown below (Fig. 8.4). Many
people confuse the Pleiades with the Little Dipper because the brightest stars form
a small dipper-like shape.
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Figure 8.4: The HR diagram for the globular cluster M15.

Figure 8.5: A photograph of the Pleiades.

As you will find out, the Pleiades is a relatively young group of stars. We will be
using photographs of the Pleiades taken using two different color filters to construct
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a Color-Magnitude diagram. If you look closely at the photograph of the Pleiades,
you will notice that the brighter stars are larger in size than the fainter stars. Note:
you are not seeing the actual disks of the stars in these photographs. Brighter stars
appear bigger on photographs because more light from them is detected by the pho-
tograph. As the light from the stars accumulates, it spreads out. Think of a pile of
sand. As you add sand to a pile, it develops a conical, pyramid shape. The addition
of more sand to the pile raises the height of the sand pile, but the base of the sand pile
has to spread more to support this height. The same thing happens on a photograph.
The more light there is, the larger the spread in the image of the star. In reality,
all of the stars in the sky are much to far away to be seen as little disks (like those
we see for the planets in our solar system) when viewed/imaged through any existing
telescope. We would need to have a space-based telescope with a mirror 1.5 miles
across to actually be able to see the stars in the Pleiades as little, resolved disks!
[However, there are some special techniques astronomers have developed to actually
measure the diameters of stars. Ask your TA about them if you are curious.]

Thus, we can use the sizes of the stars on a photograph to figure out how bright
they are, we simply have to measure their diameters! A special tool, called a “dyname-
ter”, is used to measure sizes of circles. You will be given a clear plastic dynameter
in class. A replica of this dynameter is shown here:

As demonstrated, a dynameter allows you to measure the diameter of a star image
by simply sliding the dynameter along until the edges of the star just touch the lines.
In the example above, the star image is 2.8 mm in diameter. On the following two
pages are digitized scans of two photographs of the Pleiades taken through B and
V filters. These photographs were digitized to allow us to put in an X-Y scale so
that you can keep track of which star is which in the two different photographs. You
should be able to compare the digitized photographs with the actual photo shown
above and see that most of the brighter stars are on all three images.
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Figure 8.6: This is not the right figure for use in this lab–your TA will give you the
correctly scaled version. (Go to: http://astronomy.nmsu.edu/astro/hrlabB.ps)
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Figure 8.7: This is not the right figure for use in this lab–your TA will give you the
correctly scaled version. (Go to: http://astronomy.nmsu.edu/astro/hrlabB.ps)
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8.4.1 Procedure

The first task for this lab is to collect your data. What you need to do for this lab
is to measure the diameters of ten of the 63 stars on both digitized photographs. At
the end of this lab there is a data table that has the final data for 53 of the 63 stars.
It is missing the information for ten of the stars (#’s 7, 8, 13, 18, 30, 39, 53, 55, 61,
and 63). You must collect the data for these ten stars.

Task #1: First, identify the stars with the missing data on both of the digitized
photographs (use their X,Y positions to do this). Then measure their diameters of
these ten stars on both photographs using the dynameter. Write the V and B diam-
eters into the appropriate spaces within the data table. [Note: You will probably not
be able to measure the diameters to the same precision as shown for the other stars
in the data table. Those diameters were measured using a computer. Do the best you
can—make several measurements of each star and average the results.] (15 points)

8.4.2 Converting Diameters to Magnitudes

Obviously, the diameter you measure of a star on a photograph has no obvious link
to its actual magnitude. For example, we could blow the photograph up, or shrink
it down. The diameters of the stars would change, but the relative change in size
between stars of different brightnesses would stay the same. To turn diameters into
magnitudes requires us to “calibrate” the two photographs. For example, the bright-
est star in the Pleiades, “Alcyone” (star #35), has a V magnitude of 2.92, and has a
V diameter of 4.4 mm. We have used this star to calibrate our data. Once you have
completed measuring the diameters of the stars, you must convert those diameters
(in millimeters) into V magnitudes and (B − V ) color index. To do so, requires you
to use the following two equations:

V(mag) = −2.95×(V mm) + 15.9 (Eq. # 1)

and

(B − V ) = −1.0×(B mm − V mm) + 0.1 (Eq. #2)

These equations might seem confusing to you because of the negative number in
front of the diameters. But if you remember, the brighter the star, the smaller its
magnitude. Brighter stars appear bigger, so bigger diameters mean smaller magni-
tudes! That is why there is a negative sign. Using the example of Alcyone, its V
diameter is 4.4 mm and it has a B diameter of 4.7 mm. Putting the V diameter into
equation #1 gives: V (mag) = −2.95×(4.4 mm) + 15.9 = −13.0 + 15.9 = 2.9. So, the
V magnitude of Alcyone is correct: V = 2.9, and we have calibrated the photograph.
Its color index can be found using Eq. #2: (B − V ) = − 1.0×(4.7 − 4.4) + 0.1 =
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−1.0×(0.4) + 0.1 = −0.20. Alcyone is a B star!

Task #2: Convert all of the B and V diameters into V magnitudes and (B − V )
color index, entering them into the proper column in your data table. Use any of the
other stars in the table to see how it is done. Make sure all students in your group
have complete tables with all of the data entered. (15 points)

8.4.3 Constructing a Color-Magnitude Diagram

The collection of the data is now complete. In this lab you are getting exactly the
same kind of experience in “reducing data” that real astronomers do. Aren’t you glad
you didn’t have to measure the diameters of all 63 stars? Obtaining and reducing
data can be very tedious, tiring, or even boring. But it is an essential part of the sci-
entific process. Because of the possibility of mis-measurement of the star diameters,
a real astronomer doing this lab would probably measure all of the star diameters at
least three times to insure that they had not made any errors. Today, we will assume
you did everything exactly right, but we will provide a check shortly.

Now we want to finally get to the goal of the lab: constructing a Color-Magnitude
diagram. In this portion of the lab, we will be plotting the V magnitudes vs. the
(B − V ) color index. On the following page is a blank grid that has V magnitude on
the Y axis, and the (B − V ) color index on the X axis. Now we want to plot your
data onto this blank Color-Magnitude diagram to closely examine what kind of stars
are in the Pleiades.

Task #3: For each star in your table, plot its position where the (B − V ) color
index is the X coordinate, and the V magnitude is the Y coordinate. Note that some
stars will have very similar magnitudes and colors because they are the same types
of star. When this happens, simply plot them as close together as possible, making
sure they are slightly separated for clarity. All students must complete their own
Color-Magnitude diagram. (15 points)

Error checking: All of your stars should fit within the boundaries of the Color-
Magnitude diagram! If not, go back and re-measure the problem star(s) to see if you
have made an error in the B or V diameter or in the calculations.

8.5 Results

If you have done everything correctly, you should now have a Color-Magnitude dia-
gram in which your plotted stars trace out the main sequence for the Pleiades. Use
your Color-Magnitude diagram to answer the following questions:
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Figure 8.8: The Color-Magnitude Diagram for the Pleiades

1. Are there more B stars in the Pleiades, or more K stars? (5 points)

2. Given that the Sun is a main sequence G star, draw an “X” to mark the spot
where the Sun would be in your Color-Magnitude diagram for the Pleiades (5
points)
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3. The faintest stars that the human eye can see on a clear, dark night is V = 6.0. If
the Sun was located in the Pleiades, could you see it with the naked eye? (5 points)

4. Are there any red giants or supergiants in the Pleiades? What does this tell you
about the age of the Pleiades? (5 points)
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8.6 Summary (35 points)

Please summarize the important concepts of this lab.

• Describe how an HR diagram is constructed.

• If you have plotted your HR Diagram for the Pleiades correctly, you will notice
that the faint, red stars seem to have a spread when compared to the brighter,
bluer stars. Why do you think this occurs? How might you change your ob-
serving or measuring procedure to fix this problem? [Hint: is it harder or easier
to measure big diameters vs. small diameters?]

• Why are HR diagrams important to astronomers?

Use complete sentences, and proofread your lab before handing it in.

8.7 Possible Quiz Questions

1. What is a magnitude? Which star is brighter, a star with V = -2.0, or one with
V = 7.0?

2. In an HR Diagram, what are the two quantities that are plotted?

3. What are the properties of a white dwarf?

4. What are the properties of a red giant?

5. What is a Color Index, and what does it tell you about a star?

8.8 Extra Credit (ask your TA for permission before at-
tempting, 5 points)

White dwarfs are 100× less luminous than the Sun, but are hot, and have a
negative color index (B − V ) = −0.2. Given that a factor of 100 = 5 magnitudes, is
it possible to plot the positions of white dwarfs on your Color-Magnitude diagram
for the Pleiades?
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Table 8.2: Data Table
# X Y V(mm) B(mm) V(mag) (B − V )
01 157.00 832.00 3.10 2.89 6.76 0.31
02 157.61 832.20 2.49 2.00 8.50 0.59
03 178.33 821.70 2.37 1.70 8.91 0.77
04 183.40 830.51 2.32 1.60 9.06 0.82
05 190.53 818.94 2.24 1.52 9.29 0.82
06 190.62 834.99 2.23 1.52 9.32 0.81
07 192.98 865.44
08 197.37 754.50
09 202.78 696.35 2.23 1.46 9.32 0.87
10 203.87 810.57 2.36 1.72 8.94 0.74
11 210.57 789.29 2.32 1.62 9.06 0.80
12 212.22 693.49 2.48 1.97 8.58 0.61
13 233.44 830.40
14 234.34 759.27 2.35 1.57 8.97 0.88
15 235.50 751.74 2.40 1.85 8.82 0.65
16 246.00 807.00 3.26 3.07 6.28 0.29
17 252.95 795.24 2.75 2.35 7.78 0.50
18 254.95 688.02
19 259.60 730.54 2.39 1.74 8.85 0.75
20 260.00 795.00 2.35 1.77 8.97 0.68
21 265.00 792.00 2.24 1.48 9.29 0.86
22 265.00 831.00 2.95 2.65 7.20 0.40
23 266.66 831.82 2.20 1.36 9.41 0.94
24 269.27 731.47 2.18 1.33 9.47 0.95
25 270.00 789.00 2.31 1.62 9.09 0.79
26 274.00 790.00 2.32 1.70 9.06 0.72
27 276.28 836.35 2.50 1.98 8.53 0.62
28 277.19 811.96 2.22 1.55 9.35 0.77
29 283.00 792.00 2.35 1.75 8.97 0.70
30 285.00 774.00
31 288.00 786.00 2.20 1.42 9.41 0.88
32 289.50 852.50 2.18 1.54 9.47 0.74
33 291.00 822.00 4.24 4.46 3.39 −0.12
34 297.00 822.00 3.46 3.38 5.69 0.18
35 298.00 793.00 4.40 4.70 2.92 −0.20
36 299.00 749.00 4.09 4.23 3.83 −0.04
37 304.00 773.00 2.39 1.79 8.85 0.70
38 308.00 777.00 2.31 1.67 9.09 0.74
39 310.00 794.04
40 312.00 748.00 3.35 3.20 6.02 0.25
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Table 8.3: Data Table (cont.)
# X Y V(mm) B(mm) V(mag) (B − V )
41 316.46 832.35 2.52 2.01 8.47 0.61
42 317.00 766.00 3.93 4.00 4.31 0.03
43 319.14 731.31 2.38 1.81 8.88 0.67
44 320.29 742.55 2.17 1.46 9.50 0.81
45 322.43 819.50 2.17 1.52 9.50 0.75
46 325.00 756.00 3.62 3.57 5.22 0.15
47 327.00 787.00 2.20 1.47 9.41 0.83
48 327.80 841.25 2.34 1.68 8.99 0.76
49 329.00 771.00 2.87 2.52 7.43 0.45
50 332.00 794.00 2.62 2.14 8.17 0.58
51 335.13 732.56 2.28 1.54 9.17 0.84
52 347.41 654.23 2.15 1.43 9.55 0.82
53 352.00 756.00
54 359.05 685.95 2.35 1.70 8.97 0.75
55 361.00 807.00
56 368.31 692.12 2.35 1.69 8.96 0.76
57 375.90 729.41 2.20 1.50 9.41 0.80
58 375.90 729.41 2.36 1.73 8.94 0.73
59 386.00 813.00 2.37 1.72 8.91 0.75
60 387.50 683.69 2.20 1.54 9.41 0.76
61 397.48 769.11
62 410.49 839.98 2.34 1.62 8.99 0.82
63 420.52 720.04
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Name:

Date:

9 Shaping Surfaces in the Solar System: The Im-

pacts of Comets & Asteroids

9.1 Introduction

In the lab exercise on exploring the surface of the Moon, there is a brief discussion
on how impact craters form. Note that every large body in the solar system has been
bombarded by smaller bodies throughout all of history. In fact, this is one mechanism
by which planets grow in size: they collect smaller bodies that come close enough to
be captured by the planet’s gravity. If a planet or moon has a rocky surface, the
surface can still show the scars of these impact events–even if they occurred many
billions of years ago! On planets with atmospheres, like our Earth, weather can
erode these impact craters away, making them difficult to identify. On planets that
are essentially large balls of gas (the “Jovian” planets), there is no solid surface to
record impacts. Many of the smaller bodies in the solar system, such as the Moon,
the planet Mercury, or the satellites of the Jovian planets, do not have atmospheres,
and hence, faithfully record the impact history of the solar system. Astronomers
have found that when the solar system was very young, there were large numbers of
small bodies floating around the solar system impacting the young planets and their
satellites. Over time, the number of small bodies in the solar system has decreased.
Today we will investigate how impact craters form, and examine how they appear
under different lighting conditions. During this lab we will discuss both asteroids and
comets, and you will create your own impact craters as well as construct a “comet”.

• Goals: to discuss asteroids and comets; create impact craters; build a comet
and test its strength and reaction to light

• Materials: A variety of items supplied by your TA

9.2 Asteroids and Comets

There are two main types of objects in the solar system that represent left over
material from its formation: asteroids and comets. In fact, both objects are quite
similar, their differences arise from the fact that comets are formed from material
located in the most distant parts of our solar system, where it is very cold, and
thus they have large quantities of frozen water and other frozen liquids and gases.
Asteroids formed closer-in than comets, and are denser, being made-up of the same
types of rocks and minerals as the terrestrial planets (Mercury, Venus, Earth, and
Mars). Asteroids are generally just large rocks, as shown in the Figure 9.1.
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Figure 9.1: Four large asteroids. Note that these asteroids have craters from the
impacts of even smaller asteroids!

The first asteroid, Ceres, was discovered in 1801 by the Italian astronomer Piazzi.
Ceres is the largest of all asteroids, and has a diameter of 933 km (the Moon has a
diameter of 3,476 km). There are now more than 40,000 asteroids that have been
discovered, ranging in size from Ceres, all the way down to large rocks that are just
a few hundred meters across. It has been estimated that there are at least 1 million
asteroids in the solar system with diameters of 1 km or more. Most asteroids are
harmless, and spend all of their time in orbits between those of Mars and Jupiter
(the so-called “asteroid belt”, see Figure 9.2). Some asteroids, however, are in orbits

Figure 9.2: The Asteroid Belt.

that take them inside that of the Earth, and could potentially collide with the Earth,
causing a great catastrophe for human life. It is now believed that the impact of a
large asteroid might have been the cause for the extinction of the dinosaurs when
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its collision threw up a large cloud of dust that caused the Earth’s climate to dra-
matically cool. Several searches are underway to insure that we can identify future
“doomsday” asteroids so that we have a chance to prepare for a collision–as the Earth
will someday be hit by another large asteroid.

9.3 Comets

Comets represent some of the earliest material left over from the formation of the solar
system, and are therefore of great interest to planetary astronomers. They can also be
beautiful objects to observe in the night sky, unlike their darker and less spectacular
cousins, asteroids. They therefore often capture the attention of the public.

9.4 Composition and Components of a Comet

Comets are composed of ices (water ice and other kinds of ices), gases (carbon dioxide,
carbon monoxide, hydrogen, hydroxyl, oxygen, and so on), and dust particles (carbon
and silicon). The dust particles are smaller than the particles in cigarette smoke. In
general, the model for a comet’s composition is that of a “dirty snowball.”

Figure 9.3: The main components of a comet.

Comets have several components that vary greatly in composition, size, and
brightness. These components are the following:

• nucleus: made of ice and rock, roughly 5-10 km across

• coma: the “head” of a comet, a large cloud of gas and dust, roughly 100,000
km in diameter

• gas tail: straight and wispy; gas in the coma becomes ionized by sunlight, and
gets carried away by the solar wind to form a straight blueish “ion” tail. The
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shape of the gas tail is influenced by the magnetic field in the solar wind. Gas
tails are pointed in the direction directly opposite the sun, and can extend 108

km.

• dust tail: dust is pushed outward by the pressure of sunlight and forms a long,
curving tail that has a much more uniform appearance than the gas tail. The
dust tail is pointed in the direction directly opposite the comet’s direction of
motion, and can also extend 108 km from the nucleus.

These various components of a comet are shown in Figure 9.3.

9.5 Types of Comets

Comets originate from two primary locations in the solar system. One class of comets,
called the long-period comets, have long orbits around the sun with periods of >
200 years. Their orbits are random in shape and inclination, with long-period comets
entering the inner solar system from all different directions. These comets are thought
to originate in the Oort cloud, a spherical cloud of icy bodies that extends from ∼
20,000 – 150,000 AU from the Sun (see Figure 9.4). Some of these objects might
experience only one close approach to the Sun and then leave the solar system (and
the Sun’s gravitational influence) completely.

Figure 9.4: The Oort cloud.

In contrast, the short-period comets have periods less than 200 years, and their
orbits are all roughly in the plane of the solar system. Comet Halley has a 76-year
period, and therefore is considered a short-period comet. Comets with orbital periods
< 100 years do not get much beyond Pluto’s orbit at their farthest distance from the
Sun. Short-period comets cannot survive many orbits around the Sun before their
ices are all melted away. It is thought that these comets originate in the Kuiper
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Belt, a belt of small icy bodies beyond the large gas giant planets and in the plane
of the solar system (see Fig. 9.5). Quite a few large Kuiper Belt objects have now
been discovered, including one (Eris) that is about the same size as Pluto.

Figure 9.5: The Kuiper Belt.

9.6 The Impacts of Asteroids and Comets

Objects orbiting the Sun in our solar system do so at a variety of speeds that directly
depends on how far they are from the Sun. For example, the Earth’s orbital velocity
is 30 km/s (65,000 mph!). Objects further from the Sun than the Earth move more
slowly, objects closer to the Sun than the Earth move more quickly. Note that aster-
oids and comets near the Earth will have space velocities similar to the Earth, but
in (mostly) random directions, thus a collision could occur with a relative speed of
impact of nearly 60 km/s! How fast is this? Note that the highest muzzle velocity
of any handheld rifle is 1,220 m/s = 1.2 km/s. Thus, the impact of any solar system
body with another is a true high speed collision that releases a large amount of energy.
For example, an asteroid the size of a football field that collides with the Earth with
a velocity of 30 km/s releases as much energy as one thousand atomic bombs the size
of that dropped on Japan during World War II (the Hiroshima bomb had a “yield”
of 13 kilotons of TNT). Since the equation for kinetic energy (the energy of motion)
is K.E. = 1/2(mv2), the energy scales directly as the mass, and mass goes as the cube
of the radius (mass = density × Volume = density × R3). A moving object with ten
times the radius of another traveling at the same velocity has 1,000 times the kinetic
energy. It is this kinetic energy that is released during a collision.

9.7 Exercise #1: Creating Impact Craters

To create impact craters, we will be dropping steel ball bearings into a container
filled with ordinary baking flour. There are two sizes of balls, one that is twice as
massive as the other. You will drop both of these balls from three different heights
(0.5 meters, 1 meters, and 2 meters), and then measure the size of the impact crater
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that they produce. Then on graph paper, you will plot the size of the impact crater
versus the speed of the impacting ball.

1. Have one member of your lab group take the meter stick, while another takes
the smaller ball bearing.

2. Take the plastic tub that is filled with flour, and place it on the floor.

3. Make sure the flour is uniformly level (shake or comb the flour smooth)

4. Carefully hold the meter stick so that it is just touching the top surface of the
flour.

5. The person with the ball bearing now holds the ball bearing so that it is located
exactly one half meter (50 cm) above the surface of the flour.

6. Drop the ball bearing into the center of the flour-filled tub.

7. Use the magnet to carefully extract the ball bearing from the flour so as to
cause the least disturbance.

8. Carefully measure the diameter of the crater caused by this impact, and place
it in the data table, below.

9. Repeat the experiment for heights of 1 meter and 2 meters using the smaller ball
bearing (note that someone with good balance might have to carefully stand on
a chair or table to get to a height of two meters!).

10. Now repeat the entire experiment using the larger ball bearing. Record all of
the data in the data table.

Height Crater diameter Crater diameter Impact velocity
(meters) (cm) Ball #1 (cm) Ball #2 (m/s)
0.5
1.0
2.0

Now it is time to fill in that last column: Impact velocity (m/s). How can we
determine the impact velocity? The reason the ball falls in the first place is because
of the pull of the Earth’s gravity. This force pulls objects toward the center of the
Earth. In the absence of the Earth’s atmosphere, an object dropped from a great
height above the Earth’s surface continues to accelerate to higher, and higher veloci-
ties as it falls. We call this the “acceleration” of gravity. Just like the accelerator on
your car makes your car go faster the more you push down on it, the force of gravity
accelerates bodies downwards (until they collide with the surface!).
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We will not derive the equation here, but we can calculate the velocity of a falling
body in the Earth’s gravitational field from the equation v = (2ay)1/2. In this equa-
tion, “y” is the height above the Earth’s surface (in the case of this lab, it is 0.5, 1,
and 2 meters). The constant “a” is the acceleration of gravity, and equals 9.80 m/s2.
The exponent of 1/2 means that you take the square root of the quantity inside the
parentheses. For example, if y = 3 meters, then v = (2 × 9.8 × 3)1/2, or v = (58.8)1/2

= 7.7 m/s.

1. Now plot the data you have just acquired on the graph paper attached at the
end of this lab. Put the impact velocity on the x axis, and the crater diameter on the
y axis. (10 points)

9.7.1 Impact crater questions

1. Describe your graph, can the three points for each ball be approximated by a single
straight line? How do your results for the larger ball compare to that for the smaller
ball? (3 points)

2. If you could drop both balls from a height of 4 meters, how big would their
craters be?(2 points)

3. What is happening here? How does the mass/size of the impacting body effect
your results. How does the speed of the impacting body effect your results? What
have you just proven? (5 points)

9.8 Crater Illumination

Now, after your TA has dimmed the room lights, have someone take the flashlight
out and turn it on. If you still have a crater in your tub, great, if not create one (any
height more than 1 meter is fine). Extract the ball bearing.
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1. Now, shine the flashlight on the crater from straight over top of the crater.
Describe what you see. (2 points)

2. Now, hold the flashlight so that it is just barely above the lip of the tub, so
that the light shines at a very oblique angle (like that of the setting Sun!). Now, what
do you see?(2 points)

3. When is the best time to see fine surface detail on a cratered body, when it
is noon (the Sun is almost straight overhead), or when it is near “sunset”? [Confirm
this at the observatory sometime this semester!] (1 point)

9.9 Exercise #2: Building a Comet

In this portion of the lab, you will actually build a comet out of household materials.
These include water, ammonia, potting soil, and dry ice (CO2 ice). Be sure to dis-
tribute the work evenly among all members of your group. Follow these directions:
(12 points)

1. Put a freezer bag in your bucket.

2. Place about 1/3 cup of water in the bag/bucket.

3. Add 2 spoonfuls of sand, stirring well. (NOTE: Do not stir so hard that you
rip the freezer bag!)

4. Add a dash of ammonia.

5. Add a dash of organic material (potting soil). Stir until well-mixed.
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6. Your TA will place a block or chunk of dry ice inside a towel and crush the
block with the mallet and give you some crushed dry ice.

7. Add about 1 cup of crushed dry ice to the bucket, while stirring vigorously.
(NOTE: Do not stir so hard that you rip the freezer bag!!)

8. Continue stirring until mixture is almost frozen.

9. Lift the comet out of the bucket, keeping it in the freezer bag, and shape it for
a few seconds as if you were building a snowball (wear gloves!).

10. If not a solid mass, add small amounts of water and keep working the “snowball”
until the mixture is completely frozen.

11. Unwrap the comet once it is frozen enough to hold its shape.

9.9.1 Comets and Light

Observe the comet as it is sitting on a desk. Make note of some of its physical
characteristics, for example:

• shape

• color

• smell

Now bring the comet over to a high intensity light source (overhead projector), or
heat source (hairdryer) and place it on top. Observe what happens.

9.9.2 Comet Strength

Comets, like all objects in the solar system, are held together by their internal
strength. If they pass too close to a large body, such as Jupiter, their internal strength
is not large enough to compete with the powerful gravity of the massive body. In such
encounters, a comet can be broken apart into smaller pieces. In 1994, we saw evidence
of this when Comet Shoemaker-Levy/9 impacted into Jupiter. In 1992, that comet
passed very close to Jupiter and was fragmented into pieces. Two years later, more
than 21 cometary fragments crashed into Jupiter’s atmosphere, creating spectacular
(but temporary) “scars” on Jupiter’s cloud deck (see Fig. 9.6).

Question: Do you think comets have more or less internal strength than asteroids,
which are composed primarily of rock? [Hint: If you are playing outside with your
friends in a snow storm, would you rather be hit with a snowball or a rock?]

Exercise: After everyone in your group has carefully examined your comet, it is
time to say goodbye. Take a sample rock and your comet, go outside, and drop them
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Figure 9.6: The Impact of ”Fragment K” of Comet Shoemaker-Levy/9 with Jupiter.

both on the sidewalk. What happened to each object? (2 points)

9.9.3 Comet Questions

1. Draw a comet and label all of its components. Be sure to indicate the direction
the Sun is in, and the comet’s direction of motion. (8 points)

2. What are some differences between long-period and short-period comets? Does
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it make sense that they are two distinct classes of objects? Why or why not?
(5 points)

3. List some properties of the comet you built. In particular, describe its shape,
color, smell and weight relative to other common objects (e.g. tennis ball,
regular snow ball, etc.). (4 points)

4. Describe what happened when you put your comet near the light source. Were
there localized regions of activity, or did things happen uniformly to the entire
comet? (3 points)

5. If a comet is far away from the Sun and then it draws nearer as it orbits the
Sun, what would you expect to happen? (3 points)
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6. Which object do you think has more internal strength, an asteroid or a comet,
and why? (3 points)
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9.10 Summary

(35 points) Summarize the important ideas covered in this lab. Questions you may
want to consider are:

• How does the mass of an impacting asteroid or comet affect the size of an impact
crater?

• How does the speed of an impacting asteroid or comet affect the size of an
impact crater?

• Why are comets important to planetary astronomers?

• What can they tell us about the solar system?

• What are some components of comets and how are they affected by the Sun?

• How are comets different from asteroids?

Use complete sentences, and proofread your summary before handing in the lab.

9.11 Possible Quiz Questions

1. What is the main difference between comets and asteroids, and why are they
different?
2. What is the Oort cloud and the Kuiper belt?
3. What happens when a comet or asteroid collides with the Moon?
4. How does weather effect impact features on the Earth?
5. How does the speed of the impacting body effect the energy of the collision?

9.12 Extra Credit (ask your TA for permission before at-
tempting, 5 points)

On the 15th of February, 2013, a huge meteorite exploded in the skies over Chelyabinsk,
Russia. Write-up a small report about this event, including what might have hap-
pened if instead of a grazing, or “shallow”, entry into our atmosphere, the meteor
had plowed straight down to the surface.
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Figure 9.7: Plot your impact crater data here.
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Date:

10 The Surface of the Moon

10.1 Introduction

One can learn a lot about the Moon by looking at the lunar surface. Even before as-
tronauts landed on the Moon, scientists had enough data to formulate theories about
the formation and evolution of the Earth’s only natural satellite. However, since the
Moon rotates once for every time it orbits around the Earth, we can only see one side
of the Moon from the surface of the Earth. Until spacecraft were sent to orbit the
Moon, we only knew half the story.

The type of orbit our Moon makes around the Earth is called a synchronous or-
bit. This phenomenon is shown graphically in Figure 10.1 below. If we imagine that
there is one large mountain on the hemisphere facing the Earth (denoted by the small
triangle on the Moon), then this mountain is always visible to us no matter where
the Moon is in its orbit. As the Moon orbits around the Earth, it turns slightly so
we always see the same hemisphere.

Figure 10.1: The Moon’s “synchronous” orbit (not drawn to scale). Note how the
Moon spins exactly once during its 27.3 day orbit around the Earth, but keeps the
same face pointing towards the Earth.

On the Moon, there are extensive lava flows, rugged highlands, and many impact
craters of all different sizes. The overlapping of these features implies relative ages.
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Because of the lack of ongoing mountain building processes, or weathering by wind
and water, the accumulation of volcanic processes and impact cratering is readily
visible. Thus by looking at the images of the Moon, one can trace the history of the
lunar surface. Most of the images in this lab were taken by NASA spacecraft or by
the Apollo Astronauts.

• Goals: to discuss the Moon’s terrain, craters, and the theory of relative ages;
to use pictures of the Moon to deduce relative ages and formation processes of
surface features

• Materials: Moon pictures, ruler, calculator

• Review: Section 1.2.2 in Lab #1

10.2 Craters and Maria

A crater is formed when a meteor from space strikes the lunar surface. The force of
the impact obliterates the meteorite and displaces part of the Moon’s surface, pushing
the edges of the crater up higher than the surrounding rock. At the same time, more
displaced material shoots outward from the crater, creating rays of ejecta. These
rays of material can be seen as radial streaks centered on some of the craters in some
of the pictures you will be using for your lab today. As shown in Figure 10.2, some of
the material from the blast “flows” back towards the center of the crater, creating a
mountain peak. Some of the craters in the photos you will examine today have these
“central peaks”. Figure 10.2 also shows that the rock beneath the crater becomes
fractured (full of cracks).

Figure 10.2: Formation of an Impact Crater.

Soon after the Moon formed, its interior was mostly liquid. It was continually
being hit by meteors, and the energy (heat) from this period of intense cratering was
enough to liquify the Moon’s interior. Every so often, a very large meteor would strike
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the surface, and crack the Moon′s crust. The over-pressured “lava” from the Moon’s
molten mantle then flowed up through the cracks made by the impact. The lava filled
in the crater, creating a dark, smooth “sea”. Such a sea is called a mare (plural:
maria). Sometimes the amount of lava that came out could overfill the crater. In
those cases, it spilled out over the crater’s edges and could fill in other craters as well as
cover the bases of the highlands, the rugged, rocky peaks on the surface of the Moon.

10.3 Relative Ages on the Moon

Since the Moon does not have rain or wind erosion, astronomers can determine which
features on the Moon are older than others. It all comes down to counting the num-
ber of craters a feature has. Since there is nothing on the Moon that can erase the
presence of a crater, the more craters something has, the longer it must have been
around to get hit. For example, if you have two large craters, and the first crater
has 10 smaller craters in it, while the second one has only 2 craters in it, we know
that the first crater is older since it has been there long enough to have been hit 10
times. If we look at the highlands, we see that they are covered with lots and lots of
craters. This tells us that in general, the highlands are older than the maria, which
have fewer craters. We also know that if we see a crater on top of a mare, the mare is
older. It had to be there in the first place to get hit by the meteor. Crater counting
can tell us which features on the Moon are older than other features, but it can not
tell us the absolute age of the feature. To determine that, we need to use radioactive
dating or some other technique.

10.4 Lab Stations

In this lab you will be using a 3-ring binder that has pictures organized into separate
subsections, or “stations”. At some stations we present data comparing the Moon to
the Earth or Mars. Using your understanding of simple physical processes here on
Earth and information from the class lecture and your reading, you will make obser-
vations and draw logical conclusions in much the same way that a planetary geologist
would.

You should work in groups of two to four, with one notebook for each group. The
notebooks contain separate subsections, or “stations”, with the photographs and/or
images for each specific exercise. Each group must go through all of the stations, and
consider and discuss each question and come to a conclusion. Remember to back
up your answers with reasonable explanations, and be sure to answer all of
the questions. While you should discuss the questions as a group, be sure to write
down one group answer for each question. The take-home questions must be done on
your own. Answers for the take-home questions that are exact duplicates
of those of other members of your group will not be acceptable.
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10.5 The Surface of the Moon

Station 1: Our first photograph (#1) is that of the full Moon. It is obvious that the
Moon has dark regions, and bright regions. The largest dark regions are the “Maria”,
while the brighter regions are the “highlands”. In image #2, the largest features of
the full Moon are labeled. The largest of the maria on the Moon is Mare Imbrium
(the “Sea of Showers”), and it is easily located in the upper left quadrant of image
#2. Locate Mare Imbrium. Let us take a closer look at Mare Imbrium.

Image #3 is from the Lunar Orbiter IV. Before the Apollo missions landed humans
on the Moon, NASA sent several missions to the Moon to map its surface, and to
make sure we could safely land there. Lunar Orbiter IV imaged the Moon during
May of 1967. The technology of the time was primitive compared to today, and the
photographs were built up by making small imaging scans/slices of the surface (the
horizontal striping can be seen in the images), then adding them all together to make
a larger photograph. Image #3 is one of these images of Mare Imbrium seen from
almost overhead.

Question #1: Approximately how many craters can you see inside the dark circular
region that defines Mare Imbrium? Compare the number of craters in Mare Imbrium
to the brighter regions to the North (above) of Mare Imbrium. (2 points)

Images #4 and #5 are close-ups of small subsections of Mare Imbrium. In im-
age #4, the largest crater (in the lower left corner) is “Le Verrier” (named after the
French mathematician who predicted the correct position for the planet Neptune).
Le Verrier is 20 km in diameter. In image #5, the two largest craters are named
Piazzi Smyth (just left of center) and Kirch (below and left of Piazzi Smyth). Piazzi
Smyth has a diameter of 13 km, while Kirch has a diameter of 11 km.

Question #2: Using the diameters for the large craters noted above, and a ruler,
what is the approximate diameter of the smallest crater you can make out in images
#4 and #5? If the NMSU campus is about 1 km in diameter, compare the smallest
crater you can see to the size of our campus. (2 points)
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In image #5 there is an isolated mountain (Mons Piton) located near Piazzi
Smyth. It is likely that Mons Piton is related to the range of mountains to its upper
right.

Question #3: Roughly how much area (in km2) does Mons Piton cover? Compare
it to the area of the Organ mountains that are located to the east of Las Cruces (esti-
mate a width and a length, and assuming a rectangle, calculate the approximate area
of the Organs). How do you think such an isolated mountain came to exist? [Hint: In
the introduction to the lab exercises, the process of maria formation was described.
Using this idea, how might Mons Piton become so isolated from the mountain range
to the northeast?] (5 points)

Station #2: Now let’s move to the “highlands”. In image #6 (which is identical to
image #2), the crater Clavius can be seen on the bottom edge—it is the bottom-most
labeled feature on this map. In image #7, is a close-up picture of Clavius (just below
center) taken from the ground through a small telescope (this is similar to what you
would see at the campus observatory). Clavius is one of the largest craters on the
Moon, with a diameter of 225 km. In the upper right hand corner is one of the best
known craters on the Moon, “Tycho”. In image #1 you can identify Tycho by the
large number of bright “rays” that emanate from this crater. Tycho is a very young
crater, and the ejecta blasted out of the lunar surface spread very far from the impact
site.

Question #4: Estimate (in km) the distance from the center of the crater Clavius
to the center of Tycho. Compare this to the distance between Las Cruces, and Albu-
querque (375 km). (3 points)
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Images #8 and #9, are two high resolution images of Clavius and nearby regions
taken by Lunar Orbiter IV (note the slightly different orientations from the ground-
based picture).

Question #5: Compare the region around Clavius to Mare Imbrium. Scientists now
know that the lunar highlands are older than the Maria. What evidence do you have
(using these photographs) that supports this idea? [Hint: review subsection 2.3 of
the introduction.] (5 points)

Station #3: Comparing Apollo landing sites. In images #10 and #11 are close-ups
of the Apollo 11 landing site in Mare Tranquillitatis (the “Sea of Tranquility”). The
actual spot where the “Eagle” landed on July 20, 1969 is marked by the small cross
in image 11 (note that three small craters near the landing site have been named for
the crew of this mission: Aldrin, Armstrong and Collins). [There are also quite a
number of photographic defects in these pictures, especially the white circular blobs
near the center of the image to the North of the landing site.] The landing sites of
two other NASA spacecraft, Ranger 8 and Surveyor 5, are also labeled in image #11.
NASA made sure that this was a safe place to explore!

Images #12 and #13 show the landing site of the last Apollo mission, #17. Apollo
17 landed on the Moon on December 11th, 1972. Compare the two landing sites.

Question #6: Describe the logic that NASA used in choosing the two landing sites–
why did they choose the Tranquillitatis site for the first lunar landing? What do you
think led them to choose the Apollo 17 site? (5 points)
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The next two sets of images show photographs taken by the astronauts while on
the Moon. The first three photographs (#14, #15, and #16) are scenes from the
Apollo 11 site, while the next three (#17, #18, and #19) were taken at the Apollo
17 landing site.

Question #7: Do the photographs from the actual landing sites back-up your an-
swer to why NASA chose these two sites? How? Explain your reasoning. (5 points)

Station 4: On the northern-most edge of Mare Imbrium sits the crater Plato (la-
beled in images #2 and #6). Photo #20 is a close-up of Plato. Do you agree with
the theory that the crater floor has been recently flooded? Is the mare that forms
the floor of this crater younger, older, or approximately the same age as the nearby
region of Mare Imbrium located just to the South (below) of Plato? Explain your
reasoning. (5 points)

Station 5: Images #21 and #22 are “topographical” maps of the Earth and of the
Moon. A topographical map shows the elevation of surface features. On the Earth
we set “sea level” as the zero point of elevation. Continents, like North America,
are above sea level. The ocean floors are below sea level. In the topographical map
of the Earth, you can make out the United States. The Eastern part of the US
is lower than the Western part. In topographical maps like these, different colors
indicate different heights. Blue and dark blue areas are below sea level, while green
areas are just above sea level. The highest mountains are colored in red (note that
Greenland and Antarctica are both colored in red–they have high elevations due to
very thick ice sheets). We can use the same technique to map elevations on the Moon.
Obviously, the Moon does not have oceans to define “sea level”. Thus, the definition
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of zero elevation is more arbitrary. For the Moon, sea level is defined by the average
elevation of the lunar surface.

Image #22 is a topographical map for the Moon, showing the highlands (orange,
red, and pink areas), and the lowlands (green, blue, and purple). [Grey and black
areas have no data.] The scale is shown at the top. The lowest points on the Moon
are 10 km below sea level, while the highest points are about 10 km above sea level.
On the left hand edge (the “y axis”) is a scale showing the latitude. 0o latitude is
the equator, just like on the Earth. Like the Earth, the North pole of the Moon has
a latitude of +90o, and the south pole is at −90o. On the x-axis is the longitude of
the Moon. Longitude runs from 0o to 360o. The point at 0o latitude and longitude of
the Moon is the point on the lunar surface that is closest to the Earth.

It is hard to recognize features on the topographical map of the Moon because of
the complex surface (when compared to the Earth’s large smooth areas). But let’s
go ahead and try to find the objects we have been studying. First, see if you can find
Plato. The latitude of Plato is +52o N, and its longitude is 351o. You can clearly see
the outline of Plato if you look closely.

Question #8: Is Plato located in a high region, or a low region? Is Plato lower than
Mare Imbrium (centered at 32oN, 344o)? [Remember that Plato is on the Northern
edge of Mare Imbrium.](2 points)

Question #9: Apollo 11 landed at Latitude = 1.0oN, longitude = 24o. Did it land
in a low area, or a high area? (2 points)

As described in the introduction, the Moon keeps the same face pointed towards
Earth at all times. We can only see the “far-side” of the Moon from a spacecraft.
In image #22, the hemisphere of the Moon that we can see runs from a longitude of
270o, passing through 0o, and going all the way to 90o (remember 0, 0 is located at
the center of the Moon as seen from Earth). In image #23 is a more conventional
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topographical map of the Moon, showing the two hemispheres: near side, and far side.

Question #10: Compare the average elevation of the near-side of the Moon to that
of the far-side. Are they different? Can you make-out the Maria? Compare the
number of Maria on the far side to the number on the near side. (5 points)

Station 6: With the surface of the Moon now familiar to you, and your perception
of the surface of the Earth in mind, compare the Earth’s surface to the surface of the
Moon. Does the Earth’s surface have more craters or less craters than the surface
of the Moon? Discuss two differences between the Earth and the Moon that could
explain this. (5 points)

10.6 The Chemical Composition of the Moon: Keys to its
Origin

Station 7: Now we want to examine the chemical composition of the Moon to reveal
its history and origin. The formation of planets (and other large bodies in the solar
system like the Moon) is a violent process. Planets grow through the process of “ac-
cretion”: the gravity of the young planet pulls on nearby material, and this material
crashes into the young planet, heating it, and creating large craters. In the earliest
days of the solar system, so much material was being accreted by the planets, that
they were completely molten. That is, they were in the form of liquid rock, like the
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lava you see flowing from some volcanoes on the Earth. Just like the case with water,
heavier objects in molten rock sink to the bottom more quickly than lighter material.
This is also true for chemical elements. Iron is one of the heaviest of the common
elements, and it sinks toward the center of a planet more quickly than elements like
silicon, aluminum, or magnesium. Thus, near the Earth’s surface, rocks composed
of these lighter elements dominate. In lava, however, we are seeing molten rock
from deeper in the Earth coming to the surface, and thus lava and other volcanic (or
“igneous”) rock, can be rich in iron, nickel, titanium, and other high-density elements.

Images #24 and 25 present two unique views of the Moon obtained by the space-
craft Clementine. Using special sensors, Clementine could make maps of the surface
composition of the Moon. In Image #24 is a map of the amount of iron on the surface
of the Moon (redder colors mean more iron than bluer colors). Image #25 is the same
type of map, but for titanium.

Question #11: Compare the distribution of iron and titanium to the surface fea-
tures of the Moon (using images #1, #2 or #6, or the topographical map in image
#23). Where are the highest concentrations of iron and titanium found? (4 points)

Question #12: If the heavy elements like iron and titanium sank towards the center
of the Moon soon after it formed, what does the presence of large amounts of iron
and titanium in the maria suggest? [Hint: do you remember how maria are formed?]
(5 points)
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Table 10.1: Composition of the Earth & Moon
Element Earth Moon

Iron 34.6% 3.5%
Oxygen 29.5% 60.0%
Silicon 15.2% 16.5%

Magnesium 12.7% 3.5%
Titanium 0.05% 1.0%

The structure of the Earth is shown in the diagram, below. There are three main
structures: the crust (where we live), the mantle, and the core. The crust is cool
and brittle, the mantle is hotter, and “plastic” (it flows), and the core is very hot
and very dense. The density of a material is simply its mass (in grams or kilograms)
divided by its volume (in centimeters or meters). Water has a density of 1 gm/cm3.
The density of the Earth’s crust is about 3 gm/cm3, while the mantle has a density
of 4.5 gm/cm3. The core is very dense: 14 gm/cm3 (this is partly due to its compo-
sition, and partly due to the great pressure exerted by the mass located above the
core). The core of the Earth is almost pure iron, while the mantle is a mixture of
magnesium, silicon, iron and oxygen. The average density of the Earth is 5.5 gm/cm3.

Figure 10.3: The internal structure of the Earth, showing the dimensions of the crust,
mantle and core, as well as their composition and temperatures.

Before the astronauts brought back rocks from the Moon, we did not have a good
theory about its formation. All we knew was that the Moon had an average density of
3.34 gm/cm3. If the Moon formed from the same material as the Earth, their compo-
sitions would be nearly identical, as would their average densities. In Table 10.1, we
present a comparison of the composition of the Moon to that of the Earth. The data
for the Moon comes from analysis of the rocks brought back by the Apollo astronauts.

Question #13: Is the Moon composed of the same mixture of elements as the
Earth? What are the biggest differences? Does this support a model where the Moon
formed out of the same material as the Earth? (3 points)

153



Table 10.2: Chemical Composition of the Earth and Moon
Element Earth’s Crust and Mantle Moon

Iron 5.0% 3.5%
Oxygen 46.6% 60.0%
Silicon 27.7% 16.5%

Magnesium 2.1% 3.5%
Calcium 3.6% 4.0%

As you will learn in the Astronomy 110 lectures, the inner planets in the solar sys-
tem (Mercury, Venus, Earth and Mars) have higher densities than the outer planets
(Jupiter, Saturn, Uranus and Neptune). One theory for the formation of the Moon is
that it formed out near Mars, and “migrated” inwards to be captured by the Earth.
This theory arose because the density of Mars, 3.9 gm/cm3, is similar to that of the
Moon. But Mars is rich in iron and magnesium: 17% of Mars is iron, and more than
15% is magnesium.

Question #14: Given this data, do you think it is likely that the Moon formed out
near Mars? Why? (2 points)

The final theory for the formation of the Moon is called the “Giant Impact”
theory. In this model, a large body (about the size of the planet Mars) collided with
the Earth, and the resulting explosion sent a large amount of material into space.
This material eventually collapsed (coalesced) to form the Moon. Most of the ejected
material would have come from the crust and the mantle of the Earth, since it is
the material closest to the Earth’s surface. In Table 10.6 is a comparison of the
composition of the Earth’s crust and mantle compared to that of the Moon.

Question #15: Given the data in this table, present an argument for why the giant
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impact theory is now the favorite theory for the formation of the Moon. Can you
think of a reason why the compositions might not be exactly the same? (5 points)
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10.7 Summary

(35 points) Please summarize in a few paragraphs what you have learned in this lab.
Your summary should include:

• Explain how to determine and assign relative ages of features on the Moon

• Comment on analyzing pictures for information; what sorts of things would you
look for? what can you learn from them?

• What is a mare and how is it formed?

• How does the composition of the Moon differ from the Earth, and how does
this give us insight into the formation of the Moon?

Use complete sentences and proofread your summary before handing it in.

10.8 Possible Quiz Questions

1. What is an impact crater, and how is it formed?
2. What is a Mare?
3. Which is older the Maria or the Highlands?
4. How are the Maria formed?
5. What is synchronous rotation?
6. How can we determine the relative ages of different lunar surfaces?

10.9 Extra Credit (ask your TA for permission before at-
tempting, 5 points)

In the past few years, there have been some new ideas about the formation of the
Moon, and why the lunar farside is so different from the nearside (one such idea goes
by the name “the big splat”). In addition, we have recently discovered that the in-
terior of the Moon is highly fractured. Write a brief (about one page) review on the
new computer simulations and/or observations that are attempting to understand
the formation and structure of the Moon.
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Name:

Date:

11 Galaxy Morphology

11.1 Introduction

Galaxies are enormous, “gravitationally bound” collections of millions, upon millions
of stars. In addition to these stars, galaxies also contain varying amounts of gas and
dust from which stars form, or from which they have formed. In the centers of some
galaxies live enormous black holes that are sucking-in, and ripping apart stars and
clouds of atomic and molecular gas. Galaxies come in a variety of shapes and sizes.
Some galaxies have large numbers of young stars, and star forming regions, while
others are more quiescent, mostly composed of very old, red stars. In today’s lab you
will be looking at pictures of galaxies to become familiar with the appearances, or
“morphology”, of the various types of galaxies, and learn how to classify galaxies into
one of the three main categories of galaxy type. We will also use photographs/images
of galaxies obtained using different colors of light to learn how the appearances of
galaxies depend on the wavelength of light used to examine them.

• Goals: to learn about galaxies

• Materials: a pen to write with, a ruler, a calculator, and one of the notebooks
of galaxy pictures

11.2 Our Home: The Milky Way Galaxy

During the summertime, if you happen to be far from the city lights, take a look
at the night sky. During the summer, you will see a faint band of light that bisects
the sky. In July, this band of light runs from the Northeast down to the Southwest
horizon (see Fig. 11.1). This band of light is called the Milky Way, our home galaxy.
Because we are located within the Milky Way galaxy, it is actually very hard to figure
out its exact shape: we cannot see the forest for the trees! Thus, it is informative to
look at other galaxies to attempt to compare them to ours to help us understand the
Milky Way’s structure.

Galaxies are collections of stars, and clouds of gas and dust that are bound to-
gether by their mutual gravity. That is, the mass of all of the stars, gas and dust
pull on each other through the force of gravity so that they “stick together”. Just
like the planets in our Solar System orbit the Sun, the stars (and everything else) in
a galaxy orbit around the central point of the galaxy. The central point in a galaxy
is referred to as the “nucleus”. In some galaxies, there are enormous black holes that
sit right at the center. These black holes can have a mass that is a billion times
that of the Sun (109 M�)! But not all galaxies have these ferocious beasts at their
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Figure 11.1: A fisheye lens view of the summertime sky showing the band of light
called the Milky Way. This faint band of light is composed of the light from thousands
and thousands of very faint stars. The Milky Way spans a complete circle across the
celestial sphere because our solar system is located within the “disk” of the galaxy.

cores, some merely have large clusters of young stars, while others have a nucleus
that is dominated by large numbers of old stars. The Sun orbits around the nucleus
of our Milky Way galaxy (Fig. 11.2) in a similar fashion to the way the Earth or-
bits around the Sun. While it only takes one year for the Earth to go around the
Sun, it takes the Sun more than 200 million years to make one trip around our galaxy!

Note that the central region (“bulge” and nucleus) of the Milky Way has a higher
density of stars than in the outer regions. In the neighborhood of the Sun, out in the
“disk”, the mass density is only 0.002 M�/ly3 (remember that density is simply the
mass divided by the volume: M/V, here the Mass is solar masses: M�, and Volume
is in cubic light years: ly3). In the central regions of our Milky Way galaxy (within
300 ly of the center), however, the mass density is 100 times higher: 0.200 M�/ly3.
What does this mean? The nearest star to the Sun is Alpha Centauri at 4.26 ly. If
we were near the nucleus of our Milky Way galaxy, there would be 200 stars within
4.26 ly of the Sun. Our sky would be ablaze with dozens of stars as bright as Venus,
with some as bright as the full moon! It would be a spectacular sight.

Our Milky Way galaxy is a spiral galaxy that contains more than 100 billion stars.
While the Milky Way is a fairly large galaxy, there are much larger galaxies out there,
some with 100 times the mass of the Milky Way. But there are an even larger number
of very small “dwarf” galaxies. Just like the case for stars, nature prefers to produce
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Figure 11.2: A diagram of the size and scale of our “Milky Way” galaxy. The main
regions of our galaxy, the “bulge”, “disk”, and “halo” are labeled. Our Milky Way is
a spiral galaxy, with the Sun located in a spiral arm 28,000 ly from the nucleus. Note
that the disk of the Milky Way galaxy spans 100,000 ly, but is only about 1,000 ly
thick. While the disk and spiral arms of the Milky Way are filled with young stars,
and star forming regions, the bulge of the Milky Way is composed of old, red stars.

lots of little galaxies, and many fewer large galaxies. The smallest galaxies can contain
only a few million stars, and they are thousands of times smaller than the Milky Way.

11.3 Galaxy Types: Spirals Ellipticals, and Irregulars

Shortly after the telescope was invented, astronomers started scanning the sky to
see what was out there. Among the stars, these first astronomers would occasion-
ally come across a faint, fuzzy patch of light. Many of these “nebulae” (Latin for
cloud-like) appeared similar to comets, but did not move. Others of these nebulae
were resolved into clusters of stars as bigger telescopes were constructed, and used to
examine them. Some of these fuzzy nebulae, however, did not break-up into stars no
matter how big a telescope was used to look at them. While many of these nebulae
are clouds of glowing hydrogen gas within the Milky Way galaxy (HII regions), others
(some of which resembled pinwheels) were true galaxies–similar to the Milky Way in
size and structure, but millions of light years from us. It was not until the 1920’s
that the actual nature of galaxies was confirmed–they were true “Island Universes”,
collections of millions and billions of stars. As you will find out in your lecture ses-
sions, the space between galaxies is truly empty, and thus most of the matter in the
Universe resides inside of galaxies: They are islands of matter in an ocean of vacuum.

Like biologists or other scientists, astronomers attempt to associate similar types
of objects into groups or classes. One example is the spectral classification sequence
(OBAFGKM) for stars. The same is true for galaxies–we classify galaxies by their
observed properties. It was quickly noticed that there were two main types of galax-
ies, those with pinwheel shapes, “spiral galaxies”, and smooth, mostly round or oval
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galaxies, “elliptical” galaxies. While most galaxies could be classified as spirals or
ellipticals, some galaxies shared properties of both types, or were irregular in shape.
Thus, the classification of “irregular”. This final category is a catch-all for any galaxy
that cannot be easily classified as a spiral or elliptical. Most irregular galaxies are
small, messy, unorganized clumps of gas and stars (though some irregular galaxies
result from the violent collisions of spiral and/or elliptical galaxies).

11.3.1 Spiral Galaxies

The feature that gives spiral galaxies their shape, and leads to their classification are
their spiral arms. An example of a beautiful spiral is M81 shown in Fig. 11.3. A
spiral galaxy like M81 resembles a whirlpool, or pinwheel: arms of stars, gas and dust
that radiate in curving arcs from the central “bulge”.

Figure 11.3: The Sb spiral galaxy M81. Notice the nice, uniform spiral arms that are
wound tightly around the large, central bulge. Inside the spiral arms, there are large
regions of glowing gas called HII regions–where stars are being born. These stand
out as knots or clumps in the spiral arms. The dark spots, lanes, and arcs are due to
dust clouds that are associated with these star forming regions.

Other spiral galaxies, like M51 shown in Fig. 11.4, have less tightly wound spiral
arms, and much smaller bulges. Finally, there are spiral galaxies with very tightly
wound spiral arms that are dominated by their bulge, like the Andromeda galaxy
(M31) shown in Fig. 11.5. The arms are so tightly wound, that it is hard to tell
where one ends and the other begins. These types of galaxies also have much less
star formation.

Spiral galaxies are classified by how tightly their arms are wound, and how large
their central bulges are. There are three main types of spirals: Sa, Sb, and Sc. Sa
spirals have large bulges and tightly wound arms, while Sc’s have very loosely wound
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Figure 11.4: The Sc spiral galaxy M51. Notice the large, clumpy spiral arms that are
loosely wound around the small, central bulge. Inside the spiral arms of M51 there
are very many large HII regions–M51 has many young star forming regions. Notice
that there is also a lot more dust in M51 than in M81.

Figure 11.5: The Sab spiral galaxy M31. Notice the very large bulge, and very tightly
wound spiral arms. Like the Milky Way, the Andromeda Galaxy has several small
galaxies in orbit around it (just like planets orbit the Sun, some small galaxies can
be found orbiting around large galaxies). Two of these galaxies can be seen as the
round/elliptical blobs above and below the disk of the Andromeda galaxy shown here.
Both are elliptical galaxies, discussed in the next subsection.

arms, and small bulges. Sb’s are intermediate between Sa’s and Sc’s (of course, like
M31, there are galaxies that fall halfway between two classes, and they are given
names like Sab, or Sbc). The spiral classification sequence is shown in Fig. 11.6.
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Figure 11.6: The classification sequence for spirals. S0 spirals are galaxies that show
a small disk that is composed of only old, red stars, and have no gas, little dust
and no star forming regions. They are mostly a large bulge with a weak disk, with
difficult-to-detect spiral arms. They actually share many properties with elliptical
galaxies. Sa galaxies have large bulges, and tightly wound spiral arms. Sb’s have less
tightly wound arms, while Sc’s have very loosely wound arms, and have tiny bulges.

11.3.2 Elliptical Galaxies

Elliptical galaxies do not have as much structure as spiral galaxies, and are thus less
visually interesting. They are smooth, round to elliptical collections of stars that are
highly condensed in their centers, that slowly fade out at their edges. Unlike spiral
galaxies, where all of the stars in the disk rotate in the same direction, the stars
in elliptical galaxies do not have organized rotation: the individual stars orbit the
nucleus of an elliptical galaxy like an individual bee does in a swarm. While they
have random directions, all of the billions of stars have well-defined orbits around
the center of the galaxy, and take many millions of years to complete an orbit. An
example of an elliptical galaxy is shown in Fig. 11.7.

Elliptical galaxies can appear to be perfectly round, or highly elongated. There
are eight categories, ranging from round ones (E0) to more football-shaped ones (E7).
This classification scheme is diagrammed in Fig. 11.8.

It is actually much easier to classify an elliptical galaxy, as the type of elliptical
galaxy can be determined by measuring the major and minor axes of the ellipse. The
definitions of the major and minor axes of an ellipse are shown in Fig. 11.9. To
determine which type of an elliptical galaxy you are looking at, you simply measure
the major axis (“a”) and the minor axis (“b”), and calculate: 10×(a − b)/a. You
will do this for several elliptical galaxies, below.
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Figure 11.7: A typical elliptical galaxy, NGC205, one of the small elliptical galaxies in
orbit around the Andromeda galaxy shown in Fig. ??. Most elliptical galaxies have
a small, bright core, where millions of stars cluster around the nucleus. Just like the
Milky Way, the density of stars increases dramatically as you get near the nucleus
of an elliptical galaxy. Many elliptical galaxies have black holes at their centers.
NGC205 is classified as an E5.

Figure 11.8: The classification scheme for elliptical galaxies. Elliptical galaxies range
from round (E0), to football shaped (E7).

Figure 11.9: The definition of the major (“a”) and minor (“b”) axes of an ellipse.

11.3.3 Irregular Galaxies

As noted above, the classification of a galaxy as an “irregular” usually stems from the
fact that it cannot be conclusively categorized as either a spiral or elliptical. Most

163



irregular galaxies, like the LMC shown in Fig. 11.10, are small, and filled with young
stars, and star forming regions. Others, however, result when two galaxies collide, as
shown in Fig. 11.11.

Figure 11.10: The Large Magellanic Cloud (LMC). The LMC is a small, irregular
galaxy that orbits around the Milky Way galaxy. The LMC (and its smaller cousin,
the SMC) were discovered during Magellan’s voyage, and appear as faint patches of
light that look like detached pieces of the Milky Way to the naked eye. The LMC
and SMC can only be clearly seen from the southern hemisphere.

11.3.4 Galaxy Classification Issues

We have just described how galaxies are classified, and the three main types of galax-
ies. Superficially, the technique seems straightforward: you look at a picture of a
galaxy, note its main characteristics, and render a classification. But there are a few
complications that make the process more difficult. In the case of elliptical galaxies,
we can never be sure whether a galaxy is truly a round E0 galaxy, or an E7 galaxy
seen from an angle. For example, think of a football. If we look at the football from
one angle it is long, and pointed at both ends. But if we rotate it by 90o, it appears
to be round. This is a “projection effect”, and one that we can never remove since
we cannot go out and look at elliptical galaxies from some other angle.

As we will find out, spiral galaxies suffer from a different classification issue. When
the Sa/Sb/Sc classification scheme was first devised, only photographs sensitive to
blue light were used. If you actually look at spiral galaxies at other wavelengths, for
example in the red or infrared, the appearance of the galaxy is quite different. Thus it
is important to be consistent with what kind of photograph is used to make a galaxy
classification. We will soon learn that the use of galaxy images at other wavelengths
besides that which our eyes are sensitive to, results in much additional information.
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Figure 11.11: An irregular galaxy that is the result of the collision between two
galaxies. The larger galaxy appears to have once been a normal spiral galaxy. But
another galaxy (visible in the bottom right corner) ran into the bigger galaxy, and
destroyed the symmetry typically found in a spiral galaxy. Galaxy collisions are quite
frequent, and can generate a large amount of star formation as the gas and dust
clouds are compressed as they run into each other. Some day, the Milky Way and
Andromeda galaxies are going to collide—it will be a major disruption to our galaxy,
but the star density is so low, that very few stars will actually run into each other!

11.4 Lab Exercises

For this lab, each group will be getting a notebook containing pictures of galaxies.
These notebooks are divided into five different subsections. Below, there are five sub-
sections with exercises that correspond to each of the five subsections in the notebook.
Make sure to answer all of the questions fully, and to the best of your ability.

Section #1: Classification of Spiral Galaxies
In this subsection we look at black and white photographs of spiral galaxies. First
you will see three standard spiral galaxies that define the Sa, Sb, and Sc subtypes,
followed by more classification exercises.
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Exercise #1: In pictures 1 through 3 are standard spiral galaxies of types Sa, Sb,
Sc. Using the discussion above, and Figures 11.3 to 11.6, classify each of the spiral
galaxies in these three pictures and describe what properties led you to decide which
subclass each spiral galaxy fell into. (3 points)

Exercise #2: The pictures of the galaxies that you have seen so far in this lab are
“positive” images, just like you would see if you looked at those galaxies through a
large telescope—white means more light, black means less light. But working with
the negative images is much more common, as it is much easier to see fine detail
when presented as dark against a light background versus bright against a dark back-
ground. For example, Picture #4 is the negative image for Picture #1. Detail that
is overlooked in a positive image can be seen in a negative image. For most of the
rest of this lab, we will look at negative images like those shown in Picture #4.

Classify the spiral galaxies in Pictures #5, 6, 7 and 8. In each case, describe what
led you to these classifications. (4 points)
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Exercise #3: So far, we have looked at spiral galaxies that have favorable orienta-
tions for classification. That is, we have seen these galaxies from a direction that is
almost perpendicular to the disk of the galaxy. But since the orientation of galaxies
to our line of sight is random, many times we see galaxies from the side view. In this
exercise, you will look at some spiral galaxies from a less favorable viewing angle.

In pictures #9, 10, and 11 are three more spiral galaxies. Try to classify them. Use
the same techniques as before, but try to visualize how each subtype of spiral galaxy
would change if viewed from the side. (Remember that in a negative image, bright
white means no light, and dark means lots of light–so dusty regions show up as white!)
(3 points)

Section #2: Elliptical Galaxies As described earlier, elliptical galaxies do not
show very much detail–they are all brighter in the center, and fade away at the edges.
The only difference is in how elliptical they are, ranging from round (E0) to football-
shaped (E7). In this subsection will learn how to classify elliptical galaxies.

Exercise #4: In pictures #12, 13, 14, and 15 are some elliptical galaxies. Using
Figure 11.8 as a guide, classify each of these four galaxies as either E0, E1, E2, E3,
E4, E5, E6, or E7. Describe how you made each classification. (4 points)
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Exercise #5: In our discussion about elliptical galaxy classification, we mentioned
that there was a quantitative method to classify elliptical galaxies: you use the equa-
tion 10×(a − b)/a to derive the subclass number. In this equation “a” is the major
axis (long diameter) and “b” is the minor axis (the short diameter). Go back to Fig-
ure 11.9 to see the definition of these two axes. For example, if you measured a value
of a = 40 mm, and b = 20 mm, than the subclass is 10×(40 − 20)/40 = 10×(20/40)
= 10×(0.5) = 5. So that this particular elliptical galaxy is an E5.

If the measurements for an elliptical galaxy are a = 30 mm and b= 20 mm, what
subclass is that galaxy? (Round to the nearest integer.) (2 points)

Measure the major and minor axes for each of the galaxies in pictures #12, 13, 14,
and 15, and calculate their subtypes. Note: it can sometimes be hard to determine
where the “edge” of the galaxy is–try to be consistent and measure to the same level
of brightness. (4 points)

It is pretty hard to measure the major and minor axes of elliptical galaxies on
black and white photographs! Usually, astronomers use digital images, and then use
some sort of image processing to make the task easier. Picture #16 is a digitized
version of picture #15, processed so that similar light levels have the same color. As
you can see, this process makes it much easier to define the major and minor axes of
an elliptical galaxy.
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Exercise #6: Measure the major and minor axes of the two elliptical galaxies shown
in Pictures #16 and #17, and classify them using the same equation/technique as
before. (2 points)

Section #3: Irregular Galaxies While most large galaxies in our Universe are
either spirals or ellipticals, there are a large number of very strange looking galaxies.
If we cannot easily classify a galaxy as a spiral or elliptical, we call it an Irregular
galaxy. Some irregular galaxies appear to show some characteristics of spirals and/or
ellipticals, others are completely amorphous blobs. Many of the most unusual looking
galaxies are the result of the interactions between two galaxies (such as a collision).
Sometimes the two galaxies merge together, other times they simply pass through
each other (see Fig. 11.11). Pictures 18 through 22 are of irregular galaxies.

Exercise #7: The peculiar shapes and features of the irregular galaxies shown in
Pictures #18, 19 and 20 are believed to be caused by galaxy collisions or galaxy-
galaxy interactions (that is, a close approach, but not a direct collision). Why do you
think astronomers reached such a conclusion for these three galaxies? (4 points)

Exercise #8: In Pictures #21 and 22 are images of two “dwarf” irregular galaxies.
Note the general lack of any structure in these two galaxies. Unlike the collision-
caused irregular galaxies, these objects truly have no organized structures. It is likely
that there are hundreds of dwarf galaxies like these in our Universe for every single
large spiral galaxy like the Milky Way. So, while these dwarf irregular galaxies only
have a few million stars (compared to the Milky Way’s 100+ billion), they are a
significant component of all of the normal (“baryonic”) mass in our Universe. One

169



common feature of dwarf irregular galaxies is their abundance of young, hot stars. In
fact, more young stars are produced each year in some of these small galaxies than
in our Milky Way, even though the Milky Way is 10,000 times more massive! Why
this occurs is still not fully understood.

In the two dwarf irregular galaxies shown in Pictures #21 and 22, the large numbers
of blue stars, and the high number of bright red supergiants (especially in NGC 1705)
indicate a high star formation rate–that is lots of new, young stars. Why are large
numbers of hot, luminous blue stars, and red supergiants linked to young stars? [Hint:
If you have learned about the HR diagram, try to remember how long hot, blue O
and B stars live. As their internal supply of hydrogen runs out, they turn into red
supergiants.] (4 points)

Section #4: Full Color Images of Galaxies
As we have just shown, color images of galaxies let us look at the kinds of stars that
are present in them. A blue color indicates hot, young O and B stars, while a pre-
dominantly red, or yellow color indicates old, cool stars (mostly red giants). In this
subsection we explore the kinds of stars that comprise spiral and elliptical galaxies.

Exercise #9: Comparison of Spirals and Ellipticals
In Pictures #23 through 27 we show some color pictures of elliptical and spiral galax-
ies. Describe the average color of an elliptical galaxy (i.e., #23 & #24) compared to
the colors of spiral galaxies (#25 to #27). (3 points)
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Now, let’s look more closely at spirals and ellipticals. When examining the color pic-
tures of the spiral galaxies you should have noticed that the spiral arms are generally
bluer in color than their bulges. Hot young stars are present in spiral arms! That
is where all of the young stars are. But in the bulges of spirals, the color is much
redder—the bulge is made up of mostly old, red stars. In fact, the bulges of spiral
galaxies look similar to elliptical galaxies. Compare the large bulge of the Sombrero
galaxy (Picture #27) to the giant E0 galaxy M87 (Picture #23). (3 points)

If the bulges of spiral galaxies are made-up of old, red giant stars, what does this say
about elliptical galaxies? (3 points)

It is likely that you have learned about the emission of light by hydrogen atoms in
your lecture sessions (or during the spectroscopy lab). Hydrogen is the dominant
element in the Universe, and can be found everywhere. The brightest emission line in
the visual spectrum of hydrogen is a red line at 656 nm. This gives glowing hydrogen
gas a pinkish color. When we take pictures of glowing clouds of hydrogen gas they
are dominated by this pink light. During the course of this semester, you will also
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hear about ‘HII” regions (such as the “Orion Nebula”, see the monthly skycharts for
February found in the back of this lab manual). HII regions form when hot O and
B stars are born. These stars are so hot that they ionize the nearby hydrogen gas,
causing it to glow. When we look at other spiral galaxies, we see many HII regions
in them, just like those found in our Milky Way.

Of the spiral galaxies shown in Pictures 25 to 27, which has the most HII regions?
Which appears to have the least? What does this imply about M51? (3 points)

Section #5: Multi-wavelength Views of Galaxies
We now want to explore what galaxies look like at ultraviolet and infrared wave-
lengths. “Multi-wavelength” data provides insights that cannot be directly gleaned
from visual images.

We have just finished looking at some color images of galaxies. Those color pic-
tures were actually made by taking several images, each through a different color
filter, and then combining them to form a true-color image. Generally astronomers
take pictures through a red, green, and blue filter to generate an “RGB” color pic-
ture. Many computer programs, such as Adobe Photoshop, allow you to perform this
type of processing. Sometimes, however, it is best not to combine several single-color
images into a color picture–subtle detail is often lost. Also, astronomers can take
pictures of galaxies in the ultraviolet and infrared (or even X-ray and radio!), light
which your eye cannot detect. There is no meaningful way to represent the true col-
ors of a galaxy in an ultraviolet or infrared picture. Why would astronomers want to
look at galaxies in the ultraviolet or infrared? Because different types of stars have
different colors, decomposing the light of galaxies into its component colors allows us
to determine how such stars are distributed (as well as gas and dust). In Pictures
#28 and 29 we present blue and red images of the spiral galaxy M81. As you have
just learned, the bulges of spiral galaxies are red, and the spiral arms (and disks) of
spiral galaxies are blue. Note how the red image highlights the bulge region, while
the blue image highlights the disk. Hot stars emit blue light, so if we want to see how
many blue stars there are in a galaxy, it is best to use blue, or even ultraviolet light.

In this part of the lab, we will look at some multi-wavelength data. Let’s re-
mind ourselves first about the optical part of the electromagnetic spectrum. It runs
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from ultraviolet (“U”, 330 nm), to blue (“B”, 450 nm), through green/visual (“V”,
550 nm), to yellow, red (“R” 600 nm) and infrared (“I”, 760 nm and longer). The
high energy photons have shorter wavelengths and are ultraviolet/blue, while the low
energy photons have longer wavelengths and are red/infrared. If we go to shorter
wavelengths than those that can penetrate our atmosphere, we enter the true ultra-
violet (wavelengths of 90 to 300 nm). These are designated by UV or FUV (FUV
means “far” ultraviolet, below 110 nm). We will now see what galaxies look like at
these wavelengths–but note that we will switch back to black and white photos.

Exercise #10: Comparison of Optical and Ultraviolet Images of Galaxies
In Picture #30 are three separate images of two spiral galaxies. In the left hand
column are FUV, U and I images of the Sc galaxy NGC 1365, and in the right
hand column are FUV, U and R images of the Sa galaxy NGC 2841. Remember
that images in the FUV, UV, U and B filters look at hot stars, while images in V,
R, and I look at cooler stars. The ultraviolet really only sees hot stars! Compare
the number of hot stars in NGC 1365 with NGC 2841. Describe the spiral arms of
NGC 2841. What do you think is happening in the nucleus of NGC 2841? (4 points)

In Picture #31 are FUV, U and R images of two more galaxies: the Sc galaxy NGC
2403, and the irregular galaxy IC 2574. Compare the number of red and blue stars
in these two galaxies–are they similar? What is the main difference? (3 points)
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In Picture #32 is a similar set of images for two elliptical galaxies, NGC 5253 and
NGC 3115 (which can also be seen in Pictures #15 and 16) Compare these two
galaxies. While NGC 3115 is a normal elliptical galaxy, NGC 5253 seems to have
something interesting going on near its nucleus. Why do we believe that? Describe
how we might arrive at this conclusion? (3 points)

Exercise #11: Comparison of Optical and Infrared Images of Galaxies
Ok, now let’s switch to the infrared. Remember that cool stars emit most of their
energy in the red, and infrared portions of the electromagnetic spectrum. So if we
want to trace where the cool, red (and old) stars are, we use red or infrared images.
Another benefit of infrared light is its power to penetrate through dust, allowing us
to see through dusty molecular gas clouds.

In Pictures #33 through #35 are blue (“B”, 450 nm) and infrared (“H”, 1650 nm)
images of spiral galaxies. In Picture #33 we have Sa galaxies, in #34 we have Sb
galaxies, and in #35 we have Sc galaxies. Compare how easy/hard it is to see the
spiral arms in the B images versus the H images. Where are the blue stars? Where
are the red stars? Note that while the hot O and B stars are super-luminous (1 million
times the Sun’s luminosity), they are very rare. For each O star in the Milky Way
galaxy there are millions of G, K, and M stars! Thus, while an O star may have 60
times the Sun’s mass, they are tiny component of the total mass of a spiral galaxy.
Thus, what does the infrared light trace? (5 points)
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Finally, let’s take a look at the Milky Way galaxy. As we mentioned in the introduc-
tion, we are embedded in the disk of the Milky Way galaxy, and thus it is hard to
figure out the exact shape and structure of our galaxy. In Picture #36 is an optical
picture that spans the entire sky–we see that our Milky Way galaxy has a well-defined
disk. But in the optical photograph, it is difficult to ascertain the bulge of the Milky
Way, or the symmetry of our galaxy–there is just too much dust in the way! Picture
#37 is an infrared view that is identical to the previous optical image. What a differ-
ence! We can now see through all of that dust, and clearly make out the bulge–note
how small it is. We think that the Milky Way is an Sc galaxy. Make an argument
in support of this claim, compare it to the photographs of other tilted spiral galaxies
from Exercise #3. [Note: both of these images are special “projections” of the ce-
lestial sphere onto a two-dimensional piece of paper. This “Aitoff” projection makes
sure the sizes and shapes of features are not badly distorted. For proper viewing,
the right hand edge of these pictures should be wrapped around so that it touches
the left hand edge, and you would have to be viewing the picture from inside to
get a proper perspective. It is hard to take a three dimensional picture of the sky
and represent it in two dimensions! A similar problem is encountered when using a
rectangle to make a map of our globe (see the Terrestrial planet lab # ??.) (8 points)
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11.5 Summary (35 points)

Summarize the important concepts of this lab, including the following topics.

• Describe the process for classifying a spiral galaxy.

• Describe the process for classifying an elliptical galaxy.

• What are the main difficulties in classifying these two main types of galaxies
(they may not be the same issues!).

• What kind of information does multi-wavelength data (images) on galaxies pro-
vide? How is it useful? What does it tell us?

• What types of stars are found in spiral galaxies? In ellipticals? What does this
tell us about elliptical galaxies?

• What types of stars are found in dwarf irregular galaxies?

11.6 Possible Quiz Questions

1. What are the three main types of galaxies?

2. What are the major components of the Milky Way and other Spiral galaxies?

3. How big is the Milky Way, and how many stars does it contain?

4. What are O and B stars like? How long do they live? What are red
supergiants?

5. What are HII regions?

6. Draw the electromagnetic spectrum and identify the visual, infrared and
ultraviolet regions.

11.7 Extra Credit (ask your TA for permission before at-
tempting, 5 points)

In the introduction we mentioned that many galaxies (including the Milky Way) have
large black holes at their centers. These black holes rip apart stars and suck in the
gas. As the gas falls in, it gets very hot, and emits a lot of X-rays, ultraviolet and
blue light. Compared to the galaxy, this hot gas region is tiny, and shows up as a
small bright spot at the nucleus of the galaxy in the ultraviolet. Go back to Pictures
30 to 32 and list which of the galaxies appear to have black holes at their centers.
How did you reach your conclusion?
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Name:

Date:

12 How Many Galaxies are there in the Universe?

12.1 Introduction

Measurements, calculations, physical principles and estimations (or educated guesses)
lie at the heart of all scientific endeavors. Measurements allow the scientist to quan-
tify natural events, conditions, and characteristics. However, measurements can be
hard to make for practical reasons. We will investigate some of the issues with taking
measurements in this lab.

In addition, an important part about the measurement of something is an under-
standing about the uncertainty in that measurement. No one, including scientists,
ever make measurements with perfect accuracy, and estimating the degree to which a
result is uncertain is a fundamental part of science. Using a result to prove or disprove
some theory can only be done after a careful consideration of the uncertainty of the
result.

• Goals: to discuss the concepts of estimation, measurement and measurement
error, and to use these, along with some data from the Hubble Space Telescope,
to estimate the number of observable galaxies in the Universe

• Materials: Hubble Deep Field image

12.2 Exercise Section

12.2.1 Direct Measurement, Measurement Error

We will start out by counting objects much closer to home than galaxies!

How many chairs do you think there are in your classroom? You have one minute!

How did you determine this?

How does your number compare with that of other groups? What does this say
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about the uncertainty in the results?

Now do an exact count of the number of chairs - you have three minutes. Note
the advantage of working with a group! By comparing results from different groups,
what is the uncertainty in the result?

12.2.2 Estimation

Now we extend our measurement to a larger system where practical considerations
limit us from doing a direct count.

How many chairs do you think there are in the entire University? You might wish
to consider the campus map shown in Figure 12.1.
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Figure 12.1: A map of the NMSU campus from the NMSU WWW site
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How did you determine your number?

How accurate do you think your number is?

How might you estimate the uncertainty in your number?

12.3 How many galaxies are there in the Universe?

Considering how you estimated the number of chairs in the classroom and on campus,
consider and write down several alternative ways of estimating the number of galaxies
in the Universe.

Let’s consider the issue by looking at a picture of the sky taken with the Hubble
Space Telescope. This telescope is the most capable of existing telescopes for viewing
very faint objects. In an effort to observe the faintest galaxies, astronomers decided to
spend 10 entire days training this telescope on one small region of the sky to observe
the faintest galaxies and learn about them. The image that was obtained is shown in
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Figure 12.2.

First, let’s figure out how long it would take for the Space Telescope to take pic-
tures like this over the entire sky.

To do this, we need to talk about how we measure distances and areas on the sky,
concepts that we have used in some of the other labs this semester. When one mea-
sures, for example, the distance between two stars as seen from Earth, one measures
what is known as an angular distance. A standard unit of this angular distance is
the familiar unit of the degree; there are 360 degrees in a full circle. As an example,
the distance between an object which is straight overhead and one which is on the
horizon is 90 degrees. However, when one makes astronomical observations with big
telescopes, one usually sees an area which is only a small fraction of a degree on
a side. To make things easier to write, astronomers sometimes use units known as
arcminutes and arcseconds. There are 60 arcminutes in a degree, and 60 arcseconds
in an arcminute.

1. We can now use this information to calculate how many pictures the Space
Telescope would have to make to cover the entire sky. The picture from the
Space Telescope covers a region that is about 1 arcminute on a side. Our first
conversion is from arcminutes to degrees (this has been partially done for you):
(3 points)

1 arcminute× 1 degree

60 arcminutes
= degrees (11)

2. The area of the entire picture is measured in square degrees, so we take the
number of degrees found in question 1 and square it to get: (3 points)

3. Now there are 4.13 × 104 square degrees in the sky. From this you can figure out
how many pictures you would need to take to cover the whole sky: (5 points)
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Figure 12.2: A reproduction of the Hubble Deep Field image.
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4. Finally if it takes 10 days for each picture, we can figure out how long it would
take to cover the whole sky with similar pictures: (4 points)

5. With a unit conversion of 365 days/year, we can determine the number of years
it would take: (4 points)

Clearly, this is a very long time! This is an interesting point to note: as-
tronomers can only take deep pictures of a small fraction of the sky. So it is
not practical to count galaxies by taking pictures of the entire sky.

So how can we proceed to figure out how many total galaxies there are? We
can make an estimate by guessing that the number of galaxies in any particular
picture will be the same regardless of where we point. We can then estimate the
total number of galaxies in the sky by counting the number of galaxies in this
one picture, and multiplying it by the number of pictures that it would take to
cover the whole sky.

6. Take a look at the image of the Hubble Deep Field given to you by your TA.
Almost every one of the objects you see in this picture is a distant galaxy. Count
up all the galaxies in each subsection then add them up to get an estimate of
the number of galaxies in this one field. Again, you can proceed quicker by
taking advantage of the multiple members of your group; however, you might
wish to have everyone in the group count one region independently to get some
idea of the measurement uncertainty. (10 points)

Region A1:

Region A2:

Region A3:

Region B1:

Region B2:

Region B3:
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Region C1:

Region C2:

Region C3:

There are a total of galaxies in Hubble Deep Field.

7. Now estimate the total number of galaxies in the whole sky, using our calculation
of the number of pictures it takes to cover the sky which we did above. (7
points)

This is a pretty amazingly large number. Consider that each galaxy has billions
of stars, and think just for minute about how many total stars there are in the
Universe! It makes you feel pretty small.... but, on the other hand, think how
cool it is that humans have evolved to the point where they can even make such
an estimation!

8. As we’ve discussed, an estimate of the uncertainty in a result is often as im-
portant as the result itself. Discuss several reasons why your result may not be
especially accurate. You may wish to compare the number of galaxies in any
given region which you counted with the number counted by other groups, or
consider the variation in the number of galaxies from one region to another.
Also, remember a fundamental assumption that we made for getting our esti-
mate, namely, that the number of galaxies we would see in some other portion
of the sky is the same as that which we see in this Hubble deep field. (8 points)

9. Finally, there’s one more caveat to our calculated total number of galaxies. To
make our estimate, we assumed that the 10 day exposure sees every single
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galaxy in this portion of the sky. With this in mind, how would the calculation
you just conducted compare to the real number of galaxies in the Universe?
Back up your answer with a short explanation. (8 points)

12.4 The Mass and Density of the Universe (Contained in
Galaxies)

In the preceding we have estimated the number of galaxies in the Universe. In the final
subsection of this lab, we now want to explore the implications of this calculation by
making an estimate of the matter density of the Universe. In your lecture subsections,
and some of the earlier labs (like in Table ?? in the Terrestrial Planet lab) you have
probably encountered the concept of density: density = Mass/Volume. Astronomers
usually use the unit of gm/cm3 for density. We can now make an estimate for the
density of matter contained in all of the galaxies in our Universe. We will start with
very large numbers, and end up with an extremely tiny number. It is quite likely
that your calculator cannot handle such numbers. To make this calculation easier,
we will use some round numbers so that you can do the calculation by hand using
the techniques outlined in Lab 1 (if you get stuck with how to multiply numbers with
exponents, refer back to subsection 1.4 in the introductory lab). This is a challenging
exercise, but one that gives you an answer that you might not expect!

10. In question 7 above, you estimated the total number of galaxies in the sky.
If we assume that these galaxies are similar to (though probably somewhat
smaller than) our Milky Way galaxy, we can calculate the total mass of all of
the galaxies in the Universe. Over the course of this semester you will learn that
the Milky Way has about 100 billion stars, and most of these stars are about
the mass of the Sun, or somewhat smaller. The mass of the Sun is 2 × 1033

gm. Let’s assume that the average galaxy in the Universe has 1/2 the number
of stars that the Milky Way has: 50 billion. Fifty billion in scientific notation
is 5 x 1010. To calculate the mass (in gm) of all of the galaxies in the Universe,
we need to solve this equation:
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Mass of Galaxies in Universe = (# of Galaxies)×(Average Mass of a Galaxy)

You calculated the # of Galaxies in question 7. We need to multiply that
number by the Average Mass of a Galaxy. The Average Mass of a Galaxy (in
gm) is simply:

Average Mass of a Galaxy = (# of stars in a galaxy)×(average mass of a star)

If the number of stars in a galaxy is 5 x 1010, and the average mass of a star is
2 X 1033 gm, what is the average mass of a galaxy? (2 points)

Average Mass of a Galaxy = ( )×( )

= gm

With this number, you can now calculate the total mass of all of the galaxies
in the Universe (2 points):

Mass of Universe = ( )×( ) =

gm

11. We have just calculated the total mass of galaxies in the Universe, and are
halfway to our goal of figuring out the density of galactic matter in the Universe.
Since density = M/V, and we now have M, we have to figure out V, the Volume
of the Universe. This is a little more difficult than getting M, so make sure you
are confident of your answer to each of the following steps before proceeding to
the next. We are going to make some assumptions that will simplify the calcu-
lation of V. First off, we will assume that the Universe is a sphere. The volume
of a sphere is simply four thirds “pi” R cubed: Vsphere = 4πR3/3. To figure out
the volume of the Universe we need to calculate “R”, the radius of the Universe.

So, how can we estimate R? In your lecture class you will find out that the most
distant parts of the Universe are moving away from us at nearly the speed of
light (the observed expansion of the Universe is covered in the Hubble’s Law
lab). Let’s assume that the largest distance an object can have in our Universe
is given by the speed of light × the age of the Universe. Remember, if a car
travels at 50 mph for one hour it will cover 50 miles: Distance = velocity ×
time. We can use this equation to estimate the radius of the Universe: RUniverse

= velocity × time = (speed of light) × (age of Universe).
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The speed of light is a very large number: 3 X 1010 cm/s, and the age of the
Universe is also large: 13 billion years. To calculate the radius of the Universe
in cm, we must convert the age of the Universe in years to an age in seconds
(s). First, how many seconds are there in a year? Let’s do the calculation:

Seconds in year = (seconds in day) × (days in year) = (60 × 60 × 24) × 365 =

s/yr

Since this is only estimate, feel free to round off any decimals to whole numbers.
Now that we have the number of seconds in a year, we can convert the age of
the Universe from years to seconds:

Age of Universe in seconds = (Age of Universe in Years) × (seconds in a year)

= (13 × 109 yr) × s/yr = s.

Ok, we now have the “time” part of the equation distance = velocity × time.
And we have already set the velocity to the speed of light: 3 × 1010 cm/s. Now
we can figure out the Radius of the Universe (3 points):

Radius of Universe (in cm) = (speed of light) × (Age of Universe in seconds) =

(3 × 1010 cm/s) × s =

cm.

In these calculations, notice how the units cancel. The units on a distance
or radius is length, and astronomers generally use centimeters (cm) to measure
lengths. Velocities have units of length per time, like cm/s. So when calculating
a radius in cm, we multiply a velocity with units of cm/s × a time measured in
seconds, and the units of seconds cancels, leaving a length unit (cm).

We are now ready to calculate the Volume of the Universe, V = 4πR3/3. It
may be easier for you to break this into two parts, multiplying out 4/3 × π, and
then taking R3, and then multiplying those two numbers. [Remember, π = 3.14.]

Volume of Universe = 4/3 ×π × R3 =

× =

cm3
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12. Tying it all together: figuring out the average density of the Universe (at least
that contained within galaxies–astronomers believe there is more “dark” matter
in the Universe than the regular matter that we can see contained in galaxies!).
We have just calculated the Volume of the Universe, and we have already calcu-
lated the Mass of all of the galaxies in the Universe. Now we take the final step,
and calculate the Average Galactic Matter Density of the Universe (3 points):

Average Density of the Universe = MUniverse/VUniverse =

( gm)/( cm3) =

gm/cm3

13. The mass of a single hydrogen atom is 1.7 x 10−24 gm. Compare your answer
for the average density of the Universe to the mass of a single hydrogen atom.
[Hint: the average amount of mass (in gm) of 1 cm3 of the Universe is simply
the density you just calculated, but you drop the cm3 of the units on density to
get gm.] Are they similar? What does this imply about the Universe, is it full
of stuff, or mostly empty?
(3 points)
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12.5 Summary (35 points)

Please summarize the important concepts discussed in this lab. Your summary should
include a brief discussion of

• direct measurement vs. estimation

• error estimates in both direct measurement and estimation

• Consider the importance of the galaxy counting results discussed in lab. Since
the Hubble Deep Field was taken in a presumably empty part of the sky, what
is the significance of finding so many galaxies in this picture?

• Use the concepts discussed in this lab to estimate the total number of stars that
you can see in the night sky by going out at night and doing some counting and
estimating. Describe your method as well as the number you get and provide
some estimate of your uncertainty in the number.

• Think back to a time before you did this lab, would you have expected the
answer to question #13? Our Universe has many surprises!

Use complete sentences, and proofread your summary before handing in the lab.

12.6 Possible Quiz Questions

1. What is meant by the term “estimation”?

2. Why do scientists use estimation?

3. How many degrees are in a circle?

4. What is an “arcminute”?

5. What is the “Hubble Deep Field”?

12.7 Extra Credit (ask your TA for permission before at-
tempting, 5 points)

In question #7, you estimated the number of galaxies in the Universe. In question
#10 you found that a typical galaxy contains 50 billion stars. Thus, you can now
estimate how many stars there are in the Universe. Recently, some mathematicians
have estimated that there are between 7 × 1019 and 7 × 1022 grains of sand on all of
the Earth’s beaches–that is every single beach on every single island and continent
on the Earth. Obviously, this is a difficult estimate to make, and thus their estimate
is quite uncertain. How would you begin to estimate the number of sand grains on
the Earth’s beaches? What factors need to be taken into account?
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Compare the number of stars in the Universe, with the number of grains of sand
on the planet Earth. How do they compare? We still do not know the average number
of planets that are found around an average star. It is probably safe to assume that
10% of all stars have at least one planet orbiting them. If so, how many planets are
there in the Universe?
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Name:

Date:

13 Hubble’s Law: Finding the Age of the Universe

13.1 Introduction

In your lecture sessions (or the lab on spectroscopy), you will find out that an ob-
ject’s spectrum can be used to determine the temperature and chemical composition
of that object. A spectrum can also be used to find out how fast an object is moving
by measuring the Doppler shift. In this lab you will learn how the velocity of an
object can be found from its spectrum, and how Hubble’s Law uses the Doppler shift
to determine the distance scale of the Universe.

• Goals: to discuss Doppler Shift and Hubble’s Law, and to use these concepts to
determine the age of the Universe

• Materials: galaxy spectra, ruler, calculator

13.2 Doppler Shift

You have probably noticed that when an ambulance passes by you, the sound of its
siren changes. As it approaches, you hear a high, whining sound which switches to
a deeper sound as it passes by. This change in pitch is referred to as the Doppler
shift. To understand what is happening, let’s consider a water bug treading water in
a pond, as in Figure 13.1.

Figure 13.1: A waterbug, treading water.

The bug’s kicking legs are making waves in the water. The bug is moving forward
relative to the water, so the waves in front of him get compressed, and the waves be-
hind him get stretched out. In other words, the frequency of waves increases in front
of him, and decreases behind him. In wavelength terms, the wavelength is shorter
in front of him, and longer behind him. Sound also travels in waves, so when the
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ambulance is approaching you, the frequency is shifted higher, so the pitch (not the
volume) is higher. After it has passed you, the frequency is Doppler shifted to a lower
pitch as the ambulance moves away from you. You hear the pitch change because
to your point of view the relative motion of the ambulance has changed. First it
was moving toward you, then away from you. The ambulance driver won’t hear any
change in pitch, because for her the relative motion of the ambulance hasn’t changed.

The same thing applies to light waves. When a light source is moving away from
you, its wavelength is longer, or the color of the light moves toward the red end of the
spectrum. A light source moving toward you shows a (color)
shift.

This means that we can tell if an object is moving toward or away from us by
looking at the change in its spectrum. In astronomy we do this by measuring the
wavelengths of spectral lines. We’ve already learned how each element has a unique
fingerprint of spectral lines, so if we look for this fingerprint and notice it is displaced
slightly from where we expect it to be, we know that the source must be moving to
produce this displacement. We can find out how fast the object is moving by using
the Doppler shift formula:

∆λ

λo
=
v

c

where ∆λ is the wavelength shift you measure, λo is the rest wavelength1 (the one
you’d expect to find if the source wasn’t moving), v is the radial velocity (velocity
toward or away from us), and c is the speed of light (3× 105 km/s).

In order to do this, you just take the spectrum of your object and compare the
wavelengths of the lines you see with the rest wavelengths of lines that you know
should be there. For example, we would expect to see lines associated with hydrogen
so we might use this set of lines to determine the motion of an object. Here is an
example:

Exercise 1. Doppler Shift (10 points)
If we look at the spectrum of a star, we know that there will probably be hydrogen
lines. We also know that one hydrogen line always appears at 6563Å, but we find the
line in the star’s spectrum at 6570Å. Let’s calculate the Doppler shift:

a) First, is the spectrum of the star redshifted or blueshifted (do we observe a longer
or shorter wavelength than we would expect)?

1For this lab we will be measuring wavelengths in Ångstroms. 1.0 Å= 1.0 × 10−10 m.
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b) Calculate the wavelength shift: ∆λ = (6570Å− 6563Å)

∆λ = Å

c) What is its radial velocity? Use the Doppler shift formula:

∆λ

λo
=
v

c

v = km/s

A way to check your answer is to look at the sign of the velocity. Positive means
redshift, and negative means blueshift.

Einstein told us that nothing can go faster than the speed of light. If you have
a very high velocity object moving at close to the speed of light, this formula would
give you a velocity faster than light! Consequently, this formula is not always correct.
For very high velocities you need to use a different formula, the relativistic Doppler
shift formula, but in this lab we won’t need it.

13.3 Hubble’s Law

In the 1920’s Hubble and Slipher found that there is a relationship between the red-
shifts of galaxies and how far away they are (don’t confuse this with the ways we
find distances to stars, which are much closer). This means that the further away a
galaxy is, the faster it is moving away from us. This seems like a strange idea, but it
makes sense if the Universe is expanding.

The relation between redshift and distance turns out to be very fortunate for as-
tronomers, because it provides a way to find the distances to far away galaxies. The
formula we use is known as Hubble’s Law:

v = H × d

where v is the radial velocity, d is the distance (in Mpc), and H is called the Hubble
constant and is expressed in units of km/(s × Mpc). Hubble’s constant is basically

193



the expansion rate of the Universe.

The problem with this formula is that the precise value of H is not known! If we
take galaxies of known distance and try to find H, the values range from 50 to 100
km/(s × Mpc). By using the incredible power of the Hubble Space Telescope, the
current value of the H is near 75 km/(s × Mpc). Let’s do an example illustrating
how astronomers are trying to determine H.

Exercise 2. The Hubble Constant (15 points)
In this exercise you will determine a value of the Hubble constant based on direct
measurements. The figure at the end of this lab has spectra from five different galaxy
clusters. At the top of this figure is the spectrum of the Sun for comparison. For each
cluster, the spectrum of the brightest galaxy in the cluster is shown to the right of
the image of the cluster (usually dominated by a single, bright galaxy). Above and
below these spectra, you’ll note five, short vertical lines that look like bar codes you
might find on groceries. These are comparison spectra, the spectral lines which are
produced for elements here on earth. If you look closely at the galaxy spectra, you
can see that there are several dark lines going through each of them. The left-most
pair of lines correspond to the “H and K” lines from calcium (for the Sun and for
Virgo = Cluster #1, these can be found on the left edge of the spectrum). Are these
absorption or emission lines? (Hint: How are they appearing in the galaxies’ spectra?)

Now we’ll use the shift in the calcium lines to determine the recession velocities
of the five galaxies. We do this by measuring the change in position of a line in the
galaxy spectrum with respect to that of the comparison spectral lines above and be-
low each galaxy spectrum. For this lab, measure the shift in the “K” line of calcium
(the left one of the pair) and write your results in the table below (Column B). At
this point you’ve figured out the shift of the galaxies’ lines as they appear in the
picture. Could we use this alone to determine the recession velocity? No, we need to
determine what shift this corresponds to for actual light. In Column C, convert your
measured shifts into Ångstroms by using the conversion factor 19.7 Å/mm (this
factor is called the “plate scale”, and is similar to the scale on a map that allows you
to convert distances from inches to miles–you can determine this yourself using the
separation of the H and K lines = 34.8 Å).

Earlier in the lab we learned the formula for the Doppler shift. Your results in
Column C represent the values of ∆λ. We expect to find the center of the calcium
K line at λo = 3933.0 Å. Thus, this is our value of λ. Using the formula for the
Doppler shift along with your figures in Column C, determine the recession velocity
for each galaxy. The speed of light is, c = 3 × 105 km/sec. Write your results in
Column D. For each galaxy, divide the velocity (Column D) by the distances provided
in Column E. Enter your results in Column F.

The first galaxy cluster, Virgo, has been done for you. Go through the calcula-
tions for Virgo to check and make sure you understand how to proceed for the other
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A B C D E F
Galaxy Cluster Measured Redshift Velocity Distance Value of H

shift (mm) (Angstroms) (km/s) (Mpc) (km/s/Mpc)
1. Virgo 0.9 17.7 1,352 20 67.6
2. Ursa Major 110
3. Corona Borealis 180
4. Bootes 300
5. Hydra 490

galaxies. Show all of your work on a separate piece of paper and turn in
that paper with your lab.

Now we have five galaxies from which to determine the Hubble constant, H. Are
your values for the Hubble constant somewhere between 50 and 100 km/(s × Mpc)?
Why do you think that all of your values are not the same? The answer is simple:
human error. It is only possible to measure the shift in each picture to a certain
accuracy. For Virgo the shift is only about 1 mm, but it is difficult with a ruler and
naked eye to measure such a small length to a high precision. A perfect measurement
would give the “correct” answer (but note that there is always another source of un-
certainty: the accuracy of the distances used in this calculation!).

13.4 The Age of the Universe

The expansion of the Universe is a result of the Big Bang. Since everything is flying
apart, it stands to reason that in the past everything was much closer together. With
this idea, we can use the expansion rate to determine how long things have been
expanding - in other words, the age of the Universe! As an example, suppose you
got in your car and started driving up to Albuquerque. Somewhere around T or C,
you look at your watch and wonder what time you left Las Cruces. You know you’ve
driven about 75 miles and have been going 75 miles per hour, so you easily determine
you must have left about an hour ago. For the age of the Universe, we essentially
do the same thing to figure out how long ago the Universe started. This is assuming
that the expansion rate has always been the same, which is probably not true (by
analogy, maybe you weren’t always driving at 75 mph on your way to T or C). The
gravitational force of the galaxies in the Universe pulling on each other would slow
the expansion down. However, we can still use this method to get a rough estimate
of the age of the Universe.

Exercise 3. Age Calculation (15 points)
The Hubble constant is expressed in units of km/(s × Mpc). Since km and Mpc
are both units of distance, we can cancel them out and express H in terms of 1/sec.
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Simply convert the Mpc into km, and cancel the units of distance. The conversion
factor is 1 Mpc = 3.086×1019 km.

a) Add up the five values for the Hubble constant written in the table of Exercise 2,
and divide the result by five. This represents the average value of the Hubble constant
you have determined.

H = km
s×Mpc

b) Convert your value of H into units of 1/s:

H = 1
s

c) Now convert this into seconds by inverting it (1/H from part b):

Age of the Universe = s

d) How many years is this? (convert from seconds to years by knowing there are 60
seconds in a minute, 60 minutes in an hour, etc.)

Age of the Universe= yrs

13.5 How Do we Measure Distances to Galaxies and Galaxy
Clusters?

In exercise #2, we made it easy for you by listing the distances to each of the galaxy
clusters. If you know the distance to a galaxy, and its redshift, finding the Hubble
constant is easy. But how do astronomers find these distances? In fact, it is a very
difficult problem. Why? Because the further away an object is from us, the fainter
it appears to be. For example, if we were to move the Sun out to a distance of 20 pc,
it would no longer be visible to the naked eye! Note that the closest galaxy cluster
is at a distance of 20 Mpc, a million times further than this! Even with the largest
telescopes in the world, we could not see the Sun at such a great distance (and Virgo
is the closest big cluster of galaxies).

Think about this question: Why do objects appear to get dimmer with distance?
What is actually happening? Answer: The light from a source spreads out as it
travels. This is shown in Fig. 13.2. If you draw (concentric) spheres around a light
source, the amount of energy passing through a square meter drops with distance as
1/R2. Why? The area of a sphere is 4πR2. The innermost sphere in Fig. 13.2 has a
radius of “1” m, its area is therefore 4π m2. If the radius of the next sphere out is
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“2” m, then its area is 16π m2. It has 4× the area of the inner sphere. Since all of
the light from the light bulb passes through both spheres, its intensity (energy/area)
must drop. The higher the intensity, the brighter an object appears to our eyes. The
lower the intensity, the fainter it appears. Again, refer to Fig. 13.2, as shown there,
the amount of energy passing through 1 square of the inner sphere passes through 4
squares for the next sphere out, and 9 squares (for R = 3) for the outermost sphere.
The light from the light bulb spreads out as it travels, and the intensity drops as 1/R2.

Figure 13.2: If you draw concentric spheres around a light source (we have cut the
spheres in half for clarity), you can see how light spreads out as it travels. The light
passing through one square on the inner sphere passes through four squares for a
sphere that has twice the radius, and nine squares for a sphere that has three times
the radius of the innermost sphere. This is because the area of a sphere is 4πR2.

Exercise 4. Inverse Square Law If the apparent brightness (or intensity) of an
object is proportional to 1/R2 (where R = distance), how much brighter is an object
in the Virgo cluster, compared to a similar object in Hydra? [Hint: how many times
further is Hydra than Virgo?] (2 points)

An object in Hydra is hundreds of times fainter than the same object in Virgo!
Obviously, astronomers need to find an object that is very luminous if they are go-
ing to measure distances to galaxies that are as far, or even further away than the
Hydra cluster. You have probably heard of a supernova. Supernovae (supernovae is
the plural of supernova) are tremendous explosions that rip stars apart. There are
two types of supernova, Type I is due to the collapse of a white dwarf into neutron
star, while a Type II is the explosion of a massive star that often produces a black
hole. Astronomers use Type I supernovae to measure distances since their explosions
always release the same amount of energy. Type I supernovae have more than one bil-
lion times the Sun’s luminosity when they explode! Thus, we can see them a long way.

Let’s work an example. In 1885 a supernova erupted in the nearby Andromeda
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galaxy. Andromeda is a spiral galaxy that is similar in size to our Milky Way located
at a distance of about 1 Mpc. The 1885 supernova was just barely visible to the
naked eye, but would have been easy to see with a small telescope (or even binocu-
lars). Astronomers use telescopes to collect light, and see fainter objects better. The
largest telescopes in the world are the Keck telescopes in Hawaii. These telescopes
have diameters of 10 meters, and collect 6 million times as much light as the naked
eye (thus, if you used an eyepiece on a Keck telescope, you could “see” objects that
are 6 million times fainter than those visible to your naked eye).

Using the fact that brightness decreases as 1/R2, how far away (in Mpc) could the
Keck telescope see a supernova like the one that blew up in the Andromeda galaxy?
(2 points). [Hint: here we reverse the equation. You are given the brightness ratio,
6 million, and must solve for the distance ratio, remembering that Andromeda has a
distance of 1 Mpc!]

Could the Keck telescopes see a supernova in Hydra? (1 point)

13.6 Questions

1. Explain how the Doppler shift works. (5 points)

2. In the water bug analogy, we know what happens to waves in front of and
behind the bug, but what happens to the waves directly on his left and right
(hint: is the bug’s motion compressing these waves, stretching them out, or not
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affecting them at all)? With this in mind, what can the Doppler shift tell us
about the motion of a star which is moving only at a right angle to our line of
sight? (5 points)

3. Why did we use an average value for the Hubble constant, determined from five
separate galaxies, in our age of the Universe calculation? What other important
factor in our determination of the age of the Universe did we overlook? (Hint:
It was mentioned in the lab.) (5 points)

4. Does the age of the Universe that you calculated seem reasonable? Check your
textbook or the World Wide Web for the ages estimated for globular clusters,
some of the oldest known objects in the Universe. How does our result compare?
Can any object in the Universe be older than the Universe itself? (5 points)
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13.7 Summary (35 points)

Summarize what you learned from this lab. Your summary should include:

• An explanation of how light is used to find the distance to a galaxy

• From the knowledge you have gained from the last several labs, list and explain
all of the information that can be found in an object’s spectrum.

Use complete sentences, and proofread your summary before handing in the lab.

Possible Quiz Questions
1) What is a spectrum, and what is meant by wavelength?
2) What is a redshift?
3) What is the Hubble expansion law?

13.8 Extra Credit (ask your TA for permission before at-
tempting, 5 points)

Recently, it has been discovered that the rate of expansion of the Universe appears
to be accelerating. This means that the Hubble “constant” is not really constant!
Using the world wide web, or recent magazine articles, read about the future of the
Universe if this acceleration is truly occurring. Write a short essay summarizing the
fate of stars and galaxies in an accelerating Universe.
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14 APPENDIX A: Fundamental Quantities

There are various ways to describe the world in which we live. Some are qualitative
and others are quantitative. Qualitative descriptions describe aspects of objects or
events such as texture, and use words like ‘rough’, ‘smooth’, ‘flat’ etc. Qualitative
descriptions cannot be described numerically. One would not say that you looked
tired with a value of 3.0 unless someone had first set up some kind of numerical scale
to measure just how tired you were; tiredness is not something we measure quan-
titatively. On the other hand, length is a dimension that can be described either
qualitatively or quantitatively; one can qualitatively describe an object as long, or
one can quantitatively describe it as 10 feet in length.

All quantitative measurements are made in some kind of unit. Length, for exam-
ple, can be measured in units of meters, feet, miles, etc. Other fundamental metric
units are the kilogram (a measure of mass) and the second (a unit of time). Other
units of measurement are combinations of these fundamental units. An example of a
combination is velocity, expressed in units of meters per second (m/s) which measures
how far something has moved in a given direction over a given period of time.

In astronomical studies, one sometimes uses units which express rather large val-
ues in the fundamental metric units. An example of this would be the Solar Mass
unit (notated as M�). The mass of our Sun is, by definition, one Solar Mass or about
1,900,000,000,000,000,000,000,000,000,000 kilograms. A star with 10 times as much
mass can be written as 10 M�; this is clearly more convenient to write than a number
with all those zeros! Other units used in astronomy are the light year (ly), parsec
(pc), and the astronomical unit (A.U.), all of which are units of distance. The unit
you choose to use depends on the situation, and personal preferences. When describ-
ing distances in the solar system the astronomical unit is typically used since it is
the average distance from the Sun to the Earth. In describing distances to stars the
parsec or light year is usually used.

As described in the introductory lab, the metric system allows easy expression of
large multiples of the fundamental units via prefixes. For example, 1,000 meters is
called a kilometer and is usually written as 1km.

As described in section 1.4 scientists also use a notation system called scientific no-
tation for representing very large or very small numbers without having to write lots of
digits. As an example of how large numbers can get in science let’s look at the mass of
Mars. Using Kepler’s laws of motion to study Mars’ moons, astronomers have deter-
mined that Mars has a mass approximately equal to 640,000,000,000,000,000,000,000
kilograms. Now you can see that it is rather inconvenient to write down all those
zeroes, and it is confusing to use the prefixes above. Imagine how much more mass
there is in the Galaxy and you can see that we need an easy way to write very big
(or very small) numbers. This leads us to the concept of Scientific Notation.
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15 APPENDIX B: Accuracy and Significant Dig-

its

The number of significant digits in a number is the number of non-zero digits in the
number. For example, the number 12.735 has five significant digits; the number 100
has 1. When computing numbers, people today often use calculators since they give
us precise answers quickly. Unfortunately, many times they give us answers that are
unnecessarily and sometimes unrealistically precise. In other words, they give us as
many significant digits as can fit on the calculator screen. In most cases, you will
not know the numbers you are plugging in to the calculator to this precise of a value,
and therefore will get an answer that has too many significant digits to be correct.
This will be the case for your astronomy labs this semester. In general, you should
only report the accuracy of a calculation with the number of significant digits of the
least certain (smallest number of significant digits) of any of the numbers which were
the input into the calculation. For example, if you are dividing 13.2 by 6.8, although
your calculator gives 1.94117647, you should only report two significant figures (i.e.
1.9), since that is the number of significant figures in the input number 6.8.
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16 APPENDIX C: Unit Conversions

Very often, scientists convert numbers from one set of units to another. In fact, not
only do scientists do this, but you do it as well! For example, if someone asks you
how tall you are, you could tell them your height in feet or even in inches. If someone
said they are 72 inches tall, and 12 inches equals 1 foot, then you know they are 6
feet tall! This is nothing more than a simple conversion from units of inches to units
of feet. Another everyday unit conversion is from minutes to hours, and vice versa.
If it takes you 30 minutes to drive from Las Cruces to Anthony, then it takes you 0.5
hours. We know this because 60 minutes are equal to 1 hour. However, how can we
write these unit conversions, with all the steps, so that we are sure we are converting
units correctly (especially when the units are foreign to us (i.e. parsecs, AU, etc.))?

Let us begin with our everyday conversion of inches to feet. Say a person informs
you that they are 72 inches tall and you want to know how many feet tall they are.
First, we need to know the unit conversion from inches to feet (12 inches = 1 foot).
We then write the following equation:

72 inches× 1 foot

12 inches
= 6 feet (12)

Note how the inches units cancel (one in the numerator and one in the denomina-
tor) and the units which remain are feet. As for the mathematics, simply use normal
rules of division (72/12 = 6) and you wind up with the correct result.

The second example, minutes to hours, can be performed using the method above,
but what if someone asked you how many days there are in 30 minutes? You will
need to use 2 unit conversions to do this (60 minutes = 1 hours, 24 hours = 1 day).
Here is how you may perform the unit conversion:

30 minutes× 1 hour

60 minutes
× 1 day

24 hours
≈ 0.0208 days = 2.08× 10−2 days (13)

Again, note that the minute units have cancelled as well as the hour units, leaving
only days.

You have now seen how to perform single and multiple unit conversions. The key
to performing these correctly is to 1) make sure you have all the conversion factors
you need, 2) write out all of the steps and make sure the units cancel, and 3) think
about your final result and ask whether the final result makes sense (is 30 minutes a
small fraction of a day? Does 72 inches equal 6 feet?).
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17 APPENDIX D: Uncertainties and Errors

A very important concept in science is the idea of uncertainties and errors. Whenever
measurements are made, they are never made absolutely perfectly. For example, when
you measure your height, you probably measure it only to roughly the nearest tenth
of an inch or so. No one says they are exactly 71.56789123 inches tall, for example,
because they don’t make the measurement this accurately. Similarly, if someone says
they are 71 inches tall, we don’t really know that they are exactly 71 inches tall;
they may, for example, be 71.002 inches tall, but their measurement wasn’t accurate
enough to draw this distinction.

In astronomy, since the objects we study are so far away, measurements can be
very hard to make. As a result, the uncertainties of the measurements can be quite
large. For example, astronomers are still trying to refine measurements of the distance
to the nearest galaxy. At the current time, we think the distance is about 160,000
light years, but the uncertainty in this measurement is something like 20,000 light
years, so the true distance may be as little as 140,000 light years or as much as
180,000 light years. When you do science, you have to always assess the errors on
your measurements.
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18 Observatory Worksheets

You must visit campus observatory twice this semester. You will need to take four of
the observatory worksheets with you each time you go.
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