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1 Tools for Success in ASTR 105G

1.1 Introduction

Astronomy is a physical science. Just like biology, chemistry, geology, and physics, as-
tronomers collect data, analyze that data, attempt to understand the object/subject they
are looking at, and submit their results for publication. Along the way astronomers use
all of the mathematical techniques and physics necessary to understand the objects they
examine. Thus, just like any other science, a large number of mathematical tools and con-
cepts are needed to perform astronomical research. In today’s introductory lab, you will
review and learn some of the most basic concepts necessary to enable you to successfully
complete the various laboratory exercises you will encounter during this semester. When
needed, the weekly laboratory exercise you are performing will refer back to the examples in
this introduction—so keep the completed examples you will do today with you at all times
during the semester to use as a reference when you run into these exercises later this semester
(in fact, on some occasions your TA might have you redo one of the sections of this lab for
review purposes).

1.2 The Metric System

Like all other scientists, astronomers use the metric system. The metric system is based on
powers of 10, and has a set of measurement units analogous to the English system we use
in everyday life here in the US. In the metric system the main unit of length (or distance)
is the meter, the unit of mass is the kilogram, and the unit of liquid volume is the liter. A
meter is approximately 40 inches, or about 4” longer than the yard. Thus, 100 meters is
about 111 yards. A liter is slightly larger than a quart (1.0 liter = 1.101 qt). On the Earth’s
surface, a kilogram = 2.2 pounds.

As you have almost certainly learned, the metric system uses prefixes to change scale. For
example, one thousand meters is one “kilometer.” One thousandth of a meter is a “millime-
ter.” The prefixes that you will encounter in this class are listed in Table 1.2.

In the metric system, 3,600 meters is equal to 3.6 kilometers; 0.8 meter is equal to 80
centimeters, which in turn equals 800 millimeters, etc. In the lab exercises this semester we
will encounter a large range in sizes and distances. For example, you will measure the sizes of
some objects/things in class in millimeters, talk about the wavelength of light in nanometers,
and measure the sizes of features on planets that are larger than 1,000 kilometers.

1



Table 1.1: Metric System Prefixes
Prefix Name Prefix Symbol Prefix Value

Giga G 1,000,000,000 (one billion)
Mega M 1,000,000 (one million)
kilo k 1,000 (one thousand)
centi c 0.01 (one hundredth)
milli m 0.001 (one thousandth)
micro µ 0.0000001 (one millionth)
nano n 0.0000000001 (one billionth)

1.3 Beyond the Metric System

When we talk about the sizes or distances to objects beyond the surface of the Earth, we
begin to encounter very large numbers. For example, the average distance from the Earth
to the Moon is 384,000,000 meters or 384,000 kilometers (km). The distances found in
astronomy are usually so large that we have to switch to a unit of measurement that is much
larger than the meter, or even the kilometer. In and around the solar system, astronomers
use “Astronomical Units.” An Astronomical Unit is the mean (average) distance between
the Earth and the Sun. One Astronomical Unit (AU) = 149,600,000 km. For example,
Jupiter is about 5 AU from the Sun, while Pluto’s average distance from the Sun is 39 AU.
With this change in units, it is easy to talk about the distance to other planets. It is more
convenient to say that Saturn is 9.54 AU away than it is to say that Saturn is 1,427,184,000
km from Earth.

1.4 Changing Units and Scale Conversion

Changing units (like those in the previous paragraph) and/or scale conversion is something
you must master during this semester. You already do this in your everyday life whether
you know it or not (for example, if you travel to Mexico and you want to pay for a Coke in
pesos), so do not panic! Let’s look at some examples (2 points each):

1. Convert 34 meters into centimeters:

Answer: Since one meter = 100 centimeters, 34 meters = 3,400 centimeters.

2. Convert 34 kilometers into meters:
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3. If one meter equals 40 inches, how many meters are there in 400 inches?

4. How many centimeters are there in 400 inches?

5. In August 2003, Mars made its closest approach to Earth for the next 50,000 years.
At that time, it was only about .373 AU away from Earth. How many km is this?

1.4.1 Map Exercises

One technique that you will use this semester involves measuring a photograph or image
with a ruler, and converting the measured number into a real unit of size (or distance). One
example of this technique is reading a road map. Figure 1.1 shows a map of the state of
New Mexico. Down at the bottom left hand corner of the map is a scale in both miles and
kilometers.

Use a ruler to determine (2 points each):

6. How many kilometers is it from Las Cruces to Albuquerque?

7. What is the distance in miles from the border with Arizona to the border with Texas
if you were to drive along I-40?

8. If you were to drive 100 km/hr (kph), how long would it take you to go from Las
Cruces to Albuquerque?

9. If one mile = 1.6 km, how many miles per hour (mph) is 100 kph?
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Figure 1.1: Map of New Mexico.
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1.5 Squares, Square Roots, and Exponents

In several of the labs this semester you will encounter squares, cubes, and square roots. Let
us briefly review what is meant by such terms as squares, cubes, square roots and exponents.
The square of a number is simply that number times itself: 3 × 3 = 32 = 9. The exponent
is the little number “2” above the three. 52 = 5 × 5 = 25. The exponent tells you how
many times to multiply that number by itself: 84 = 8 × 8 × 8 × 8 = 4096. The square of
a number simply means the exponent is 2 (three squared = 32), and the cube of a number
means the exponent is three (four cubed = 43). Here are some examples:

• 72 = 7 × 7 = 49

• 75 = 7 × 7 × 7 × 7 × 7 = 16,807

• The cube of 9 (or “9 cubed”) = 93 = 9 × 9 × 9 = 729

• The exponent of 1216 is 16

• 2.563 = 2.56 × 2.56 × 2.56 = 16.777

Your turn (2 points each):

10. 63 =

11. 44 =

12. 3.12 =

The concept of a square root is fairly easy to understand, but is much harder to calculate (we
usually have to use a calculator). The square root of a number is that number whose square
is the number: the square root of 4 = 2 because 2 × 2 = 4. The square root of 9 is 3 (9 =
3 × 3). The mathematical operation of a square root is usually represented by the symbol
“
√

”, as in
√

9 = 3. But mathematicians also represent square roots using a fractional
exponent of one half: 91/2 = 3. Likewise, the cube root of a number is represented as 271/3

= 3 (3 × 3 × 3 = 27). The fourth root is written as 161/4 (= 2), and so on. Here are some
example problems:
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•
√

100 = 10

• 10.53 = 10.5 × 10.5 × 10.5 = 1157.625

• Verify that the square root of 17 (
√

17= 171/2) = 4.123

1.6 Scientific Notation

The range in numbers encountered in Astronomy is enormous: from the size of subatomic
particles, to the size of the entire universe. You are certainly comfortable with numbers
like ten, one hundred, three thousand, ten million, a billion, or even a trillion. But what
about a number like one million trillion? Or, four thousand one hundred and fifty six million
billion? Such numbers are too cumbersome to handle with words. Scientists use something
called “Scientific Notation” as a short hand method to represent very large and very small
numbers. The system of scientific notation is based on the number 10. For example, the
number 100 = 10 × 10 = 102. In scientific notation the number 100 is written as 1.0 × 102.
Here are some additional examples:

• Ten = 10 = 1 × 10 = 1.0 × 101

• One hundred = 100 = 10 × 10 = 102 = 1.0 × 102

• One thousand = 1,000 = 10 × 10 × 10 = 103 = 1.0 × 103

• One million = 1,000,000 = 10 × 10 × 10 × 10 × 10 × 10 = 106 = 1.0 ×106

Ok, so writing powers of ten is easy, but how do we write 6,563 in scientific notation? 6,563
= 6563.0 = 6.563 × 103. To figure out the exponent on the power of ten, we simply count
the numbers to the left of the decimal point, but do not include the left-most number. Here
are some more examples:

• 1,216 = 1216.0 = 1.216 × 103

• 8,735,000 = 8735000.0 = 8.735000 × 106

• 1,345,999,123,456 = 1345999123456.0 = 1.345999123456 × 1012 ≈ 1.346 × 1012
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Note that in the last example above, we were able to eliminate a lot of the “unnecessary”
digits in that very large number. While 1.345999123456 × 1012 is technically correct as the
scientific notation representation of the number 1,345,999,123,456, we do not need to keep
all of the digits to the right of the decimal place. We can keep just a few, and approximate
that number as 1.346 × 1012.

Your turn! Work the following examples (2 points each):

13. 121 = 121.0 =

14. 735,000 =

15. 999,563,982 =

Now comes the sometimes confusing issue: writing very small numbers. First, lets look at
powers of 10, but this time in fractional form. The number 0.1 = 1

10
. In scientific notation

we would write this as 1 × 10−1. The negative number in the exponent is the way we write
the fraction 1

10
. How about 0.001? We can rewrite 0.001 as 1

10
× 1

10
× 1

10
= 0.001 = 1 ×

10−3. Do you see where the exponent comes from? Starting at the decimal point, we simply
count over to the right of the first digit that isn’t zero to determine the exponent. Here are
some examples:

• 0.121 = 1.21 × 10−1

• 0.000735 = 7.35 × 10−4

• 0.0000099902 = 9.9902 × 10−6

Your turn (2 points each):

16. 0.0121 =

17. 0.0000735 =

18. 0.0000000999 =
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19. −0.121 =

There is one issue we haven’t dealt with, and that is when to write numbers in scientific
notation. It is kind of silly to write the number 23.7 as 2.37 × 101, or 0.5 as 5.0 × 10−1. You
use scientific notation when it is a more compact way to write a number to insure that its
value is quickly and easily communicated to someone else. For example, if you tell someone
the answer for some measurement is 0.0033 meter, the person receiving that information
has to count over the zeros to figure out what that means. It is better to say that the
measurement was 3.3 × 10−3 meter. But telling someone the answer is 215 kg, is much
easier than saying 2.15 × 102 kg. It is common practice that numbers bigger than 10,000 or
smaller than 0.01 are best written in scientific notation.

1.7 Calculator Issues

Since you will be using calculators in nearly all of the labs this semester, you should become
familiar with how to use them for functions beyond simple arithmetic.

1.7.1 Scientific Notation on a Calculator

Scientific notation on a calculator is usually designated with an “E.” For example, if you see
the number 8.778046E11 on your calculator, this is the same as the number 8.778046 ×1011.
Similarly, 1.4672E-05 is equivalent to 1.4672 ×10−5.

Entering numbers in scientific notation into your calculator depends on layout of your cal-
culator; we cannot tell you which buttons to push without seeing your specific calculator.
However, the “E” button described above is often used, so to enter 6.589 ×107, you may
need to type 6.589 “E” 7.

Verify that you can enter the following numbers into your calculator:

• 7.99921 ×1021

• 2.2951324 ×10−6

1.7.2 Order of Operations

When performing a complex calculation, the order of operations is extremely important.
There are several rules that need to be followed:

i. Calculations must be done from left to right.

ii. Calculations in brackets (parenthesis) are done first. When you have more than one
set of brackets, do the inner brackets first.
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iii. Exponents (or radicals) must be done next.

iv. Multiply and divide in the order the operations occur.

v. Add and subtract in the order the operations occur.

If you are using a calculator to enter a long equation, when in doubt as to whether the
calculator will perform operations in the correct order, apply parentheses.

Use your calculator to perform the following calculations (2 points each):

20. (7+34)
(2+23)

=

21. (42 + 5) − 3 =

22. 20 ÷ (12 − 2) × 32 − 2 =

1.8 Graphing and/or Plotting

Now we want to discuss graphing data. You probably learned about making graphs in high
school. Astronomers frequently use graphs to plot data. You have probably seen all sorts
of graphs, such as the plot of the performance of the stock market shown in Fig. 1.2. A
plot like this shows the history of the stock market versus time. The “x” (horizontal) axis
represents time, and the “y” (vertical) axis represents the value of the stock market. Each
place on the curve that shows the performance of the stock market is represented by two
numbers, the date (x axis), and the value of the index (y axis). For example, on May 10 of
2004, the Dow Jones index stood at 10,000.

Plots like this require two data points to represent each point on the curve or in the plot.
For comparing the stock market you need to plot the value of the stocks versus the date. We
call data of this type an “ordered pair.” Each data point requires a value for x (the date)
and y (the value of the Dow Jones index).

Table 1.2 contains data showing how the temperature changes with altitude near the Earth’s
surface. As you climb in altitude, the temperature goes down (this is why high mountains
can have snow on them year round, even though they are located in warm areas). The data
points in this table are plotted in Figure 1.3.

1.8.1 The Mechanics of Plotting

When you are asked to plot some data, there are several things to keep in mind.
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Figure 1.2: The change in the Dow Jones stock index over one year (from April 2003 to July
2004).

Table 1.2: Temperature vs. Altitude
Altitude Temperature

(feet) oF
0 59.0

2,000 51.9
4,000 44.7
6,000 37.6
8,000 30.5
10,000 23.3
12,000 16.2
14,000 9.1
16,000 1.9

First of all, the plot axes must be labeled. This will be emphasized throughout the
semester. In order to quickly look at a graph and determine what information is being con-
veyed, it is imperative that both the x-axis and y-axis have labels.

Secondly, if you are creating a plot, choose the numerical range for your axes such that the
data fit nicely on the plot. For example, if you were to plot the data shown in Table 1.2, with
altitude on the y-axis, you would want to choose your range of y-values to be something like
0 to 18,000. If, for example, you drew your y-axis going from 0 to 100,000, then all of the
data would be compressed towards the lower portion of the page. It is important to choose
your ranges for the x and y axes so they bracket the data points.
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Figure 1.3: The change in temperature as you climb in altitude with the data from Table 1.2.
At sea level (0 ft altitude) the surface temperature is 59oF. As you go higher in altitude, the
temperature goes down.

1.8.2 Plotting and Interpreting a Graph

Table 1.3 contains hourly temperature data on January 19, 2006, for two locations: Tucson
and Honolulu.

23. On the blank sheet of graph paper in Figure 1.4, plot the hourly temperatures mea-
sured for Tucson and Honolulu on 19 January 2006. (10 points)

24. Which city had the highest temperature on 19 January 2006? (2 points)

25. Which city had the highest average temperature? (2 points)
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Table 1.3: Hourly Temperature Data from 19 January 2006
Time Tucson Temp. Honolulu Temp.

hh:mm oF oF
00:00 49.6 71.1
01:00 47.8 71.1
02:00 46.6 71.1
03:00 45.9 70.0
04:00 45.5 72.0
05:00 45.1 72.0
06:00 46.0 73.0
07:00 45.3 73.0
08:00 45.7 75.0
09:00 46.6 78.1
10:00 51.3 79.0
11:00 56.5 80.1
12:00 59.0 81.0
13:00 60.8 82.0
14:00 60.6 81.0
15:00 61.7 79.0
16:00 61.7 77.0
17:00 61.0 75.0
18:00 59.2 73.0
19:00 55.0 73.0
20:00 53.4 72.0
21:00 51.6 71.1
22:00 49.8 72.0
23:00 48.9 72.0
24:00 47.7 72.0

26. Which city heated up the fastest in the morning hours? (2 points)

While straight lines and perfect data show up in science from time to time, it is actually
quite rare for real data to fit perfectly on top of a line. One reason for this is that all
measurements have error. So even though there might be a perfect relationship between
x and y, the uncertainty of the measurements introduces small deviations from the line.
In other cases, the data are approximated by a line. This is sometimes called a best-fit
relationship for the data.

1.9 Does it Make Sense?

This is a question that you should be asking yourself after every calculation that you do in
this class!
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Figure 1.4: Graph paper for plotting the hourly temperatures in Tucson and Honolulu.

One of our primary goals this semester is to help you develop intuition about our solar sys-
tem. This includes recognizing if an answer that you get “makes sense.” For example, you
may be told (or you may eventually know) that Mars is 1.5 AU from Earth. You also know
that the Moon is a lot closer to the Earth than Mars is. So if you are asked to calculate the
Earth-Moon distance and you get an answer of 4.5 AU, this should alarm you! That would
imply that the Moon is three times farther away from Earth than Mars is! And you know
that’s not right.

Use your intuition to answer the following questions. In addition to just giving your answer,
state why you gave the answer you did. (5 points each)
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27. Earth’s diameter is 12,756 km. Jupiter’s diameter is about 11 times this amount.
Which makes more sense: Jupiter’s diameter being 19,084 km or 139,822 km?

28. Sound travels through air at roughly 0.331 kilometers per second. If BX 102 suddenly
exploded, which would make more sense for when people in Mesilla (almost 5 km away)
would hear the blast? About 14.5 seconds later, or about 6.2 minutes later?

29. Water boils at 100 ◦C. Without knowing anything about the planet Pluto other than
the fact that is roughly 40 times farther from the Sun than the Earth is, would you
expect the surface temperature of Pluto to be closer to -100◦ or 50◦?

1.10 Putting it All Together

We have covered a lot of tools that you will need to become familiar with in order to complete
the labs this semester. Now let’s see how these concepts can be used to answer real questions
about our solar system. Remember, ask yourself does this make sense? for each answer
that you get!

30. To travel from Las Cruces to New York City by car, you would drive 3585 km. What
is this distance in AU? (10 points)
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31. The Earth is 4.5 billion years old. The dinosaurs were killed 65 million years ago due
to a giant impact by a comet or asteroid that hit the Earth. If we were to compress the
history of the Earth from 4.5 billion years into one 24-hour day, at what time would
the dinosaurs have been killed? (10 points)

32. When it was launched towards Pluto, the New Horizons spacecraft was traveling at
approximately 20 kilometers per second. How long did it take to reach Jupiter, which
is roughly 4 AU from Earth? [Hint: see the definition of an AU in Section 1.3 of this
lab.] (7 points)
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Name:
Date:

2 Scale Model of the Solar System

2.1 Introduction

The Solar System is large, at least when compared to distances we are familiar with on a
day-to-day basis. Consider that for those of you who live here in Las Cruces, you travel
2 kilometers (or 1.2 miles) on average to campus each day. If you go to Albuquerque on
weekends, you travel about 375 kilometers (232.5 miles), and if you travel to Disney Land
for Spring Break, you travel ∼ 1,300 kilometers (∼ 800 miles), where the ‘∼’ symbol means
“approximately.” These are all distances we can mentally comprehend.

Now, how large is the Earth? If you wanted to take a trip to the center of the Earth
(the very hot “core”), you would travel 6,378 kilometers (3954 miles) from Las Cruces down
through the Earth to its center. If you then continued going another 6,378 kilometers you
would ‘pop out’ on the other side of the Earth in the southern part of the Indian Ocean.
Thus, the total distance through the Earth, or the diameter of the Earth, is 12,756 kilome-
ters (∼ 7,900 miles), or 10 times the Las Cruces-to-Los Angeles distance. Obviously, such
a trip is impossible–to get to the southern Indian Ocean, you would need to travel on the
surface of the Earth. How far is that? Since the Earth is a sphere, you would need to travel
20,000 km to go halfway around the Earth (remember the equation Circumference = 2πR?).
This is a large distance, but we’ll go farther still.

Next, we’ll travel to the Moon. The Moon, Earth’s natural satellite, orbits the Earth at
a distance of ∼ 400,000 kilometers (∼ 240,000 miles), or about 30 times the diameter of the
Earth. This means that you could fit roughly 30 Earths end-to-end between here and the
Moon. This Earth-Moon distance is ∼ 200,000 times the distance you travel to campus each
day (if you live in Las Cruces). So you can see, even though it is located very close to us, it
is a long way to the Earth’s nearest neighbor.

Now let’s travel from the Earth to the Sun. The average Earth-to-Sun distance, ∼ 150
million kilometers (∼ 93 million miles), is referred to as one Astronomical Unit (AU).
When we look at the planets in our Solar System, we can see that the planet Mercury, which
orbits nearest to the Sun, has an average distance of 0.4 AU and Pluto, the planet almost
always the furthest from the Sun, has an average distance of 40 AU. Thus, the Earth’s dis-
tance from the Sun is only 2.5 percent of the distance between the Sun and planet Pluto!!
Pluto is very far away!

The purpose of today’s lab is to allow you to develop a better appreciation for the distances
between the largest objects in our solar system, and the physical sizes of these objects rela-
tive to each other. To achieve this goal, we will use the length of the football field in Aggie
Memorial Stadium as our platform for developing a scale model of the Solar System. A scale
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model is simply a tool whereby we can use manageable distances to represent larger distances
or sizes (like the road map of New Mexico used in Lab #1). We will properly distribute our
planets on the football field in the same relative way they are distributed in the real Solar
System. The length of the football field will represent the distance between the Sun and the
planet Pluto. We will also determine what the sizes of our planets should be to appropriately
fit on the same scale. Before you start, what do you think this model will look like?

Below you will proceed through a number of steps that will allow for the development
of a scale model of the Solar System. For this exercise, we will use the convenient unit of
the Earth-Sun distance, the Astronomical Unit (AU). Using the AU allows us to keep our
numbers to manageable sizes.

SUPPLIES: a calculator, Appendix E in your textbook, the football field in Aggie Memorial
Stadium, and a collection of different sized spherical-shaped objects

2.2 The Distances of the Planets From the Sun

Fill in the first and second columns of Table 6.1. In other words, list, in order of increasing
distance from the Sun, the planets in our solar system and their average distances from
the Sun in Astronomical Units (usually referred to as the “semi-major axis” of the planet’s
orbit). You can find these numbers in back of your textbook. (21 points)

Table 2.1: Planets’ average distances from Sun.
Average Distance From Sun

Planet AU Yards

Earth 1

Pluto 40 100

Next, we need to convert the distance in AU into the unit of a football field: the yard. This is
called a “scale conversion”. Determine the SCALED orbital semi-major axes of the planets,
based upon the assumption that the Sun-to-Pluto average distance in Astronomical Units
(which is already entered into the table, above) is represented by 100 yards, or goal-line to
goal-line, on the football field. To determine similar scalings for each of the planets, you
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must figure out how many yards there are per AU, and use that relationship to fill in the
values in the third column of Table 6.1.

2.3 Sizes of Planets

You have just determined where on the football field the planets will be located in our scaled
model of the Solar System. Now it is time to determine how large (or small) the planets
themselves are on the same scale.

We mentioned in the introduction that the diameter of the Earth is 12,756 kilometers,
while the distance from the Sun to Earth (1 AU) is equal to 150,000,000 km. We have also
determined that in our scale model, 1 AU is represented by 2.5 yards (= 90 inches).

We will start here by using the largest object in the solar system, the Sun, as an exam-
ple for how we will determine how large the planets will be in our scale model of the solar
system. The Sun has a diameter of ∼ 1,400,000 (1.4 million) kilometers, more than 100
times greater than the Earth’s diameter! Since in our scaled model 150,000,000 kilometers
(1 AU) is equivalent to 2.5 yards, how many inches will correspond to 1,400,000 kilometers
(the Sun’s actual diameter)? This can be determined by the following calculation:

Scaled Sun Diameter = Sun’s true diameter (km) × (90 in.)
(150,000,000 km)

= 0.84 inches

So, on the scale of our football field Solar System, the scaled Sun has a diameter of only 0.84
inches!! Now that we have established the scaled Sun’s size, let’s proceed through a similar
exercise for each of the nine planets, and the Moon, using the same formula:

Scaled object diameter (inches) = actual diameter (km) × (90 in.)
(150,000,000 km)

Using this equation, fill in the values in Table 6.2 (8 points).

Now we have all the information required to create a scaled model of the Solar System.
Using any of the items listed in Table 6.3 (spheres of different diameter), select the ones that
most closely approximate the sizes of your scaled planets, along with objects to represent
both the Sun and the Moon.

Designate one person for each planet, one person for the Sun, and one person for the
Earth’s Moon. Each person should choose the model object which represents their solar
system object, and then walk (or run) to that object’s scaled orbital semi-major axis on the
football field. The Sun will be on the goal line of the North end zone (towards the Pan Am
Center) and Pluto will be on the south goal line.

Observations:

On Earth, we see the Sun as a disk. Even though the Sun is far away, it is physically so
large, we can actually see that it is a round object with our naked eyes (unlike the planets,
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Table 2.2: Planets’ diameters in a football field scale model.
Object Actual Diameter (km) Scaled Diameter (inches)

Sun ∼ 1,400,000 0.84
Mercury 4,878
Venus 12,104
Earth 12,756 0.0075
Moon 3,476
Mars 6,794

Jupiter 142,800
Saturn 120,540
Uranus 51,200

Neptune 49,500
Pluto 2,200 0.0013

Table 2.3: Objects that Might Be Useful to Represent Solar System Objects
Object Diameter (inches)
Basketball 15
Tennis ball 2.5
Golf ball 1.625
Nickel 0.84
Marble 0.5
Peppercorn 0.08
Sesame seed 0.07
Poppy seed 0.04
Sugar grain 0.02
Salt grain 0.01
Ground flour 0.001
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where we need a telescope to see their tiny disks). Let’s see what the Sun looks like from
the other planets! Ask each of the “planets” whether they can tell that the Sun is a round
object from their “orbit”. What were their answers? List your results here: (5 points):

Note that because you have made a “scale model”, the results you just found would be
exactly what you would see if you were standing on one of those planets!

2.4 Questions About the Football Field Model

When all of the “planets” are in place, note the relative spacing between the planets, and
the size of the planets relative to these distances. Answer the following questions using the
information you have gained from this lab and your own intuition:

1) Is this spacing and planet size distribution what you expected when you first began
thinking about this lab today? Why or why not? (10 points)

2) Given that there is very little material between the planets (some dust, and small bits of
rock), what do you conclude about the nature of our solar system? (5 points)
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3) Which planet would you expect to have the warmest surface temperature? Why? (2
points)

4) Which planet would you expect to have the coolest surface temperature? Why? (2
points)

5) Which planet would you expect to have the greatest mass? Why? (3 points)

6) Which planet would you expect to have the longest orbital period? Why? (2 points)

7) Which planet would you expect to have the shortest orbital period? Why? (2 points)

8) The Sun is a normal sized star. As you will find out at the end of the semester, it will
one day run out of fuel (this will happen in about 5 billion years). When this occurs, the
Sun will undergo dramatic changes: it will turn into something called a “red giant”, a cool
star that has a radius that may be 100× that of its current value! When this happens,
some of the innermost planets in our solar system will be “swallowed-up” by the Sun.
Calculate which planets will be swallowed-up by the Sun (5 points).
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Name:
Date:

2.5 Take Home Exercise (35 points total)

Now you will work out the numbers for a scale model of the Solar System for which the size
of New Mexico along Interstate Highway 25 will be the scale.

Interstate Highway 25 begins in Las Cruces, just southeast of campus, and continues north
through Albuquerque, all the way to the border with Colorado. The total distance of I-25
in New Mexico is 455 miles. Using this distance to represent the Sun to Pluto distance (40
AU), and assuming that the Sun is located at the start of I-25 here in Las Cruces and Pluto
is located along the Colorado-New Mexico border, you will determine:

• the scaled locations of each of the planets in the Solar System; that is, you will deter-
mine the city along the highway (I-25) each planet will be located nearest to, and how
far north or south of this city the planet will be located. If more than one planet is
located within a given city, identify which street or exit the city is nearest to.

• the size of the Solar system objects (the Sun, each of the planets) on this same scale,
for which 455 miles (∼ 730 kilometers) corresponds to 40 AU. Determine how large
each of these scaled objects will be (probably best to use feet; there are 5280 feet per
mile), and suggest a real object which well represents this size. For example, if one of
the scaled Solar System objects has a diameter of 1 foot, you might suggest a soccer
ball as the object that best represents the relative size of this object.

If you have questions, this is a good time to ask!!!!!!

1. List the planets in our solar system and their average distances from the Sun in units
of Astronomical Units (AU). Then, using a scale of 40 AU = 455 miles (1 AU = 11.375
miles), determine the scaled planet-Sun distances and the city near the location of this
planet’s scaled average distance from the Sun. Insert these values into Table 6.4, and
draw on your map of New Mexico (on the next page) the locations of the solar system
objects. (20 points)

2. Determine the scaled size (diameter) of objects in the Solar System for a scale in which
40 AU = 455 miles, or 1 AU = 11.375 miles). Insert these values into Table 6.5. (15
points)

Scaled diameter (feet) = actual diameter (km) × (11.4 mi. × 5280 ft/mile)
150,000,000 km
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Table 2.4: Planets’ average distances from Sun.
Average Distance from Sun

Planet in AU in Miles Nearest City

Earth 1 11.375

Jupiter 5.2

Uranus 19.2

Pluto 40 455 3 miles north of Raton

Table 2.5: Planets’ diameters in a New Mexico scale model.
Object Actual Diameter (km) Scaled Diameter (feet) Object

Sun ∼ 1,400,000 561.7
Mercury 4,878
Venus 12,104
Earth 12,756 5.1 height of 12 year old
Mars 6,794

Jupiter 142,800
Saturn 120,540
Uranus 51,200

Neptune 49,500
Pluto 2,200 0.87 soccer ball
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2.6 Possible Quiz Questions

1. What is the approximate diameter of the Earth?

2. What is the definition of an Astronomical Unit?

3. What value is a “scale model”?

2.7 Extra Credit (ask your TA for permission before attempting,
5 points)

Later this semester we will talk about comets, objects that reside on the edge of our Solar
System. Most comets are found either in the “Kuiper Belt”, or in the “Oort Cloud”. The
Kuiper belt is the region that starts near Pluto’s orbit, and extends to about 100 AU. The
Oort cloud, however, is enormous: it is estimated to be 40,000 AU in radius! Using your
football field scale model answer the following questions:

1) How many yards away would the edge of the Kuiper belt be from the northern goal
line at Aggie Memorial Stadium?

2) How many football fields does the radius of the Oort cloud correspond to? If there
are 1760 yards in a mile, how many miles away is the edge of the Oort cloud from the north-
ern goal line at Aggie Memorial Stadium?
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3 The Origin of the Seasons

3.1 Introduction

The origin of the science of Astronomy owes much to the need of ancient peoples to have
a practical system that allowed them to predict the seasons. It is critical to plant your
crops at the right time of the year—too early and the seeds may not germinate because it
is too cold, or there is insufficient moisture. Plant too late and it may become too hot and
dry for a sensitive seedling to survive. In ancient Egypt, they needed to wait for the Nile
to flood. The Nile river would flood every July, once the rains began to fall in Central Africa.

Thus, the need to keep track of the annual cycle arose with the development of agri-
culture, and this required an understanding of the motion of objects in the sky. The first
devices used to keep track of the seasons were large stone structures (such as Stonehenge)
that used the positions of the rising Sun or Moon to forecast the coming seasons. The first
recognizable calendars that we know about were developed in Egypt, and appear to date
from about 4,200 BC. Of course, all a calendar does is let you know what time of year it was,
it does not provide you with an understanding of why the seasons occur! The ancient people
had a variety of models for why seasons occurred, but thought that everything, including
the Sun and stars, orbited around the Earth. Today, you will learn the real reason why there
are seasons.

• Goals: To learn why the Earth has seasons.

• Materials: a meter stick, a mounted plastic globe, an elevation angle apparatus, string,
a halogen lamp, and a few other items

3.2 The Seasons

Before we begin today’s lab, let us first talk about the seasons. In New Mexico we have
rather mild Winters, and hot Summers. In the northern parts of the United States, however,
the winters are much colder. In Hawaii, there is very little difference between Winter and
Summer. As you are also aware, during the Winter there are fewer hours of daylight than
in the Summer. In Table 3.1 we have listed seasonal data for various locations around the
world. Included in this table are the average January and July maximum temperatures, the
latitude of each city, and the length of the daylight hours in January and July. We will use
this table in Exercise #2.

In Table 3.1, the “N” following the latitude means the city is in the northern hemisphere
of the Earth (as is all of the United States and Europe) and thus North of the equator. An
“S” following the latitude means that it is in the southern hemisphere, South of the Earth’s
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Table 3.1: Season Data for Select Cities
City Latitude January Ave. July Ave. January July

(Degrees) Max. Temp. Max. Temp. Daylight Daylight
Hours Hours

Fairbanks, AK 64.8N -2 72 3.7 21.8
Minneapolis, MN 45.0N 22 83 9.0 15.7
Las Cruces, NM 32.5N 57 96 10.1 14.2

Honolulu, HI 21.3N 80 88 11.3 13.6
Quito, Ecuador 0.0 77 77 12.0 12.0

Apia, Samoa 13.8S 80 78 11.1 12.7
Sydney, Australia 33.9S 78 61 14.3 10.3

Ushuaia, Argentina 54.6S 57 39 17.3 7.4

equator. What do you think the latitude of Quito, Ecuador (0.0o) means? Yes, it is right on
the equator. Remember, latitude runs from 0.0o at the equator to ±90o at the poles. If north
of the equator, we say the latitude is XX degrees north (or sometimes “+XX degrees”), and
if south of the equator we say XX degrees south (or “−XX degrees”). We will use these
terms shortly.

Now, if you were to walk into the Mesilla Valley Mall and ask a random stranger “why
do we have seasons”? The most common answer you would get is “because we are closer to
the Sun during Summer, and further from the Sun in Winter”. This answer suggests that
the general public (and most of your classmates) correctly understand that the Earth orbits
the Sun in such a way that at some times of the year it is closer to the Sun than at other
times of the year. As you have (or will) learn in your lecture class, the orbits of all planets
around the Sun are ellipses. As shown in Figure 3.1 an ellipse is sort of like a circle that
has been squashed in one direction. For most of the planets, however, the orbits are only
very slightly elliptical, and closely approximate circles. But let us explore this idea that the
distance from the Sun causes the seasons.

Figure 3.1: An ellipse with the two “foci” identified. The Sun sits at one focus, while the
other focus is empty. The Earth follows an elliptical orbit around the Sun, but not nearly
as exaggerated as that shown here!
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Exercise #1. In Figure 3.1, we show the locations of the two “foci” of an ellipse (foci is
the plural form of focus). We will ignore the mathematical details of what foci are for now,
and simply note that the Sun sits at one focus, while the other focus is empty (see the
Kepler Law lab for more information if you are interested). A planet orbits around the Sun
in an elliptical orbit. So, there are times when the Earth is closest to the Sun
(“perihelion”), and times when it is furthest (“aphelion”). When closest to the Sun, at
perihelion, the distance from the Earth to the Sun is 147,056,800 km (“147 million
kilometers”). At aphelion, the distance from the Earth to the Sun is 152,143,200 km (152
million km).

With the meter stick handy, we are going to examine these distances. Obviously, our
classroom is not big enough to use kilometers or even meters so, like a road map, we will
have to use a reduced scale: 1 cm = 1 million km. Now, stick a piece of tape on the table
and put a mark on it to set the starting point (the location of the Sun!). Carefully measure
out the two distances (along the same direction) and stick down two more pieces of tape,
one at the perihelion distance, one at the aphelion distance (put small dots/marks on the
tape so you can easily see them).

1) Do you think this change in distance is big enough to cause the seasons? Explain your
logic. (3 points)

2) Take the ratio of the aphelion to perihelion distances: . (1 point)

Given that we know objects appear bigger when we are closer to them, let’s take a look at
the two pictures of the Sun you were given as part of the materials for this lab. One image
was taken on January 23rd, 1992, and one was taken on the 21st of July 1992 (as the “date
stamps” on the images show). Using a ruler, carefully measure the diameter of the Sun in
each image:

Sun diameter in January image = mm.

Sun diameter in July image = mm.

3) Take the ratio of bigger diameter / smaller diameter, this = . (1 point)

4) How does this ratio compare to the ratio you calculated in question #2? (2 points)

5) So, if an object appears bigger when we get closer to it, in what month is the Earth
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closest to the Sun? (2 points)

6) At that time of year, what season is it in Las Cruces? What do you conclude about the
statement “the seasons are caused by the changing distance between the Earth and the
Sun”? (4 points)

Exercise #2. Characterizing the nature of the seasons at different locations. For this
exercise, we are going to be exclusively using the data contained in Table 3.1. First, let’s
look at Las Cruces. Note that here in Las Cruces, our latitude is +32.5o. That is we are
about one third of the way from the equator to the pole. In January our average high
temperature is 57oF, and in July it is 96oF. It is hotter in Summer than Winter (duh!).
Note that there are about 10 hours of daylight in January, and about 14 hours of daylight
in July.

7) Thus, for Las Cruces, the Sun is “up” longer in July than in January. Is the same thing
true for all cities with northern latitudes: Yes or No ? (1 point)

Ok, let’s compare Las Cruces with Fairbanks, Alaska. Answer these questions by filling in
the blanks:

8) Fairbanks is the North Pole than Las Cruces. (1 point)

9) In January, there are more daylight hours in . (1 point)

10) In July, there are more daylight hours in . (1 point)

Now let’s compare Las Cruces with Sydney, Australia. Answer these questions by filling in
the blanks:

12) While the latitudes of Las Cruces and Sydney are similar, Las Cruces is
of the Equator, and Sydney is of the Equator. (2 points)

13) In January, there are more daylight hours in . (1 point)

14) In July, there are more daylight hours in . (1 point)

15) Summarizing: During the Wintertime (January) in both Las Cruces and Fairbanks
there are fewer daylight hours, and it is colder. During July, it is warmer in both Fairbanks
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and Las Cruces, and there are more daylight hours. Is this also true for Sydney?:
. (1 point)

16) In fact, it is Wintertime in Sydney during , and Summertime during
. (2 points)

17) From Table 3.1, I conclude that the times of the seasons in the Northern hemisphere
are exactly to those in the Southern hemisphere. (1 point)

From Exercise #2 we learned a few simple truths, but ones that maybe you have never
thought about. As you move away from the equator (either to the north or to the south)
there are several general trends. The first is that as you go closer to the poles it is generally
cooler at all times during the year. The second is that as you get closer to the poles, the
amount of daylight during the Winter decreases, but the reverse is true in the Summer.

The first of these is not always true because the local climate can be moderated by the
proximity to a large body of water, or depend on the elevation. For example, Sydney is
milder than Las Cruces, even though they have similar latitudes: Sydney is on the eastern
coast of Australia (South Pacific ocean), and has a climate like that of San Diego,
California (which has a similar latitude and is on the coast of the North Pacific). Quito,
Ecuador has a mild climate even though it sits right on the equator due to its high
elevation–it is more than 9,000 feet above sea level, similar to the elevation of Cloudcroft,
New Mexico.

The second conclusion (amount of daylight) is always true—as you get closer and closer to
the poles, the amount of daylight during the Winter decreases, while the amount of
daylight during the Summer increases. In fact, for all latitudes north of 66.5o, the Summer
Sun is up all day (24 hrs of daylight, the so called “land of the midnight Sun”) for at least
one day each year, while in the Winter there are times when the Sun never rises! 66.5o is a
special latitude, and is given the name “Arctic Circle”. Note that Fairbanks is very close to
the Arctic Circle, and the Sun is up for just a few hours during the Winter, but is up for
nearly 22 hours during the Summer! The same is true for the southern hemisphere: all
latitudes south of −66.5o experience days with 24 hours of daylight in the Summer, and 24
hours of darkness in the Winter. −66.5o is called the “Antarctic Circle”. But note that the
seasons in the Southern Hemisphere are exactly opposite to those in the North. During
Northern Winter, the North Pole experiences 24 hours of darkness, but the South Pole has
24 hours of daylight.

3.3 The Spinning, Revolving Earth

It is clear from the preceding that your latitude determines both the annual variation in
the amount of daylight, and the time of the year when you experience Spring, Summer,
Autumn and Winter. To truly understand why this occurs requires us to construct a
model. One of the key insights to the nature of the motion of the Earth is shown in the
long exposure photographs of the nighttime sky on the next two pages.
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Figure 3.2: Pointing a camera to the North Star (Polaris, the bright dot near the center)
and exposing for about one hour, the stars appear to move in little arcs. The center of
rotation is called the “North Celestial Pole”, and Polaris is very close to this position.
The dotted/dashed trails in this photograph are the blinking lights of airplanes that passed
through the sky during the exposure.

What is going on in these photos? The easiest explanation is that the Earth is spinning,
and as you keep your camera shutter open, the stars appear to move in “orbits” around the
North Pole. You can duplicate this motion by sitting in a chair that is spinning—the
objects in the room appear to move in circles around you. The further they are from the
“axis of rotation”, the bigger arcs they make, and the faster they move. An object straight
above you, exactly on the axis of rotation of the chair, does not move. As apparent in
Figure 3.3, the “North Star” Polaris is not perfectly on the axis of rotation at the North
Celestial Pole, but it is very close (the fact that there is a bright star near the pole is just
random chance). Polaris has been used as a navigational aid for centuries, as it allows you
to determine the direction of North.

As the second photograph shows, the direction of the spin axis of the Earth does not
change during the year—it stays pointed in the same direction all of the time! If the
Earth’s spin axis moved, the stars would not make perfect circular arcs, but would wander
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Figure 3.3: Here is a composite of many different exposures (each about one hour in length)
of the night sky over Vienna, Austria taken throughout the year (all four seasons). The
images have been composited using a software package like Photoshop to demonstrate what
would be possible if it stayed dark for 24 hrs, and you could actually obtain a 24 hour
exposure (which can only be truly done north of the Arctic circle). Polaris is the smallest
circle at the very center.

around in whatever pattern was being executed by the Earth’s axis.

Now, as shown back in Figure 3.1, we said the Earth orbits (“revolves” around) the Sun on
an ellipse. We could discuss the evidence for this, but to keep this lab brief, we will just
assume this fact. So, now we have two motions: the spinning and revolving of the Earth. It
is the combination of these that actually give rise to the seasons, as you will find out in the
next exercise.

Exercise #3: In this part of the lab, we will be using the mounted plastic globe, a piece
of string, a ruler, and the halogen desklamp. Warning: while the globe used here is
made of fairly inexpensive parts, it is very time consuming to make. Please be
careful with your globe, as the painted surface can be easily scratched. Make
sure that the piece of string you have is long enough to go slightly more than halfway
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around the globe at the equator–if your string is not that long, ask your TA for a longer
piece of string. As you may have guessed, this plastic globe is a model of the Earth. The
spin axis of the Earth is actually tilted with respect to the plane of its orbit by 23.5o.
Set up the experiment in the following way. Place the halogen lamp at one end of the table
(shining towards the closest wall so as to not affect your classmates), and set the globe at a
distance of 1.5 meters from the lamp. After your TA has dimmed the classroom lights,
turn on the halogen lamp to the highest setting (depending on the lamp, there may be a
dim, and a bright setting). Note these lamps get very hot, so be careful. For this lab, we
will define the top of the globe as the Northern hemisphere, and the bottom as the
Southern hemisphere.

First off, it will be helpful to know the length of the entire arc at the 4 latitudes at which
you’ll be measuring later. Using the piece of string, measure the length of the arc at each
latitude and note it below.

Table 3.2: Total Arc Length
Latitude Total Length of Arc

Arctic Circle
45oN

Equator
Antarctic Circle

Experiment #1: For the first experiment, arrange the globe so the axis of the “Earth”is
pointed at a right angle (90◦) to the direction of the “Sun”. Use your best judgement. Now
adjust the height of the desklamp so that the light bulb in the lamp is at the same approxi-
mate height as the equator.

There are several colored lines on the globe that form circles which are concentric with
the axis, and these correspond to certain latitudes. The red line is the equator, the black
line is 45o North, while the two blue lines are the Arctic (top) and Antarctic (bottom) circles.

Note that there is an illuminated half of the globe, and a dark half of the globe. The
line that separates the two is called the “terminator”. It is the location of sunrise or sunset.
Using the piece of string, we want to measure the length of each arc that is in “daylight”,
and the length that is in “night”. This is kind of tricky, and requires a bit of judgement as
to exactly where the terminator is located. So make sure you have a helper to help keep
the string exactly on the line of constant latitude, and get the advice of your lab partners
of where the terminator is (and it is probably best to do this more than once!). Fill in the
following table (4 points):

As you know, the Earth rotates once every 24 hours (= 1 Day). Each of the lines of
constant latitude represents a full circle that contains 360o. But note that these circles get
smaller in radius as you move away from the equator. The circumference of the Earth at the
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Table 3.3: Position #1: Equinox Data Table
Latitude Length of Daylight Arc Length of Nightime Arc

Arctic Circle
45oN

Equator
Antarctic Circle

equator is 40,075 km (or 24,901 miles). At a latitude of 45o, the circle of constant latitude
has a circumference of 28,333 km. At the arctic circles, the circle has a circumference of
only 15,979 km. This is simply due to our use of two coordinates (longitude and latitude)
to define a location on a sphere.

Since the Earth is a solid body, all of the points on Earth rotate once every 24 hours.
Therefore, the sum of the daytime and nighttime arcs you measured equals 24 hours! So, fill
in the following table (2 points):

Table 3.4: Position #1: Length of Night and Day
Latitude Daylight Hours Nighttime Hours

Arctic Circle
45oN

Equator
Antarctic Circle

18) The caption for Table 3.3 was “Equinox data”. The word Equinox means “equal
nights”, as the length of the nighttime is the same as the daytime. While your numbers in
Table 3.4 may not be exactly perfect, what do you conclude about the length of the nights
and days for all latitudes on Earth in this experiment? Is this result consistent with the
term Equinox? (3 points)

Experiment #2: Now we are going to re-orient the globe so that the (top) polar axis
points exactly away from the Sun and repeat the process of Experiment #1. Fill in the
following two tables (4 points):

19) Compare your results in Table 3.6 for +45o latitude with those for Minneapolis in
Table 3.1. Since Minneapolis is at a latitude of +45o, what season does this orientation of
the globe correspond to? (2 points)
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Table 3.5: Position #2: Solstice Data Table
Latitude Length of Daylight Arc Length of Nightime Arc

Arctic Circle
45oN

Equator
Antarctic Circle

Table 3.6: Position #2: Length of Night and Day
Latitude Daylight Hours Nighttime Hours

Arctic Circle
45oN

Equator
Antarctic Circle

20) What about near the poles? In this orientation what is the length of the nighttime at
the North pole, and what is the length of the daytime at the South pole? Is this consistent
with the trends in Table 3.1, such as what is happening at Fairbanks or in Ushuaia? (4
points)

Experiment #3: Now we are going to approximate the Earth-Sun orientation six months
after that in Experiment #2. To do this correctly, the globe and the lamp should now
switch locations. Go ahead and do this if this lab is confusing you—or you can simply
rotate the globe apparatus by 180o so that the North polar axis is tilted exactly towards the
Sun. Try to get a good alignment by looking at the shadow of the wooden axis on the
globe. Since this is six months later, it easy to guess what season this is, but let’s prove it!
Complete the following two tables (4 points):

Table 3.7: Position #3: Solstice Data Table
Latitude Length of Daylight Arc Length of Nightime Arc

Arctic Circle
45oN

Equator
Antarctic Circle

21) As in question #19, compare the results found here for the length of daytime and
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Table 3.8: Position #3: Length of Night and Day
Latitude Daylight Hours Nighttime Hours

Arctic Circle
45oN

Equator
Antarctic Circle

nighttime for the +45o degree latitude with that for Minneapolis. What season does this
appear to be? (2 points)

22) What about near the poles? In this orientation, how long is the daylight at the North
pole, and what is the length of the nighttime at the South pole? Is this consistent with the
trends in Table 3.1, such as what is happening at Fairbanks or in Ushuaia? (2 points)

23) Using your results for all three positions (Experiments #1, #2, and #3) can you
explain what is happening at the Equator? Does the data for Quito in Table 3.1 make
sense? Why? Explain. (3 points)

We now have discovered the driver for the seasons: the Earth spins on an axis that is
inclined to the plane of its orbit (as shown in Figure 3.4). But the spin axis always points to
the same place in the sky (towards Polaris). Thus, as the Earth orbits the Sun, the amount
of sunlight seen at a particular latitude varies: the amount of daylight and nighttime hours
change with the seasons. In Northern Hemisphere Summer (approximately June 21st) there
are more daylight hours, at the start of the Autumn (∼ Sept. 20th) and Spring (∼ Mar.
21st) the days are equal to the nights. In the Winter (approximately Dec. 21st) the nights
are long, and the days are short. We have also discovered that the seasons in the Northern
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and Southern hemispheres are exactly opposite. If it is Winter in Las Cruces, it is Summer
in Sydney (and vice versa). This was clearly demonstrated in our experiments, and is shown
in Figure 3.4.

Figure 3.4: The Earth’s spin axis always points to one spot in the sky, and it is tilted by
23.5o to its orbit. Thus, as the Earth orbits the Sun, the illumination changes with latitude:
sometimes the North Pole is bathed in 24 hours of daylight, and sometimes in 24 hours of
night. The exact opposite is occurring in the Southern Hemisphere.

The length of the daylight hours is one reason why it is hotter in Summer than in Winter:
the longer the Sun is above the horizon the more it can heat the air, the land and the seas.
But this is not the whole story. At the North Pole, where there is constant daylight during
the Summer, the temperature barely rises above freezing! Why? We will discover the reason
for this now.

3.4 Elevation Angle and the Concentration of Sunlight

We have found out part of the answer to why it is warmer in summer than in winter: the
length of the day is longer in summer. But this is only part of the story–you would think
that with days that are 22 hours long during the summer, it would be hot in Alaska and
Canada during the summer, but it is not. The other affect caused by Earth’s tilted spin axis
is the changing height that the noontime Sun attains during the various seasons. Before we
discuss why this happens (as it takes quite a lot of words to describe it correctly), we want
to explore what happens when the Sun is higher in the sky. First, we need to define two new
terms: “altitude”, or “elevation angle”. As shown in the diagram in Fig. 3.5.

The Sun is highest in the sky at noon everyday. But how high is it? This, of course,
depends on both your latitude and the time of year. For Las Cruces, the Sun has an altitude
of 81◦ on June 21st. On both March 21st and September 20th, the altitude of the Sun at
noon is 57.5◦. On December 21st its altitude is only 34◦. Thus, the Sun is almost straight
overhead at noon during near the Summer Solstice, but very low during the Winter Solstice.
What difference can this possibly make? We now explore this using the other apparatus, the
elevation angle device, that accompanies this lab (the one with the protractor and flashlight).
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Figure 3.5: Altitude (“Alt”) is simply the angle between the horizon, and an object in the
sky. The smallest this angle can be is 0◦, and the maximum altitude angle is 90◦. Altitude
is interchangeably known as elevation.

Exercise #4: Using the elevation angle apparatus, we now want to measure what happens
when the Sun is at a higher or lower elevation angle. We mimic this by a flashlight mounted
on an arm that allows you to move it to just about any elevation angle. It is difficult to
exactly model the Sun using a flashlight, as the light source is not perfectly uniform. But
here we do as well as we can. Play around with the device.

24) Turn on the flashlight and move the arm to lower and higher angles. How does the
illumination pattern change? Does the illuminated pattern appear to change in brightness
as you change angles? Explain. (2 points)

Ok, now we are ready to begin to quantify this affect. Take a blank sheet of white paper
and tape it to the base so we have a more reflective surface. Now arrange the apparatus so
the elevation angle is 90◦. The illuminated spot should look circular. Measure the diameter
of this circle using a ruler.

25) The diameter of the illuminated circle is cm.

Do you remember how to calculate the area of a circle? Does the formula πR2 ring a bell?
R is the radius, not the diameter, so first you’ll need the radius of the circle.

The radius of the illuminated circle is cm.

The area of the circle of light at an elevation angle of 90◦ is cm2. (1
point)

Now, as you should have noticed at the beginning of this exercise, as you move the
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flashlight to lower and lower elevations, the circle changes to an ellipse. Now adjust the
elevation angle to be 45◦. Ok, time to introduce you to two new terms: the major axis and
minor axis of an ellipse. Both are shown in Fig. 3.6. The minor axis is the smallest
diameter, while the major axis is the longest diameter of an ellipse.

Figure 3.6: An ellipse with the major and minor axes defined.

Ok, now measure the lengths of the major (“a”) and minor (“b”) axes at 45◦:

26) The major axis has a length of a = cm, while the minor axis has a

length of b = cm.

The area of an ellipse is simply (π × a × b)/4. So, the area of

the ellipse at an elevation angle of 45◦ is: cm2 (1 point).

So, why are we making you measure these areas? Note that the black tube restricts the
amount of light coming from the flashlight into a cylinder. Thus, there is only a certain
amount of light allowed to come out and hit the paper. Let’s say there are “one hundred
units of light” emitted by the flashlight. Now let’s convert this to how many units of light
hit each square centimeter at angles of 90◦ and 45◦.

27) At 90◦, the amount of light per centimeter is 100 divided by the Area of circle

= units of light per cm2 (1 point).

28) At 45◦, the amount of light per centimeter is 100 divided by the Area of the ellipse

= units of light per cm2 (1 point).

29) Since light is a form of energy, at which elevation angle is there more energy per square
centimeter? Since the Sun is our source of light, what happens when the Sun is higher in
the sky? Is its energy more concentrated, or less concentrated? How about when it is low
in the sky? Can you tell this by looking at how bright the ellipse appears versus the circle?
(4 points)
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As we have noted, the Sun never is very high in the arctic regions of the Earth. In fact, at
the poles, the highest elevation angle the Sun can have is 23.5◦. Thus, the light from the
Sun is spread out, and cannot heat the ground as much as it can at a point closer to the
equator. That’s why it is always colder at the Earth’s poles than elsewhere on the planet.

You are now finished with the in-class portion of this lab. To understand why the Sun
appears at different heights at different times of the year takes a little explanation (and the
following can be read at home unless you want to discuss it with your TA). Let’s go back
and take a look at Fig. 3.3. Note that Polaris, the North Star, barely moves over the course
of a night or over the year—it is always visible. If you had a telescope and could point it
accurately, you could see Polaris during the daytime too. Polaris never sets for people in the
Northern Hemisphere since it is located very close to the spin axis of the Earth. Note that
as we move away from Polaris the circles traced by other stars get bigger and bigger. But
all of the stars shown in this photo are always visible—they never set. We call these stars
“circumpolar”. For every latitude on Earth, there is a set of circumpolar stars (the number
decreases as you head towards the equator).

Now let us add a new term to our vocabulary: the “Celestial Equator”. The Celestial
Equator is the projection of the Earth’s Equator onto the sky. It is a great circle that spans
the night sky that is directly overhead for people who live on the Equator. As you have now
learned, the lengths of the days and nights at the equator are nearly always the same: 12
hours. But we have also learned that during the Equinoxes, the lengths of the days and the
nights everywhere on Earth are also twelve hours. Why? Because during the equinoxes, the
Sun is on the Celestial Equator. That means it is straight overhead (at noon) for people
who live in Quito, Ecuador (and everywhere else on the equator). Any object that is on
the Celestial Equator is visible for 12 hours per night from everywhere on Earth. To try
to understand this, take a look at Fig. 3.7. In this figure is shown the celestial geometry
explicitly showing that the Celestial Equator is simply the Earth’s equator projected onto
the sky (left hand diagram). But the Earth is large, and to us, it appears flat. Since the
objects in the sky are very far away, we get a view like that shown in the right hand diagram:
we see one hemisphere of the sky, and the stars, planets, Sun and Moon rise in the east, and
set in the west. But note that the Celestial Equator exactly intersects East and West. Only
objects located on the Celestial Equator rise exactly due East, and set exactly due West. All
other objects rise in the northeast or southeast and set in the northwest or the southwest.
Note that in this diagram (for a latitude of 40◦) all stars that have latitudes (astronomers
call them “Declinations”, or “dec”) above 50◦ never set–they are circumpolar.

What happens is that during the year, the Sun appears to move above and below the
Celestial Equator. On, or about, March 21st the Sun is on the Celestial Equator, and each
day after this it gets higher in the sky (for locations in the Northern Hemisphere) until June
21st. After which it retraces its steps until it reaches the Autumnal Equinox (September
20th), after which it is South of the Celestial Equator. It is lowest in the sky on December
21st. This is simply due to the fact that the Earth’s axis is tilted with respect to its orbit,
and this tilt does not change. You can see this geometry by going back to the illuminated
globe model used in Exercise #3. If you stick a pin at some location on the globe away from
the equator, turn on the halogen lamp, and slowly rotate the entire apparatus around (while
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Figure 3.7: The Celestial Equator is the circle in the sky that is straight overhead (“the
zenith”) of the Earth’s equator. In addition, there is a “North Celestial” pole that is the
projection of the Earth’s North Pole into space (that almost points to Polaris). But the
Earth’s spin axis is tilted by 23.5◦ to its orbit, and the Sun appears to move above and
below the Celestial Equator over the course of a year.

keeping the pin facing the Sun) you will notice that the shadow of the pin will increase and
decrease in size. This is due to the apparent change in the elevation angle of the “Sun”.
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3.5 Possible Quiz Questions

1) What does the term “latitude” mean?
2) What is meant by the term “Equator”?
3) What is an ellipse?
4) What are meant by the terms perihelion and aphelion?
5) If it is summer in Australia, what season is it in New Mexico?

3.6 Extra Credit (make sure to ask your TA for permission before
attempting, 5 points)

We have stated that the Earth’s spin axis constantly points to a single spot in the sky. This
is actually not true. Look up the phrase “precession of the Earth’s spin axis”. Describe
what is happening and the time scale of this motion. Describe what happens to the timing
of the seasons due to this motion. Some scientists believe that precession might help cause
ice ages. Describe why they believe this.
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Name: _________________ 
Team Number: __________ 

Origin of the Seasons Take Home Exercise (35 points total) 
 

1. Why does the Earth have seasons? 
 
 
 
2. What is the origin of the term “Equinox”? 
 
 
 
3. What is the origin of the term “Solstice”? 
 
 
 
4. Most people in the United States think the seasons are caused by the changing 

distance between the Earth and the Sun. Why do you think this is? 
 
 
 
 
 
5. What type of seasons would the Earth have if its spin axis was exactly perpendicular to 

its orbital plane? Make a diagram like Fig. 2.4. 
 
 
 
 
 
6. What type of seasons would the Earth have if its spin axis was in the plane of its orbit? 

(Note that this is similar to the situation for the planet Uranus.) 
 
 
 
 
 
7. What do you think would happen if the Earth’s spin axis wobbled randomly around on a 

monthly basis? Describe how we might detect this 
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Name(s):
Date:

4 Earth’s Moon

Part 1 - Phases of the Moon
4.1 Introduction

Every once in a while, your teacher or TA is confronted by a student with the question
“Why can I see the Moon today, is something wrong?”. Surprisingly, many students have
never noticed that the Moon is visible in the daytime. The reason they are surprised is
that it confronts their notion that the shadow of the Earth is the cause of the phases–it is
obvious to them that the Earth cannot be causing the shadow if the Moon, Sun and Earth
are simultaneously in view! Maybe you have a similar idea. You are not alone, surveys of
science knowledge show that the idea that the shadow of the Earth causes lunar phases is
one of the most common misconceptions among the general public. Today, you will learn
why the Moon has phases, the names of these phases, and the time of day when these phases
are visible.

Even though they adhered to a “geocentric” (Earth-centered) view of the Universe, it
may surprise you to learn that the ancient Greeks completely understood why the Moon has
phases. In fact, they noticed during lunar eclipses (when the Moon does pass through the
Earth’s shadow) that the shadow was curved, and that the Earth, like the Moon, must be
spherical. The notion that Columbus feared he would fall of the edge of the flat Earth is
pure fantasy—it was not a flat Earth that was the issue of the time, but how big the Earth
actually was that made Columbus’ voyage uncertain.

The phases of the Moon are cyclic, in that they repeat every month. In fact the word
“month”, is actually an Old English word for the Moon. That the average month has 30
days is directly related to the fact that the Moon’s phases recur on a 29.5 day cycle. Note
that it only takes the Moon 27.3 days to orbit once around the Earth, but the changing
phases of the Moon are due to the relative to positions of the Sun, Earth, and Moon. Given
that the Earth is moving around the Sun, it takes a few days longer for the Moon to get to
the same relative position each cycle.

Your textbook probably has a figure showing the changing phases exhibited by the Moon
each month. Generally, we start our discusion of the changing phases of the Moon at “New
Moon”. During New Moon, the Moon is invisible because it is in the same direction as the
Sun, and cannot be seen. Note: because the orbit of the Moon is tilted with respect to the
Earth’s orbit, the Moon rarely crosses in front of the Sun during New Moon. When it does,
however, a spectacular “solar eclipse” occurs.

As the Moon continues in its orbit, it becomes visible in the western sky after sunset a
few days after New Moon. At this time it is a thin “crescent”. With each passing day, the
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cresent becomes thicker, and thicker, and is termed a “waxing” crescent. About seven days
after New Moon, we reach “First Quarter”, a phase when we see a half moon. The visible,
illuminated portion of the Moon continues to grow (“wax”) until fourteen days after New
Moon when we reach “Full Moon”. At Full Moon, the entire, visible surface of the Moon is
illuminated, and we see a full circle. After Full Moon, the illuminated portion of the Moon
declines with each passing day so that at three weeks after New Moon we again see a half
Moon which is termed “Third” or “Last” Quarter. As the illuminated area of the Moon is
getting smaller each day, we refer to this half of the Moon’s monthly cycle as the “waning”
portion. Eventually, the Moon becomes a waning crescent, heading back towards New Moon
to begin the cycle anew. Between the times of First Quarter and Full Moon, and between
Full Moon and Third Quarter, we sometimes refer to the Moon as being in a “gibbous”
phase. Gibbous means “hump-backed”. When the phase is increasing towards Full Moon,
we have a “waxing gibbous” Moon, and when it is decreasing, the “waning gibbous” phases.

The objective of this lab is to improve your understanding of the Moon phases. This concept,
the phases of the Moon, involves

1. the position of the Moon in its orbit around the Earth,

2. the illuminated portion of the Moon that is visible from here in Las Cruces, and

3. the time of day that a given Moon phase is at the highest point in the sky as seen from
Las Cruces.

You will finish this lab by demonstrating to your instructor that you do clearly understand
the concept of Moon phases, including an understanding of:

• which direction the Moon travels around the Earth

• how the Moon phases progress from day-to-day

• at what time of the day the Moon is highest in the sky at each phase

Carefully read and thoroughly answer the questions associated with each of the five Exercises
on the following pages. [Don’t be concerned about eclipses as you answer the questions in
these Exercises].
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4.2 Exercise 1 (6 points)

The figure below shows a “top view” of the Sun, Earth, and eight different positions (1-8) of
the Moon during one orbit around the Earth. Note that the distances shown are not drawn
to scale.

Ranking Instructions: Rank (from greatest to least) the amount of the Moon’s entire
surface that is illuminated for the eight positions (1-8) shown.

Ranking Order: Greatest A B C D E F G H Least

Or, the amount of the entire surface of the Moon illuminated by sunlight is the same at all
the positions. (indicate with a check mark).

Carefully explain the reasoning for your result:
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4.3 Exercise 2 (6 points)

The figure below shows a “top view” of the Sun, Earth, and six different positions (1-6) of
the Moon during one orbit of the Earth. Note that the distances shown are not drawn to
scale.

Ranking Instructions: Rank (from greatest to least) the amount of the Moon’s illuminated
surface that is visible from Earth for the six positions (1-6) shown.

Ranking Order: Greatest A B C D E F Least

Or, the amount of the Moon’s illuminated surface visible from Earth is the same at all
the positions. (indicate with a check mark).

Carefully explain the reasoning for your result:
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4.4 Exercise 3 (10 points)

Shown below are different phases of the Moon as seen by an observer in the Northern
Hemisphere.

A B C D E

Ranking Instructions: Beginning with the waxing gibbous phase of the Moon, rank all
five Moon phases shown above in the order that the observer would see them over the next
four weeks (write both the picture letter and the phase name in the space provided!).

Ranking Order:

1) Waxing Gibbous

2)

3)

4)

5)

Or, all of these phases would be visible at the same time: (indicate with a check mark).
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4.5 Lunar Phases, and When They Are Observable

The next three exercises involve determining when certain lunar phases can be observed.
Or, alternatively, determining the approximate time of day or night using the position and
phase of the Moon in the sky.

In Exercises 1 and 2, you learned about the changing geometry of the Earth-Moon-Sun
system that is the cause of the phases of the Moon. When the Moon is in the same direction
as the Sun, we call that phase New Moon. During New Moon, the Moon rises with the Sun,
and sets with the Sun. So if the Moon’s phase was New, and the Sun rose at 7 am, the Moon
also rose at 7 am–even though you cannot see it! The opposite occurs at Full Moon: at Full
Moon the Moon is in the opposite direction from the Sun. Therefore, as the Sun sets, the
Full Moon rises, and vice versa. The Sun reaches its highest point in the sky at noon each
day. The Full Moon will reach the highest point in the sky at midnight. At First and Third
quarters, the Moon-Earth-Sun angle is a right angle, that is it has an angle of 90◦ (positions
3 and 6, respectively, in the diagram for exercise #2). At these phases, the Moon will rise or
set at either noon, or midnight (it will be up to you to figure out which is which!). To help
you with exercises 4 through 6, we include the following figure detailing when the observed
phase is highest in the sky.
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4.6 Exercise 4 (6 points)

In the set of figures below, the Moon is shown in the first quarter phase at different times of
the day (or night). Assume that sunset occurs at 6 p.m. and that sunrise occurs at 6 a.m.

Instructions: Determine the time at which each view of the Moon would be seen, and write
it on each panel of the figure.
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4.7 Exercise 5 (6 points)

In the set of figures below, the Moon is shown overhead, at its highest point in the sky, but
in different phases. Assume that sunset occurs at 6 p.m. and that sunrise occurs at 6 a.m.

Instructions: Determine the time at which each view of the Moon would have been seen,
and write it on each panel of the figure.
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Part 2 - Surface of the Moon

4.8 Introduction

One can learn a lot about the Moon by looking at the lunar surface. Even before astronauts
landed on the Moon, scientists had enough data to formulate theories about the formation
and evolution of the Earth’s only natural satellite. However, since the Moon rotates once
for every time it orbits around the Earth, we can only see one side of the Moon from the
surface of the Earth. Until spacecraft were sent to orbit the Moon, we only knew half the
story.

The type of orbit our Moon makes around the Earth is called a synchronous orbit. This
phenomenon is shown graphically in Figure 4.1 below. If we imagine that there is one large
mountain on the hemisphere facing the Earth (denoted by the small triangle on the Moon),
then this mountain is always visible to us no matter where the Moon is in its orbit. As the
Moon orbits around the Earth, it turns slightly so we always see the same hemisphere.

Figure 4.1: The Moon’s synchronous orbit. (Not drawn to scale.)

On the Moon, there are extensive lava flows, rugged highlands and many impact craters
of all sizes. The overlapping of these features implies relative ages. Because of the lack of
ongoing mountain building processes, or weathering by wind and water, the accumulation
of volcanic processes and impact cratering is readily visible. Thus by looking at the images
of the Moon, one can trace the history of the lunar surface.

• Lab Goals: to discuss the Moon’s terrain, craters, and the theory of relative ages; to
use pictures of the Moon to deduce relative ages and formation processes of surface
features

• Materials: Moon pictures, ruler, calculator
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4.9 Craters and Maria

A crater is formed when a meteor from space strikes the lunar surface. The force of the
impact obliterates the meteorite and displaces part of the Moon’s surface, pushing the edges
of the crater up higher than the surrounding rock. At the same time, more displaced material
shoots outward from the crater, creating rays of ejecta. These rays of material can be seen
as radial streaks centered on some of the craters in some of the pictures you will be using
for your lab today. As shown in Figure 4.2, some of the material from the blast “flows”
back towards the center of the crater, creating a mountain peak. Some of the craters in the
photos you will examine today have these “central peaks”. Figure 4.2 also shows that the
rock beneath the crater becomes fractured (full of cracks).

Figure 4.2: Formation of an impact crater.

Soon after the Moon formed, its interior was mostly liquid. It was continually being hit by
meteors, and the energy (heat) from this period of intense cratering was enough to liquefy
the Moon’s interior. Every so often, a very large meteor would strike the surface, and
crack the Moon′s crust. The over-pressured “lava” from the Moon’s molten mantle then
flowed up through the cracks made by the impact. The lava filled in the crater, creating a
dark, smooth “sea”. Such a sea is called a mare (plural: maria). Sometimes the amount of
lava that came out could overfill the crater. In those cases, it spilled out over the crater’s
edges and could fill in other craters as well as cover the bases of the highlands, the rugged,
rocky peaks on the surface of the Moon.

4.10 Relative Ages on the Moon

Since the Moon does not have rain or wind erosion, astronomers can determine which features
on the Moon are older than others. It all comes down to counting the number of craters a
feature has. Since there is nothing on the Moon that can erase the presence of a crater, the
more craters something has, the longer it must have been around to get hit. For example, if
you have two large craters, and the first crater has 10 smaller craters in it, while the second
one has only 2 craters in it, we know that the first crater is older since it has been there long
enough to have been hit 10 times. If we look at the highlands, we see that they are covered
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with lots and lots of craters. This tells us that in general, the highlands are older than the
maria, which have fewer craters. We also know that if we see a crater on top of a mare, the
mare is older. It had to be there in the first place to get hit by the meteor. Crater counting
can tell us which features on the Moon are older than other features, but it cannot tell us
the absolute age of the feature. To determine this, we need to use radioactive dating or some
other technique.

4.11 Lab Stations

In this lab you will be using a three-ring binder that contains images of the Moon divided
into separate sections, or “stations”. At some stations we present data comparing the Moon
to the Earth. Using your understanding of simple physical processes here on Earth and
information from the class lecture and your reading, you will make observations and draw
logical conclusions in much the same way that a planetary geologist would.

The binders contain separate sections, or “stations,” with the photographs and/or images
for each specific exercise. Each group must go through all the stations, and consider and
discuss each question and come to a conclusion. Remember to back up your answers
with reasonable explanations, and be sure to answer all of the questions. While
you should discuss the questions as a group, be sure to write down the answer in your own
words for each question.

Station 1: Our first photograph (#1) is that of the full Moon. It is obvious that the Moon
has dark regions, and bright regions. The largest dark regions are the “maria,” while the
brighter regions are the “highlands.” In image #2, the largest features of the full Moon
are labeled. The largest of the maria on the Moon is Mare Imbrium (the “Sea of Showers”),
and it is easily located in the upper left quadrant of image #2. Locate Mare Imbrium. Let
us take a closer look at Mare Imbrium.

Image #3 is from the Lunar Orbiter IV. Before the Apollo missions landed humans on the
Moon, NASA sent several missions to the Moon to map its surface, and to make sure we
could safely land there. Lunar Orbiter IV imaged the Moon during May of 1967. The tech-
nology of the time was primitive compared to today, and the photographs were built up by
making small imaging scans/slices of the surface (the horizontal striping can be seen in the
images), then adding them all together to make a larger photograph. Image #3 is one of
these images of Mare Imbrium seen from almost overhead.

1. Approximately how many craters can you see inside the dark circular region that de-
fines Mare Imbrium? Compare the number of craters in Mare Imbrium to the brighter
regions to the North (above) of Mare Imbrium. (3 points)
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Images #4 and #5 are close-ups of small sections of Mare Imbrium. In image #4,
the largest crater (in the lower left corner) is “Le Verrier” (named after the French
mathematician who predicted the correct position for the planet Neptune). Le Verrier
is 20 km in diameter. In image #5, the two largest craters are named Piazzi Smyth
(just left of center) and Kirch (below and left of Piazzi Smyth). Piazzi Smyth has a
diameter of 13 km, while Kirch has a diameter of 11 km.

2. Using the diameters for the large craters noted above, and a ruler, what is the approx-
imate diameters of the smallest craters you can clearly see in images #4 and #5? If
the NMSU campus is about 1 km in diameter, compare the smallest crater you can see
to the size of our campus. (3 points)

Station 2: Now let’s move to the “highlands”. In Image #6 (which is identical to
image #2), the crater Clavius can be seen on the bottom edge—it is the bottom-most
labeled feature on this map. Image #7 shows a close-up picture of Clavius (just
below center) taken from the ground through a small telescope (this is similar to what
you would see at the campus observatory). Clavius is one of the largest craters on the
Moon, with a diameter of 225 km. In the upper right hand corner is one of the best
known craters on the Moon, “Tycho.” In image #1 you can identify Tycho by the
large number of bright “rays” that emanate from this crater. Tycho is a very young
crater, and the ejecta blasted out of the lunar surface spread very far from the impact
site.

Images #8 and #9 are two high resolution images of Clavius and nearby regions
taken by Lunar Orbiter IV (note the slightly different orientations from the ground-
based picture).

3. Compare the region around Clavius to Mare Imbrium. Scientists now know that the
lunar highlands are older than the maria. What evidence do you have (using these
photographs) that supports this idea? [Hint: review section 7.3 of the introduction.]
(3 points)
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Station 3: Comparing Apollo landing sites. Images #10 and #11 are close-ups
of the Apollo 11 landing site in Mare Tranquillitatis (the “Sea of Tranquility”). The
actual spot where the “Eagle” landed on July 20, 1969, is marked by the small cross in
image 11 (note that three small craters near the landing site have been named for the
crew of this mission: Aldrin, Armstrong and Collins). [There are also quite a number
of photographic defects in these pictures, especially the white circular blobs near the
center of the image to the North of the landing site.] The landing sites of two other
NASA spacecraft, Ranger 8 and Surveyor 5, are also labeled in image #11. NASA
made sure that this was a safe place to explore! Recently, a new mission to map the
Moon with better resolution called the “Lunar Reconnaissance Orbiter” (LRO) sent
back images of the Apollo 11 landing site (image 11B). In this image LM is the base
of the lunar module, LRRR and PSEP are two science experiments. You can even see
the (faintly) disturbed soil where the astronauts walked!

Images #12 and #13 show the landing site of the last Apollo mission, #17. Apollo
17 landed on the Moon on December 11th, 1972. In image 13B is an LRO image of
the landing site. Note that during Apollo 17 they had a “rover” (identified with the
notation LRV) to drive around with. Compare the two landing sites.

4. Describe the logic that NASA used in choosing the two landing sites–why did they
choose the Tranquillitatis site for the first lunar landing? What do you think led them
to choose the Apollo 17 site? (3 points)

Station 4: On the northern-most edge of Mare Imbrium sits the crater Plato (labeled
in images #2 and #6). Image #20 is a close-up of Plato.

5. Do you agree with the theory that the crater floor has been recently flooded? Is the
maria that forms the floor of this crater younger, older, or approximately the same
age as the nearby region of Mare Imbrium located just to the South (below) of Plato?
Explain your reasoning. (3 points)
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Station 5: Images #21 and #22 are “topographical” maps of the Earth and of
the Moon. A topographical map shows the elevation of surface features. On the Earth
we set “sea level” as the zero point of elevation. Continents, like North America, are
above sea level. The ocean floors are below sea level. In the topographical map of the
Earth, you can make out the United States. The Eastern part of the US is lower than
the Western part. In topographical maps like these, different colors indicate different
heights. Blue and dark blue areas are below sea level, while green areas are just above
sea level. The highest mountains are colored in red (note that Greenland and Antarc-
tica are both colored in red–they have high elevations due to very thick ice sheets). We
can use the same technique to map elevations on the Moon. Obviously, the Moon does
not have oceans to define “sea level.” Thus, the definition of zero elevation is more ar-
bitrary. For the Moon, sea level is defined by the average elevation of the lunar surface.

Image #22 is a topographical map for the Moon, showing the highlands (orange, red,
and pink areas), and the lowlands (green, blue, and purple). [Grey and black areas
have no data.] The scale is shown at the top. The lowest points on the Moon are 10
km below sea level, while the highest points are about 10 km above sea level. On the
left hand edge (the “y-axis”) is a scale showing the latitude. 0◦ latitude is the equator,
just like on the Earth. Like the Earth, the North pole of the Moon has a latitude
of +90◦, and the south pole is at −90◦. On the x-axis is the longitude of the Moon.
Longitude runs from 0◦ to 360◦. The point at 0◦ latitude and longitude of the Moon
is the point on the lunar surface that is closest to the Earth.

Station 6: With the surface of the Moon now familiar to you, and your percep-
tion of the surface of the Earth in mind, compare the Earth’s surface to the surface of
the Moon.

6. Does the Earth’s surface have more craters or fewer craters than the surface of the
Moon? Discuss two differences between the Earth and the Moon that could explain
this. (3 points)

Station 7: Chemical Composition of the Moon - Keys to its Origin Now we
want to examine the chemical composition of the Moon to reveal its history and origin.
The formation of planets (and other large bodies in the solar system like the Moon)
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is a violent process. Planets grow through the process of accretion: the gravity of the
young planet pulls on nearby material, and this material crashes into the young planet,
heating it, and creating large craters. In the earliest days of the solar system, so much
material was being accreted by the planets that they were completely molten. That is,
they were in the form of liquid rock, like the lava you see flowing from some volcanoes
on the Earth. Just as with water, denser objects in molten rock sink to the bottom
more quickly than less dense material. This is also true for chemical elements. Iron is
one of the heaviest of the common elements, and it sinks toward the center of a planet
more quickly than elements like silicon, aluminum, or magnesium. Thus, near the
Earth’s surface, rocks composed of these lighter elements dominate. In lava, however,
we are seeing molten rock from deeper in the Earth coming to the surface, and thus
lava and other volcanic (or “igneous”) rock can be rich in iron, nickel, titanium, and
other high-density elements.

Images #24 and 25 present two unique views of the Moon obtained by the space-
craft Clementine. Using special sensors, Clementine could make maps of the surface
composition of the Moon. Image #24 is a map of the amount of iron on the surface of
the Moon (“hotter” colors mean more iron than cooler colors). Image #25 is the same
type of map, but for titanium.

7. If the heavy elements like iron and titanium sank towards the center of the Moon soon
after it formed, what does the presence of large amounts of iron and titanium in the
maria suggest? [Hint: do you remember how maria are formed?] (5 points)
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Earth has three main structures: the crust (where we live), the mantle, and the core.
The crust is cool and brittle, the mantle is hotter and “plastic” (it flows), and the core
is very hot and very dense. The density of a material is simply its mass (in grams or
kilograms) divided by its volume (in cubic centimeters or meters).

Water has a density of 1 gm/cm3. The density of the Earth’s crust is about 3 gm/cm3,
while the mantle has a density of 4.5 gm/cm3. The core is very dense: 14 gm/cm3

(this is partly due to its composition, and partly due to the great pressure exerted by
the mass located above the core). The core of the Earth is almost pure iron, while the
mantle is a mixture of magnesium, silicon, iron and oxygen. The average density of
the Earth is 5.5 gm/cm3.

Figure 4.3: The internal structure of the Earth, showing the dimensions of the crust, mantle
and core, as well as their composition and temperatures.

Before the astronauts brought back rocks from the Moon, we did not have a good
theory about its formation. All we knew was that the Moon had an average density
of 3.34 gm/cm3. If the Moon formed from the same material as the Earth, their
compositions would be nearly identical, as would their average densities. In Table 4.1,
we present a comparison of the compositions of the Moon and the Earth. The data
for the Moon comes from analysis of the rocks brought back by the Apollo astronauts.

Table 4.1: Composition of the Earth & Moon.
Element Earth Moon

Iron 34.6% 3.5%
Oxygen 29.5% 60.0%
Silicon 15.2% 16.5%

Magnesium 12.7% 3.5%
Titanium 0.05% 1.0%
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8. Is the Moon composed of the same proportion of elements as the Earth? What are
the biggest differences? Does this support a model where the Moon formed out of the
same material as the Earth? (3 points)

As you will learn in lecture, the terrestrial planets in our solar system (Mercury, Venus,
Earth and Mars) have higher densities than the jovian planets (Jupiter, Saturn, Uranus
and Neptune). One theory for the formation of the Moon is that it formed near Mars,
and “migrated” inwards to be captured by the Earth. This theory arose because the
density of Mars, 3.9 gm/cm3, is similar to that of the Moon. But Mars is rich in iron
and magnesium: 17% of Mars is iron, and more than 15% is magnesium.

9. Given this information, do you think it is likely that the Moon formed out near Mars?
Why? (3 points)

The currently accepted theory for the formation of the Moon is called the “Giant Im-
pact” theory. In this model, a large body (about the size of Mars) collided with the
Earth, and the resulting explosion sent a large amount of material into space. This ma-
terial eventually collapsed (coalesced) to form the Moon. Most of the ejected material
would have come from the crust and the mantle of the Earth, since it is the material
closest to the Earth’s surface. Table 4.2 shows the composition of the Earth’s crust
and mantle compared to that of the Moon.
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Table 4.2: Chemical Composition of the Earth (crust and mantle) and Moon.
Element Earth’s Crust and Mantle Moon

Iron 5.0% 3.5%
Oxygen 46.6% 60.0%
Silicon 27.7% 16.5%

Magnesium 2.1% 3.5%
Calcium 3.6% 4.0%

10. Given the data in Table 4.2, present an argument for why the giant impact theory
probably is now the favorite theory for the formation of the Moon. Can you think of
a reason why the compositions might not be exactly the same? (4 points)
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Name:
Date:

4.12 Take-Home Assignment - Earth’s Moon (35 points)

Answer the following questions in the space provided:

1. Let’s talk about Solar Eclipses.

(a) What is a Solar Eclipse? Draw a diagram showing the relative positions of the
Earth, Sun, and Moon to illustrate your answer. (5 points)

(b) In order to see a Solar Eclipse, what phase must the moon be in? (2 points)

(c) Why do we not see a Solar Eclipse during this phase of the moon each month?
(3 points)

2. If you were on Earth looking up at a Full Moon at midnight, and you saw an astronaut
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at the center of the Moon’s disk, what phase would the astronaut be seeing the Earth
in? Draw a diagram to support your answer. (5 points)

3. What are the maria, and how were they formed? (5 points)

4. Explain how you would assign relative (“this is older than that”) ages to features on
the Moon or on any other surface in the solar system. (5 points)

5. How can the Earth be older than the Moon, as suggested by the Giant Impact Theory
of the Moon’s formation, but the Moon’s surface is older than the Earth’s surface?
What do we mean by ‘old’ in this context? (10 points)
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Name:
Date:

5 Kepler’s Laws

5.1 Introduction

Throughout human history, the motion of the planets in the sky was a mystery: why did
some planets move quickly across the sky, while other planets moved very slowly? Even two
thousand years ago it was apparent that the motion of the planets was very complex. For
example, Mercury and Venus never strayed very far from the Sun, while the Sun, the Moon,
Mars, Jupiter and Saturn generally moved from the west to the east against the background
stars (at this point in history, both the Moon and the Sun were considered “planets”). The
Sun appeared to take one year to go around the Earth, while the Moon only took about 30
days. The other planets moved much more slowly. In addition to this rather slow movement
against the background stars was, of course, the daily rising and setting of these objects.
How could all of these motions occur? Because these objects were important to the cultures
of the time—even foretelling the future using astrology. Being able to predict their motion
was considered vital.

The ancient Greeks had developed a model for the Universe in which all of the planets
and the stars were embedded in perfect crystalline spheres that revolved around the Earth
at uniform, but slightly different speeds. This is the “geocentric”, or Earth-centered model.
But this model did not work very well–the speed of the planet across the sky changed. Some-
times, a planet even moved backwards! It was left to the Egyptian astronomer Ptolemy (85
− 165 AD) to develop a model for the motion of the planets (you can read more about the
details of the Ptolemaic model in your textbook). Ptolemy developed a complicated system
to explain the motion of the planets, including “epicycles” and “equants”, that in the end
worked so well, that no other models for the motions of the planets were considered for 1500
years! While Ptolemy’s model worked well, the philosophers of the time did not like this
model–their Universe was perfect, and Ptolemy’s model suggested that the planets moved
in peculiar, imperfect ways.

In the 1540’s Nicholas Copernicus (1473 − 1543) published his work suggesting that
it was much easier to explain the complicated motion of the planets if the Earth revolved
around the Sun, and that the orbits of the planets were circular. While Copernicus was not
the first person to suggest this idea, the timing of his publication coincided with attempts to
revise the calendar and to fix a large number of errors in Ptolemy’s model that had shown
up over the 1500 years since the model was first introduced. But the “heliocentric” (Sun-
centered) model of Copernicus was slow to win acceptance, since it did not work as well as
the geocentric model of Ptolemy.

Johannes Kepler (1571 − 1630) was the first person to truly understand how the planets
in our solar system moved. Using the highly precise observations by Tycho Brahe (1546 −

64



1601) of the motions of the planets against the background stars, Kepler was able to for-
mulate three laws that described how the planets moved. With these laws, he was able to
predict the future motion of these planets to a higher precision than was previously possible.
Many credit Kepler with the origin of modern physics, as his discoveries were what led Isaac
Newton (1643 − 1727) to formulate the law of gravity. Today we will investigate Kepler’s
laws and the law of gravity.

5.2 Gravity

Gravity is the fundamental force governing the motions of astronomical objects. No other
force is as strong over as great a distance. Gravity influences your everyday life (ever drop
a glass?), and keeps the planets, moons, and satellites orbiting smoothly. Gravity affects
everything in the Universe including the largest structures like super clusters of galaxies
down to the smallest atoms and molecules. Experimenting with gravity is difficult to do.
You can’t just go around in space making extremely massive objects and throwing them to-
gether from great distances. But you can model a variety of interesting systems very easily
using a computer. By using a computer to model the interactions of massive objects like
planets, stars and galaxies, we can study what would happen in just about any situation. All
we have to know are the equations which predict the gravitational interactions of the objects.

The orbits of the planets are governed by a single equation formulated by Newton:

Fgravity =
GM1M2

R2
(1)

A diagram detailing the quantities in this equation is shown in Fig. 5.1. Here Fgravity is
the gravitational attractive force between two objects whose masses are M1 and M2. The
distance between the two objects is “R”. The gravitational constant G is just a small number
that scales the size of the force. The most important thing about gravity is that the
force depends only on the masses of the two objects and the distance between
them. This law is called an Inverse Square Law because the distance between the objects is
squared, and is in the denominator of the fraction. There are several laws like this in physics
and astronomy.

Today you will be using a computer program called “Planets and Satellites” by Eugene
Butikov to explore Kepler’s laws, and how planets, double stars, and planets in double star
systems move. This program uses the law of gravity to simulate how celestial objects move.

• Goals: to understand Kepler’s three laws and use them in conjunction with the com-
puter program “Planets and Satellites” to explain the orbits of objects in our solar
system and beyond

• Materials: Planets and Satellites program, a ruler, and a calculator
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Figure 5.1: The force of gravity depends on the masses of the two objects (M1, M2), and the
distance between them (R).

5.3 Kepler’s Laws

Before you begin the lab, it is important to recall Kepler’s three laws, the basic description
of how the planets in our Solar System move. Kepler formulated his three laws in the early
1600’s, when he finally solved the mystery of how planets moved in our Solar System. These
three (empirical) laws are:

I. “The orbits of the planets are ellipses with the Sun at one focus.”

II. “A line from the planet to the Sun sweeps out equal areas in equal intervals of time.”

III. “A planet’s orbital period squared is proportional to its average distance from the Sun
cubed: P2 ∝ a3”

Let’s look at the first law, and talk about the nature of an ellipse. What is an ellipse?
An ellipse is one of the special curves called a “conic section”. If we slice a plane through a
cone, four different types of curves can be made: circles, ellipses, parabolas, and hyperbolas.
This process, and how these curves are created is shown in Fig. 5.2.

Before we describe an ellipse, let’s examine a circle, as it is a simple form of an ellipse.
As you are aware, the circumference of a circle is simply 2πR. The radius, R, is the distance
between the center of the circle and any point on the circle itself. In mathematical terms, the
center of the circle is called the “focus”. An ellipse, as shown in Fig. 5.3, is like a flattened
circle, with one large diameter (the “major” axis) and one small diameter (the “minor” axis).
A circle is simply an ellipse that has identical major and minor axes. Inside of an ellipse,
there are two special locations, called “foci” (foci is the plural of focus, it is pronounced
“fo-sigh”). The foci are special in that the sum of the distances between the foci and any
points on the ellipse are always equal. Fig. 5.4 is an ellipse with the two foci identified, “F1”
and “F2”.
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Figure 5.2: Four types of curves can be generated by slicing a cone with a plane: a circle,
an ellipse, a parabola, and a hyperbola. Strangely, these four curves are also the allowed
shapes of the orbits of planets, asteroids, comets and satellites!

Figure 5.3: An ellipse with the major and minor axes identified.
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Exercise #1: On the ellipse in Fig. 5.4 are two X’s. Confirm that that sum of the
distances between the two foci to any point on the ellipse is always the same by measuring
the distances between the foci, and the two spots identified with X’s. Show your work. (2
points)

Figure 5.4: An ellipse with the two foci identified.

Exercise #2: In the ellipse shown in Fig. 5.5, two points (“P1” and “P2”) are identified
that are not located at the true positions of the foci. Repeat exercise #1, but confirm that
P1 and P2 are not the foci of this ellipse. (2 points)

Figure 5.5: An ellipse with two non-foci points identified.
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Now we will use the Planets and Satellites program to examine Kepler’s laws. It is
possible that the program will already be running when you get to your computer. If not,
however, you will have to start it up. If your TA gave you a CDROM, then you need to
insert the CDROM into the CDROM drive on your computer, and open that device. On
that CDROM will be an icon with the program name. It is also possible that Planets and
Satellites has been installed on the computer you are using. Look on the desktop for an
icon, or use the start menu. Start-up the program, and you should see a title page window,
with four boxes/buttons (“Getting Started”, “Tutorial”, “Simulations”, and “Exit”). Click
on the “Simulations” button. We will be returning to this level of the program to change
simulations. Note that there are help screens and other sources of information about each
of the simulations we will be running–do not hesitate to explore those options.

Exercise #3: Kepler’s first law.
Click on the “Kepler’s Law button” and then the “First Law” button inside the Kepler’s

Law box.
A window with two panels opens up. The panel on the left will trace the motion of the

planet around the Sun, while the panel on the right sums the distances of the planet from
the foci. Remember, Kepler’s first law states “the orbit of a planet is an ellipse with the Sun
at one focus”. The Sun in this simulation sits at one focus, while the other focus is empty
(but whose location will be obvious once the simulation is run!).

At the top of the panel is the program control bar. For now, simply hit the “Go” button.
You can clear and restart the simulation by hitting “Restart” (do this as often as you

wish).
After hitting Go, note that the planet executes an orbit along the ellipse. The program

draws the “vectors” from each focus to 25 different positions of the planet in its orbit. It
draws a blue vector from the Sun to the planet, and a yellow vector from the other focus to
the planet. The right hand panel sums the blue and yellow vectors. [Note: if your computer
runs the simulation too quickly, or too slowly, simply adjust the “Slow down/Speed Up”
slider for a better speed.]

1. Describe the results that are displayed in the right hand panel for this first simulation.
(2 points).

Now we want to explore another ellipse. In the extreme left hand side of the control
bar is a slider to control the “Initial Velocity”. At start-up it is set to “1.2”. Slide it
up to the maximum value of 1.35 and hit Go.
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2. Describe what the ellipse looks like at 1.35 vs. that at 1.2. Does the sum of the vectors
(right hand panel) still add up to a constant? (3 points)

Now let’s put the Initial Velocity down to a value of 1.0. Run the simulation.

3. What is happening here? The orbit is now a circle. Where are the two foci located?
In this case, what is a name that describes the distance between the focus point and
the orbit? (4 points)

The point in the orbit where the planet is closest to the Sun is called “perihelion”, and
that point where the planet is furthest from the Sun is called “aphelion”. For a circular
orbit, the aphelion is the same as the perihelion, and can be defined to be anywhere!
Exit this simulation (click on “File” and “Exit”).

Exercise #4: Kepler’s Second Law: “A line from a planet to the Sun sweeps out equal
areas in equal intervals of time.”

From the simulation window, click on the “Kepler’s Law button” and then the “Second
Law” button inside the Kepler’s Law box.

Move the Initial Velocity slide bar to a value of 1.2. Hit Go.

1. Describe what is happening here. Does this confirm Kepler’s second law? How? When
the planet is at perihelion, is it moving slowly or quickly? Why do you think this
happens? (4 points)
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Look back to the equation for the force of gravity. You know from personal experience
that the harder you hit a ball, the faster it moves. The act of hitting a ball is the act
of applying a force to the ball. The larger the force, the faster the ball moves (and,
generally, the farther it travels). In the equation for the force of gravity, the amount
of force generated depends on the masses of the two objects, and the distance between
them. But note that it depends on one over the square of the distance: 1/R2. Let’s
explore this “inverse square law” with some calculations.

• If R = 1, what does 1/R2 = ?

• If R = 2, what does 1/R2 = ?

• If R = 4, what does 1/R2 = ?

2. What is happening here? As R gets bigger, what happens to 1/R2? Does 1/R2

decrease/increase quickly or slowly? (2 points)

The equation for the force of gravity has a 1/R2 in it, so as R increases (that is, the
two objects get further apart), does the force of gravity felt by the body get larger, or
smaller? Is the force of gravity stronger at perihelion, or aphelion? Newton showed
that the speed of a planet in its orbit depends on the force of gravity through this
equation:

V =
√

(G(Msun +Mplanet)(2/r − 1/a)) (2)

where “r” is the radial distance of the planet from the Sun, and “a” is the mean orbital
radius (the semi-major axis).

3. Do you think the planet will move faster, or slower when it is closest to the Sun? Test
this by assuming that r = 0.5a at perihelion, and r = 1.5a at aphelion, and that a=1!
[Hint, simply set G(Msun + Mplanet) = 1 to make this comparison very easy!] Does this
explain Kepler’s second law? (4 points)
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4. What do you think the motion of a planet in a circular orbit looks like? Is there a
definable perihelion and aphelion? Make a prediction for what the motion is going to
look like–how are the triangular areas seen for elliptical orbits going to change as the
planet orbits the Sun in a circular orbit? Why? (3 points)

5. Now let’s run a simulation for a circular orbit by setting the Initial Velocity to 1.0.
What happened? Were your predictions correct? (3 points)

Exit out of the Second Law, and start-up the Third Law simulation.

Exercise #5: Kepler’s Third Law: “A planet’s orbital period squared is proportional
to its average distance from the Sun cubed: P 2 ∝ a3”.

As we have just learned, the law of gravity states that the further away an object is, the
weaker the force. We have already found that at aphelion, when the planet is far from the
Sun, it moves more slowly than at perihelion. Kepler’s third law is merely a reflection of
this fact–the further a planet is from the Sun (“a”), the more slowly it will move. The more
slowly it moves, the longer it takes to go around the Sun (“P”). The relation is P 2 ∝ a3,
where P is the orbital period in years, while a is the average distance of the planet from the
Sun, and the mathematical symbol for proportional is represented by “∝”. However, if we
use units of ’years’ for P and ’AU’ for a we can replace the proportional sign with an equal
sign:
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P 2 = E3 (3)

Let’s use equation (3) to make some predictions. If the average distance of Jupiter from
the Sun is about 5 AU, what is its orbital period? Set-up the equation:

P 2
J = a3J = 53 = 5× 5× 5 = 125 (4)

So, for Jupiter, P 2 = 125. How do we figure out what P is? We have to take the square
root of both sides of the equation:

√
P 2 = P =

√
125 = 11.2 years (5)

The orbital period of Jupiter is approximately 11.2 years. Your turn:

1. If an asteroid has an average distance from the Sun of 4 AU, what is its orbital period?
Show your work. (2 points)

In the Third Law simulation, there is a slide bar to set the average distance from the
Sun for any hypothetical solar system body. At start-up, it is set to 4 AU. Run the
simulation, and confirm the answer you just calculated. Note that for each orbit of the
inner planet, a small red circle is drawn on the outer planet’s orbit. Count up these
red circles to figure out how many times the Earth revolved around the Sun during a
single orbit of the asteroid.

2. Did your calculation agree with the simulation? Describe your results. (2 points)
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If you were observant, you noticed that the program calculated the number of orbits
that the Earth executed for you (in the “Time” window), and you do not actually have
to count up the little red circles. Let’s now explore the orbits of the nine planets in our
solar system. In the following table are the semi-major axes of the nine planets. Note
that the “average distance to the Sun” (a) that we have been using above is actually
a quantity astronomers call the “semi-major axis” of a planet. a is simply one half the
major axis of the orbit ellipse.

3. Fill in the missing orbital periods of the planets by running the Third Law simulator
for each of them. (3 points)

Table 5.1: The Orbital Periods of the Planets

Planet a (AU) P (yr)
Mercury 0.387 0.24
Venus 0.72
Earth 1.000 1.000
Mars 1.52

Jupiter 5.20
Saturn 9.54 29.5
Uranus 19.22 84.3

Neptune 30.06 164.8
Pluto 39.5 248.3

Notice that the further the planet is from the Sun, the slower it moves, and the longer
it takes to complete one orbit around the Sun (its “year”).

4. Neptune was discovered in 1846, and Pluto was discovered in 1930 (by Clyde Tombaugh,
a former professor at NMSU). How many orbits (or what fraction of an orbit) have
Neptune and Pluto completed since their discovery? (3 points)
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5.4 Going Beyond the Solar System

One of the basic tenets of physics is that all natural laws, such as gravity, are the same ev-
erywhere in the Universe. Thus, when Newton used Kepler’s laws to figure out how gravity
worked in the solar system, we suddenly had the tools to understand how stars interact, and
how galaxies, which are large groups of billions of stars, behave: the law of gravity works
the same way for a planet orbiting a star that is billions of light years from Earth, as it does
for the planets in our solar system. Therefore, we can use the law of gravity to construct
simulations for all types of situations—even how the Universe itself evolves with time! For
the remainder of the lab we will investigate binary stars, and planets in binary star systems.

First, what is a binary star? Astronomers believe that about one half of all stars that
form, end up in binary star systems. That is, instead of a single star like the Sun, being
orbited by planets, a pair of stars are formed that orbit around each other. Binary stars
come in a great variety of sizes and shapes. Some stars orbit around each other very slowly,
with periods exceeding a million years, while there is one binary system containing two white
dwarfs (a white dwarf is the end product of the life of a star like the Sun) that has an orbital
period of 5 minutes!

To get to the simulations for this part of the lab, exit the Third Law simulation (if you
haven’t already done so), and click on button “7”, the “Two-Body and Many-Body” simu-
lations. We will start with the “Double Star” simulation. Click Go.

In this simulation there are two stars in orbit around each other, a massive one (the blue
one) and a less massive one (the red one). Note how the two stars move. Notice that the
line connecting them at each point in the orbit passes through one spot–this is the location
of something called the “center of mass”. In Fig. 5.6 is a diagram explaining the center of
mass. If you think of a teeter-totter, or a simple balance, the center of mass is the point
where the balance between both sides occurs. If both objects have the same mass, this point
is halfway between them. If one is more massive than the other, the center of mass/balance
point is closer to the more massive object.

Most binary star systems have stars with similar masses (M1 ≈ M2), but this is not
always the case. In the first (default) binary star simulation, M1 = 2M2. The “mass ratio”
(“q”) in this case is 0.5.

Mass ratio is defined to be

q =
M2

M1

(6)

Here, M2 = 1, and M1 = 2, so q = M2/M1 = 1/2 = 0.5. This is the number that appears
in the “Mass Ratio” window of the simulation.

Exercise #6: Binary Star systems. We now want to set-up some special binary star
orbits to help you visualize how gravity works. This requires us to access the “Input” window
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Figure 5.6: A diagram of the definition of the center of mass. Here, object one (M1) is twice
as massive as object two (M2). Therefore, M1 is closer to the center of mass than is M2. In
the case shown here, X2 = 2X1.

on the control bar of the simulation window to enter in data for each simulation.
Clicking on Input brings up a menu with the following parameters: Mass Ratio, “Trans-

verse Velocity”, “Velocity (magnitude)”, and “Direction”. Use the slide bars (or type in the
numbers) to set Transverse Velocity = 1.0, Velocity (magnitude) = 0.0, and Direction = 0.0.
For now, we simply want to play with the mass ratio.

Use the slide bar so that Mass Ratio = 1.0. Click “Ok”. This now sets up your new
simulation. Click Run.

1. Describe the simulation. What are the shapes of the two orbits? Where is the center
of mass located relative to the orbits? What does q = 1.0 mean? (Remember Equation
6) Describe what is going on here. (4 points)
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Ok, now we want to run a simulation where only the mass ratio is going to be changed.

2. Go back to Input and enter in the correct mass ratio for a binary star system with
M1 = 4.0, and M2 = 1.0 (using Equation 6). Run the simulation. Describe what is
happening in this simulation. How are the stars located with respect to the center of
mass? Why? [Hint: see Fig. 5.6.] (4 points)

Finally, we want to move away from circular orbits, and make the orbit as elliptical as
possible. You may have noticed from the Kepler’s law simulations that the Transverse
Velocity affected whether the orbit was round or elliptical. When the Transverse
Velocity = 1.0, the orbit is a circle. Transverse Velocity is simply how fast the planet
in an elliptical orbit is moving at perihelion relative to a planet in a circular orbit of
the same orbital period. The maximum this number can be is about 1.3. If it goes
much faster, the ellipse then extends to infinity and the orbit becomes a parabola.

3. Go back to Input and now set the Transverse Velocity = 1.3. Run the simulation.
Describe what is happening. When do the stars move the fastest? The slowest? Does
this make sense? Why/why not? (4 points)
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The final exercise explores what it would be like to live on a planet in a binary star
system–not so fun!

4. In the “Two-Body and Many-Body” simulations window, click on the “Dbl. Star and a
Planet” button. Here we simulate the motion of a planet going around the less massive
star in a binary system. Click Go. Describe the simulation—what happened to the
planet? Why do you think this happened? (4 points)

In this simulation, two more windows opened up to the right of the main one. These
are what the simulation looks like if you were to sit on the surface of the two stars in
the binary. For a while the planet orbits one star, and then goes away to orbit the
other one, and then returns. So, sitting on these stars gives you a different viewpoint
than sitting high above the orbit. Let’s see if you can keep the planet from wandering
away from its parent star. Click on the “Settings” window. As you can tell, now that
we have three bodies in the system, there are lots of parameters to play with. But let’s
confine ourselves to two of them: “Ratio of Stars Masses” and “Planet–Star Distance”.
The first of these is simply the q we encountered above, while the second changes the
size of the planet’s orbit. The default values of both at the start-up are q = 0.5, and
Planet–Star Distance = 0.24.

5. Run simulations with q = 0.4 and 0.6. Compare them to the simulations with q =
0.5. What happens as q gets larger, and larger? What is increasing? How does this
increase affect the force of gravity between the star and its planet? (5 points)
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6. Ok, reset q = 0.5, and now let’s adjust the Planet–Star Distance. In the Settings
window, set the Planet–Star Distance = 0.1 and run a simulation. Note the outcome
of this simulation. Now set Planet–Star Distance = 0.3. Run a simulation. What
happened? Did the planet wander away from its parent star? Are you surprised? (5
points)

Astronomers call orbits where the planet stays home, “stable orbits”. Obviously, when
the Planet–Star Distance = 0.24, the orbit is unstable. The orbital parameters are just
right that the gravity of the parent star is not able to hold on to the planet. But some
orbits, even though the parent’s hold on the planet is weaker, are stable–the force of
gravity exerted by the two stars is balanced just right, and the planet can happily orbit
around its parent and never leave. Over time, objects in unstable orbits are swept up
by one of the two stars in the binary. This can even happen in the solar system. In
the Comet lab, you can find some images where a comet ran into Jupiter. The orbits
of comets are very long ellipses, and when they come close to the Sun, their orbits can
get changed by passing close to a major planet. The gravitational pull of the planet
changes the shape of the comet’s orbit, it speeds up, or slows down the comet. This
can cause the comet to crash into the Sun, or into a planet, or cause it to be ejected
completely out of the solar system. (You can see an example of the latter process by
changing the Planet–Star Distance = 0.4 in the current simulation.)
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5.5 Possible Quiz Questions

1. Describe the difference between an ellipse and a circle.

2. List Kepler’s three laws.

3. How quickly does the strength (“pull”) of gravity get weaker with distance?

4. Describe the major and minor axes of an ellipse.

5.6 Extra Credit (ask your TA for permission before attempting
this, 5 points)

Derive Kepler’s third law (P2 = C × a3) for a circular orbit. First, what is the circumfer-
ence of a circle of radius a? If a planet moves at a constant speed “v” in its orbit, how long
does it take to go once around the circumference of a circular orbit of radius a? [This is
simply the orbital period “P”.] Write down the relationship that exists between the orbital
period “P”, and “a” and “v”. Now, if we only knew what the velocity (v) for an orbiting
planet was, we would have Kepler’s third law. In fact, deriving the velocity of a planet in
an orbit is quite simple with just a tiny bit of physics (go to this page to see how it is done:
http://www.go.ednet.ns.ca/∼larry/orbits/kepler.html). Here we will simply tell you that
the speed of a planet in its orbit is v = (GM/a)1/2, where “G” is the gravitational constant
mentioned earlier, “M” is the mass of the Sun, and a is the radius of the orbit. Rewrite your
orbital period equation, substituting for v. Now, one side of this equation has a square root
in it–get rid of this by squaring both sides of the equation and then simplifying the result.
Did you get P2 = C × a3? What does the constant “C” have to equal to get Kepler’s third
law?
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Name: _________________ 
Team Number: __________ 

Kepler’s Laws Take Home Exercise (35 points total) 
 

1. Describe the Law of Gravity in words and with the equation.​ (6 points) 
 
 
 
 
 
 
 

2. What happens to the gravitational force as  
a. the masses increase?​(4 points) 

 
 
 
 
 

b. the distance between the two objects increases?​ (4 points) 
 
 
 
 
3. Describe Kepler’s three laws in your own words, and describe how you tested each one of them in the lab. 

(1-2 complete sentences for each of Kepler’s Laws) ​(15 points) 
 
 
 
 
 
 
 
 
 
 
 
 
 
4. Astronomers think that finding life on planets orbiting  binary systems is unlikely. Why do they think 

that? Use your simulation results to strengthen your argument.​ (6 points) 
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Name:

Date:

6 The Power of Light: Understanding Spectroscopy

6.1 Introduction

For most celestial objects, light is the astronomer’s only subject for study. Light from celes-
tial objects is packed with amazingly large amounts of information. Studying the distribution
of brightness for each wavelength (color) which makes up the light provides the temperature
of a source. A simple example of this comes from flame color comparison. Think of the
color of a flame from a candle (yellow) and a flame from a chemistry class Bunson burner
(blue). Which is hotter? The flame from the Bunson burner is hotter. By observing which
color is dominant in the flame, we can determine which flame is hotter or cooler. The same
is true for stars; by observing the color of stars, we can determine which stars are hot and
which stars are cool. If we know the temperature of a star, and how far away it is (see the
“Measuring Distances Using Parallax” lab), we can determine how big a star is.

We can also use a device, called a spectroscope, to break-up the light from an object into
smaller segments and explore the chemical composition of the source of light. For example,
if you light a match, you know that the predominant color of the light from the match is
yellow. This is partly due to the temperature of the match flame, but it is also due to
very strong emission lines from sodium. When the sodium atoms are excited (heated in the
flame) they emit yellow light.

In this lab, you will learn how astronomers can use the light from celestial objects to
discover their nature. You will see just how much information can be packed into light! The
close-up study of light is called spectroscopy.

This lab is split into three main parts:

• Experimentation with actual blackbody light sources to learn about the qualitative
behavior of blackbody radiation.

• Computer simulations of the quantitative behavior of blackbody radiation.

• Experimentation with emission line sources to show you how the spectra of each element
is unique, just like the fingerprints of human beings.

Thus there are three main components to this lab, and they can be performed in any
order. So one third of the groups can work on the computers, while the other groups work
with the spectrographs and various light sources.

• Goals: to discuss the properties of blackbody radiation, filters, and see the relationship
between temperature and color by observing light bulbs and the spectra of elements by
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looking at emission line sources through a spectrograph. Using a computer to simulate
blackbody. radiation

• Materials: spectrograph, adjustable light source, gas tubes and power source, comput-
ers, calculators

6.2 Blackbody Radiation

Blackbody radiation (light) is produced by any hot, dense object. By “hot” we mean any
object with a temperature above absolute zero. All things in the Universe emit radiation,
since all things in the Universe have temperatures above absolute zero. Astronomers idealize
a perfect absorber and perfect emitter of radiation and call it a “blackbody”. This does
not mean it is black in color, simply that it absorbs and emits light at all wavelengths, so
no light is reflected. A blackbody is an object which is a perfect absorber (absorbs at all
wavelengths) and a perfect emitter (emits at all wavelengths) and does not reflect any light
from its surface. Astronomical objects are not perfect blackbodies, but some, in particular,
stars, are fairly well approximated by blackbodies.

The light emitted by a blackbody object is called blackbody radiation. This radiation is
characterized simply by the temperature of the blackbody object. Thus, if we can study the
blackbody radiation from an object, we can determine the temperature of the object.

To study light, astronomers often split the light up into a spectrum. A spectrum shows
the distribution of brightness at many different wavelengths. Thus, a spectrum can be shown
using a graph of brightness vs. wavelength. A simple example of this is if you were to look
at a rainbow and record how bright each of the separate colors were. Figure 6.1 shows what
the brightness of the colors in a hot flame or hot star might look like. At each separate color,
a brightness is measured. By fitting a curve to the data points, and finding the peak in the
curve, we can determine the temperature of the blackbody source.

6.3 Absorption and Emission Lines

One question which you may have considered is: how do astronomers know what elements
and molecules make up astronomical objects? How do they know that the Universe is made
up mostly of hydrogen with a little bit of helium and a tiny bit of all the other elements we
have discovered on Earth? How do astronomers know the chemical make up of the planets
in our Solar System? They do this by examining the absorption or emission lines in the
spectra of astronomical sources. [Note that the plural of spectrum is spectra.]

6.3.1 The Bohr Model of the Atom

In the early part of the last century, a group of physicists developed the Quantum Theory
of the Atom. Among these scientists was a Danish physicist named Niels Bohr. His model
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Figure 6.1: Astronomers measure the amount of light at a number of different wavelengths
(or colors) to determine the temperature of a blackbody source. Every blackbody has the
same shape, but the peak moves to the violet/blue for hot sources, and to the red for cool
sources. Thus we can determine the temperature of a blackbody source by figuring out where
the most light is emitted.

of the atom, shown in the figure below, is the easiest to understand. In the Bohr model,
we have a nucleus at the center of the atom, which is really much, much smaller relative to
the electron orbits than is illustrated in our figure. Almost all of the atom’s mass is located
in the nucleus. For Hydrogen, the simplest element known, the nucleus consists of just one
proton. A proton has an atomic mass unit of 1 and a positive electric charge. In Helium,
the nucleus has two protons and two other particles called neutrons which do not have any
charge but do have mass. An electron cloud surrounds the nucleus. For Hydrogen there is
only one electron. For Helium there are two electrons and in a larger atom like Oxygen,
there are 8. The electron has about 1

2000
the mass of the proton but an equal and opposite

electric charge. So protons have positive charge and electrons have negative charge. Because
of this, the electron is attracted to the nucleus and will thus stay as close to the nucleus as
possible.

In the Bohr model, Figure 6.2, the electron is allowed to exist only at certain distances
from the nucleus. This also means the electron is allowed to have only certain orbital ener-
gies. Often the terms orbits, levels, and energies are used interchangeably so try not to get
confused. They all mean the same thing and all refer to the electrons in the Bohr model of
the atom.

Now that our model is set up let’s look at some situations of interest. When scientists
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Figure 6.2: In the Bohr model, the negatively charged electrons can only orbit the positively
charged nucleus in specific, “quantized”, orbits.

studied simple atoms in their normal, or average state, they found that the electron was
found in the lowest level. They named this level the ground level. When an atom is exposed
to conditions other than average, say for example, putting it in a very strong electric field, or
by increasing its temperature, the electron will jump from inner levels toward outer levels.
Once the abnormal conditions are taken away, the electron jumps downward towards the
ground level and emits some light as it does so. The interesting thing about this light is that
it comes out at only particular wavelengths. It does not come out in a continuous spectrum,
but at solitary wavelengths. What has happened here?

After much study, the physicists found out that the atom had taken-in energy from the
collision or from the surrounding environment and that as it jumps downward in levels, it
re-emits the energy as light. The light is a particular color because the electron really is
allowed only to be in certain discrete levels or orbits. It cannot be halfway in between two
energy levels. This is not the same situation for large scale objects like ourselves. Picture a
person in an elevator moving up and down between floors in a building. The person can use
the emergency stop button to stop in between any floor if they want to. An electron cannot.
It can only exist in certain energy levels around a nucleus.

Now, since each element has a different number of protons and neutrons in its nucleus
and a different number of electrons, you may think that studying “electron gymnastics”
would get very complicated. Actually, nature has been kind to us because at any one time,
only a single electron in a given atom jumps around. This means that each element, when
it is excited, gives off certain colors or wavelengths. This allows scientists to develop a color
fingerprint for each element. This even works for molecules. These fingerprints are some-
times referred to as spectral lines. The light coming from these atoms does not take the
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shape of lines. Rather, each atom produces its own set of distinct colors. Scientists then use
lenses and slits to produce an image in the shape of a line so that they can measure the exact
wavelength accurately. This is why spectral lines get their name, because they are generally
studied in a linear shape, but they are actually just different wavelengths of light.

6.3.2 Kirchoff’s Laws

Continuous spectra are the same as blackbody spectra, and now you know about spectral
lines. But there are two types of spectral lines: absorption lines and emission lines. Emis-
sion lines occur when the electron is moving down to a lower level, and emits some light in
the process. An electron can also move up to a higher level by absorbing the right wavelength
of light. If the atom is exposed to a continuous spectrum, it will absorb only the right wave-
length of light to move the electron up. Think about how that would affect the continuous
spectrum. One wavelength of light would be absorbed, but nothing would happen to the
other colors. If you looked at the source of the continuous spectrum (light bulb, core of a
star) through a spectrograph, it would have the familiar Blackbody spectrum, with a dark
line where the light had been absorbed. This is an absorption line.

The absorption process is basically the reverse of the emission process. The electron
must acquire energy (by absorbing some light) to move to a higher level, and it must get rid
of energy (by emitting some light) to move to a lower level. If you’re having a hard time
keeping all this straight, don’t worry. Gustav Kirchoff made it simple in 1860, when he came
up with three laws describing the processes behind the three types of spectra. The laws are
usually stated as follows:

• I. A dense object will produce a continuous spectrum when heated.

• II. A low-density, gas that is excited (meaning that the atoms have electrons in higher
levels than normal) will produce an emission-line spectrum.
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• III. If a source emitting a continuous spectrum is observed through a cooler, low-
density gas, an absorption-line spectrum will result.

A blackbody produces a continuous spectrum. This is in agreement with Kirchoff’s first
law. When the light from this blackbody passes through a cloud of cooler gas, certain
wavelengths are absorbed by the atoms in that gas. This produces an absorption spectrum
according to Kirchoff’s third law. However, if you observe the cloud of gas from a different
angle, so you cannot see the blackbody, you will see the light emitted from the atoms when
the excited electrons move to lower levels. This is the emission spectrum described by Kir-
choff’s second law.

Kirchoff’s laws describe the conditions that produce each type of spectrum, and they are
a helpful way to remember them, but a real understanding of what is happening comes from
the Bohr model.

In the second half of this lab you will be observing the spectral lines produced by several
different elements when their gaseous forms are heated. The goal of this subsection of the
lab is to observe these emission lines and to understand their formation process.

6.4 Creating a Spectrum

Light which has been split up to create a spectrum is called dispersed light. By dispersing
light, one can see how pure white light is really made up of all possible colors. If we disperse
light from astronomical sources, we can learn a lot about that object. To split up the light
so you can see the spectrum, one has to have some kind of tool which disperses the light. In
the case of the rainbow mentioned above, the dispersing element is actually the raindrops
which are in the sky. Another common dispersing element is a prism.

We will be using an optical element called a diffraction grating to split a source of white
light into its component colors. A diffraction grating is a bunch of really, really, small rectan-
gular openings called slits packed close together on a single sheet of material (usually plastic
or glass). They are usually made by first etching a piece of glass with a diamond and a
computer driven etching machine and then taking either casts of the original or a picture of
the original.

The diffraction grating we will be using is located at the optical entrance of an instrument
called a spectroscope. The image screen inside the spectroscope is where the dispersed light
ends up. Instead of having all the colors land on the same spot, they are dispersed across the
screen when the light is split up into its component wavelengths. The resultant dispersed
light image is called a spectrum.
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6.5 Observing Blackbody Sources with the Spectrograph

In part one of this lab, we will study a common blackbody in everyday use: a simple white
light bulb. Your Lab TA will show you a regular light bulb at two different brightnesses
(which correspond to two different temperatures). The light bulb emits at all wavelengths,
even ones that we can’t see with our human eyes. You will also use a spectroscope to observe
emission line sources.

1. First, get a spectroscope from your lab instructor. Study Figure 6.3 figure out which
way the entrance slit should line up with the light source. DO NOT TOUCH THE
ENTRANCE SLIT OR DIFFRACTION GRATING! Touching the plastic ends
degrades the effectiveness and quality of the spectroscope.

Figure 6.3:

2. Observe the light source at the brighter (hotter) setting.

3. Do you see light at all different wavelengths/colors or only a few discrete wavelengths?
(2 points)

4. Of all of the colors which you see in the spectrographs, which color appears the bright-
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est?(3 points)

5. Now let us observe the light source at a cooler setting. Do you see light at all different
wavelengths/colors or only a few discrete wavelengths? Of all of the colors which you
see in the spectrographs, which color appears the brightest? (3 points)

6. Describe the changes between the two light bulb observations. What happened to the
spectrum as the brightness and temperature of the light bulb increased? Specifically,
what happened to the relative amount of light at different wavelengths?(5 points)

7. Betelgeuse is a Red Giant Star found in the constellation Orion. Sirius, the brightest
star in the sky, is much hotter and brighter than Betelgeuse. Describe how you might
expect the colors of these two stars to differ. (4 points)

6.6 Quantitative Behavior of Blackbody Radiation

This subsection, which your TA may make optional (or done as one big group), should be
done outside of class on a computer with network access, we will investigate how changing
the temperature of a source changes the characteristics of the radiation which is emitted
by the source. We will see how the measurement of the color of an object can be used to
determine the object’s temperature. We will also see how changing the temperature of a
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source also affects the source’s brightness.

To do this, we will use an online computer program which simulates the spectrum for
objects at a given temperature. This program is located here:

http://astro.unl.edu/naap/blackbody/animations/blackbody.html

The program just produces a graph of wavelength on the x-axis vs. brightness on the
y-axis; you are looking at the relative brightness of this source at different wavelengths.

The program is simple to use. There is a sliding bar on the bottom of the “applet” that
allows you to set the temperature of the star. Play around with it a bit to get the idea. Be
aware that the y-axis scale of the plot will change to make sure that none of the spectrum
goes off the top of the plot; thus if you are looking at objects of different temperature, the
y-scale can be different.

Note that the temperature of the objects are measured in units called degrees Kelvin
(K). These are very similar to degrees Centigrade/Celsius (C); the only difference is that:
K = C + 273. So if the outdoor temperature is about 20 C (68 Fahrenheit), then it is 293
K. Temperatures of stars are measured in thousands of degrees Kelvin; they are much hotter
than it is on Earth!

1. Set the object to a temperature of around 6000 degrees, which is the temperature of the
Sun. Note the wavelength, and the color of the spectrum at the peak of the blackbody
curve.

2. Now set the temperature to 3000 K, much cooler than the Sun. How do the spectra
differ? Consider both the relative amount of light at different wavelengths as well as
the overall brightness. Now set the temperature to 12,000 K, hotter than Sun. How
do the spectra differ? (5 points)

3. You can see that each blackbody spectrum has a wavelength where the emission is the
brightest (the “top” of the curve). Note that this wavelength changes as the tempera-
ture is changed. Fill in the following small table of the wavelength (in “nanometers”)
of the peak of the curve for objects of several different temperatures. You should read
the wavelengths at the peak of the curve by looking at the x-axis value of the peak. (5
points)
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Temperature Peak Wavelength

3000
6000
12000
24000

4. Can you see a pattern from your table? Describe how the peak wavelength changes as
you increase the temperature. (3 points)

5. The peak wavelength and temperature are related by the equation:

λmax =
2.898x106

T
(7)

where λmax is the peak wavelength (in nanometers) and T is the temperature (in
Kelvin). Where would the peak wavelength be for objects on Earth, at a temperature
of about 300 degrees K? (2 points)

6.7 Spectral Lines Experiment

6.7.1 Spark Tubes

In space, atoms in a gas can get excited when light from a continuous source heats the gas.
We cannot do this easily because it requires extreme temperatures, but we do have special
equipment which allows us to excite the atoms in a gas in another way. When two atoms
collide they can exchange kinetic energy (energy of motion) and one of the atoms can become
excited. This same process can occur if an atom collides with a high speed electron. We can
generate high speed electrons simply - it’s called electricity! Thus we can excite the atoms
in a gas by running electricity through the gas.

The instrument we will be using is called a spark tube. It is very similar to the equipment
used to make neon signs. Each tube is filled with gas of a particular element. The tube is
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placed in a circuit and electricity is run through the circuit. When the electrons pass through
the gas they collide with the atoms causing them to become excited. So the electrons in the
atoms jump to higher levels. When these excited electrons cascade back down to the lower
levels, they emit light which we can record as a spectrum.

6.7.2 Emission-line Spectra Experiment

For the third, and final subsection of this lab you will be using the spectrographs to look at
the spark tubes that are emission line sources.

• The TA will first show you the emission from hot Hydrogen gas. Notice how simple
this spectrum is. On the attached graphs, make a drawing of the lines you see in the
spectrum of hydrogen. Be sure to label the graph so you remember which element the
spectrum corresponds to. (4 points)

• Next the TA will show you Mercury. Notice that this spectrum is more complicated.
Draw its spectrum on the attached sheet.(4 points)

• Next the TA will show you Neon. Draw and label this spectrum on your sheet as
well.(4 points)

6.7.3 The Unknown Element

Now your TA will show you one more element, but won’t tell you which one. This time
you will be using a higher quality spectroscope (the large gray instrument) to try to iden-
tify which element it is by comparing the wavelengths of the spectral lines with those in
a data table. The gray, table-mounted spectrograph is identical in nature to the handheld
spectrographs, except it is heavier, and has a more stable wavelength calibration. When
you look through the gray spectroscope you will see that there is a number scale at the
bottom of the spectrum. These are the wavelengths of the light in “nanometers” (1 nm
= 10−9 meter). Look through this spectrograph at the unknown element and write down
the wavelengths of the spectral lines that you can see in the table below, and note their color.

Table 6.1: Unknown Emission Line Source

Observed Wavelength (nm) Color of Line
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Now, compare the wavelengths of the lines in your data table to each of the three ele-
ments listed below. In this next table we list the wavelengths (in nanometers) of the brightest
emission lines for hydrogen, helium and argon. Note that most humans cannot see light with
a wavelength shorter than 400 nm or with a wavelength longer than 700 nm.

Table 6.2: Emission Line Wavelengths

Hydrogen Helium Argon
656.3 728.1 714.7
486.1 667.8 687.1
434.0 587.5 675.2
410.2 501.5 560.6
397.0 492.1 557.2
388.9 471.3 549.5

Which element is the unknown element? (5 points)

6.8 Questions

1. Describe in detail why the emission or absorption from a particular electron would pro-
duce lines only at specific wavelengths rather than at all wavelengths like a blackbody.
(Use the Bohr model to help you answer this question.) (5 points)

2. What causes a spectrum to have more lines than another spectrum (for example,
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Helium has more lines than Hydrogen)? (4 points)

3. Referring to Fig. 6.4, does the electron transition in the atom labeled “A” cause the
emission of light, or require the absorption of light? (2 points)

4. Referring to Fig. 6.4, does the electron transition in the atom labeled “B” cause the
emission of light, or require the absorption of light? (2 points)

5. Comparing the atom labeled “C” to the atom labeled “D”, which transition (that
occurring in C, or D) releases the largest amount of energy? (3 points)
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Figure 6.4: Electron transitions in an atom (the electrons are the small dots, the nucleus the
large black dots, and the circles are possible orbits.
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6.9 Possible Quiz Questions

1. What is meant by the term “blackbody”?

2. What type of sources emit a blackbody spectrum?

3. How is an emission line spectrum produced?

4. How is an absorption line spectrum produced?

5. What type of instrument is used to produce a spectrum?

6.10 Extra Credit (ask your TA for permission before attempting,
5 points)

Research how astronomers use the spectra of binary stars to determine their masses. Write
a one page paper describing this technique, including a figure detailing what is happening.

96



97



Name: _________________ 
Team Number: __________ 

Spectroscopy Take Home Exercise (35 points total) 
 

1. What information you can learn about a celestial object just by measuring the peak of its blackbody 
spectrum? (​5 points​) 

 
 
2. What does a blackbody spectrum look like?  Draw a blackbody spectrum on the plot below and make sure 

to label both axis! (​5 points​) 

 
3. How does the peak wavelength change as the temperature of a blackbody changes? (​5 points​) 
 
 
 
 
 
4. How can you quantitatively measure the color of an object? (​5 points​) 
 
 
 
 
 
5. Do the color of items you see around you on Earth (e.g. a red and blue shirt) tell you something about the 

temperature of the object? ​Why or why not?​ (​5 points​) 
 
 
 
 
 
6. What information can you learn about an astronomical object from its spectrum? How can you get this 

information from a spectrum?  (​10 points​) 
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Date:

7 The History of Water on Mars

Scientists believe that for life to exist on a planet (or moon), there must be liquid water
available. Thus, one of the priorities for NASA has been the search for water on other objects
in our solar system. Currently, these studies are focused on three objects: Mars, Europa (a
moon of Jupiter), and Enceladus (a moon of Saturn). It is believed that both Europa and
Enceladus have liquid water below their surfaces. Unfortunately, it will be very difficult to
find out if their subsurface oceans harbor lifeforms, as they are below very thick sheets of
ice. Mars is different. Mars was discovered to have polar ice caps more than 350 years ago.
While much of the surface ice of these polar caps is “dry ice”, frozen carbon dioxide, we
believe there is a large quantity of frozen water in the polar regions of Mars.

Mars has many similarities to Earth. The rotation period of Mars is 24 hours and 37
minutes. Martian days are just a little longer than Earth days. Mars also has seasons that
are similar to those of the Earth. Currently, the spin axis of Mars is tilted by 25◦ to its
orbital plane (Earth’s axis is tilted by 23.5◦). Thus, there are times during the Martian year
when the Sun never rises in the northernmost and southernmost parts of the planet (winter
above the “arctic circles”). And times of the year in these same places where the Sun never
sets (northern or southern summer). Mars is also very different from the Earth: its radius
is about 50% that of Earth, the average surface temperature is very cold, −63 ◦C (= −81
◦F), and the atmospheric pressure at the surface is only 1% that of the Earth. The low
temperatures and pressures mean that it is hard for liquid water to currently exist on the
surface of Mars. Was this always true? We will find that out today.

In this lab you will be examining a notebook of images of Mars made by recent space
probes and looking for signs of water. You will also be making measurements of some valleys
and channels on Mars to enable you to distinguish the different surface features left by
small, slow flowing streams and large, rapid outflows. You will calculate the volumes of
water required to carve these features, and consider how this volume compares with other
bodies of water.

7.1 Water Flow Features on Mars

The first evidence that there was once water on Mars was revealed by the NASA spacecraft
Mariner 9. Mariner 9 reached Mars in 1971, and after waiting-out a global dust storm that
obscured the surface of Mars, started sending back images in December of that year. Since
that time a flotilla of spacecraft have been investigating Mars, supplying insight into the
history of water there.
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Figure 7.1: A dendritic drainage pattern in Yemen (left), and an anastomosing drainage in
Alaska (right).

7.1.1 Warrego Valles

The first place we are going to visit is called “Warrego Valles”, where the “Valles” part of
its name indicates valleys (or canyons). The singular of Valles is Vallis. The location of
Warrego is indicated by the red dot on the map of Mars that is the first image (“Image #1”)
in the three ring binder.

The following set of questions refer to the images of Warrego Valles. Image #2 is a wide
view of the region, while Image #3 is a close-up.

1. By looking at the morphology, or shape, of the valley, geologists can tell how the valley
was formed. Does this valley system have a dendritic pattern (like the veins in a leaf)
or an anastomosing pattern (like an intertwined rope)? See Figure 7.1. (1 point)

2. Overlay a transparency film onto the close-up image. Trace the valley pattern onto
the transparency. How does a valley like this form? Do you think it formed slowly
over time, or quickly from a localized water source? Why? (3 points)
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3. Now, on the wide-field view, trace the boundary between the uplands and plains on
your close-up overlay (the transparency sheet) and label the Uplands and the Plains.
Is Warrego located in the uplands or on the plains? (2 points)

4. Which terrain is older? Recall that we can use crater counting to help determine the
age of a surface, so let’s do some crater counting. Overlay the transparency sheet on
the wide-view image. Pick out two square regions on the wide view image (#2), each
5 cm × 5 cm. One region should cover the smooth plains (“Icaria Planum”) and the
other should cover the upland region. Draw these two squares on the transparency
sheet. Count all the impact craters greater than 1 millimeter in diameter within each
of the two squares you have outlined. Write these numbers below, with identifications.
Which region is older? What does this exercise tell you about when approximately (or
relatively) Warrego formed? (5 points)

5. To figure out how much water was required to form this valley, we first need to estimate
its volume. The volume of a rectangular solid (like a shoebox) is equal to ` × w × h,
where ` is the length of the box, h is the height of the box, and w is the width. We
will approximate the shape of the valley as one long shoebox and focus only on the
main valley system. Use the close-up image for this purpose.

First, we need to add up the total length of all the branches of the valley. Note that
in the close-up image there are two well-defined valley systems. A more compact one
near the right edge, and the bigger one to the left of that. Let’s concentrate on the
bigger one that is closer to the middle of the image. Measure the length, in millime-
ters, of each branch and the main trunk. Be careful not to count the same length
twice. Sometimes it is hard to tell where each branch ends. You need to use your own
judgment and be consistent in the way you measure each branch. Now add up all your
measurements and convert the sum to kilometers. In this image 1 mm = 0.5 km. What
is the total length ` of the valley system in kilometers? Show your work. (3 points)
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6. Second, we need to find the average width of the valley. Carefully measure the width
of the valley (in millimeters) in several places. What is the average width? Convert
this to kilometers. Show your work. (2 points)

7. Finally, we need to know the depth. It is hard to measure depths from photographs,
so we will make an estimate. From other evidence that we will not discuss here, the
depth of typical Martian valleys is about 200 meters. Convert this to kilometers. (1
point)

8. Now find the total valley volume in km3, using the relation V = `×w× h. This is the
amount of sediment and rocks that was removed by water erosion to form this valley.
We do not know for sure how much water was required to remove each cubic kilometer,
but we can guess. Let’s assume that 100 km3 of water was required to erode 1 km3 of
Mars. How much water was required to form Warrego Valles? Show your work. (5
points)

Image #4 is a recent image of one small “tributary” of the large valley network you have
just measured (it is the leftmost branch that drains into the big valley system you explored).
In this image the scientists have made identifications of a number of features that are much
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too small to see in image #3. Note that these researchers traced the valley network for this
tributary and note where dust has filled-in some of the valley, or where “faults”, cracks in the
crust of the planet (orange line segments), have occurred. In addition, in the drawing on the
right the dashed circles locate very old craters that have been eroded away. Using all of this
information, you can begin to make good estimates of the age, and the sequences of events.
Near the bottom they note a “crater with lobate ejecta that postdates valleys.” This crater,
which is about 2 km in diameter, was created by a meteorite impact that occurred after the
valley formed. By doing this all along all of the tributaries of the Warrego Valles the age of
this feature can be estimated. Ansan & Mangold (2005) conclude that the Warrego valley
network began forming 3.5 billion years ago, from a period of rain and snow that may have
lasted for 500 million years.

Clean-off transparency for the next section!

7.1.2 Ares and Tiu Valles

We now move to a morphologically different site, the Ares and Tiu Valles. These valleys are
found near the equator of Mars, in the “Margaritifer Terra”. This region can be found in
the upper right quadrant of image #5 and is outlined in red. Note that the famous “Valles
Marineris”, the “grand canyon” of Mars (which dwarfs our Grand Canyon), is connected to
the Margaritifer Terra by a broad, complicated canyon. In the close up, image #6, the two
valles are identified (ignore the numbered white boxes, as they are part of a scientific study
of this region). In this false-color image, elevation is indicated where the highest features
are in white and brown, and the lowest features are pale green.

The next set of questions refer to Ares and Tiu Valles. On the wide scale image, the spot
where the Mars Pathfinder spacecraft landed is indicated. Can you guess why that particular
spot was chosen?

9. First, which way did the water flow that carved the Ares and Tiu Valles? Did water
flow south-to-north, or north-to-south? How did you decide this? [Note that the
latitude is indicated on the right hand side of image #6.] (2 points)

10. In our first close-up image (#7), there are two “teardrop islands”. These two features
can be found close to the “l” in the Pathfinder landing site label in image #6. There
are other features with the same shape elsewhere in the channel. In image #8, we
provide a wide field view of the “flood plains” of Tiu and Ares centered on the two
teardrop islands of image #7. Lay the transparency on this image and make a sketch of
the pattern of these channels. Now add arrows to show the path and direction
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the flowing water took. Look at the pattern of these channels. Are they dendritic
or anastomosing? (3 points)

11. Now we want to get an idea of the volume of water required to form Ares Valles.
Measure the length of the channel from the top end of the biggest “island” above the
Pathfinder landing site (note there are two islands here, a smaller one with a deep
crater, and a bigger one with a shallow crater. We want you to measure the channel
that goes by this smaller island on the right side and to the left of the big island, and
the channel that goes around the bigger island on the right to where they both join-up
again at the top of this big island) to the bottom right corner of the image. In this
image, 1 mm = 10 km. What is the total length of these channels? Show your work
(3 points)

12. Measure the channel width in several places and find the average width. On average,
how wide is the channel in km? Show your work (2 points)

13. The average depth is about 200 m. How much is that in km? (1 point)

14. Now multiply your answers (in units of km) to find the volume of the channel in
km3. Use the same ratio of water volume to channel volume that we used in Question
3 to find the volume of water required to form the channel. Lake Michigan holds 5,000
km3 of water, how does it compare to what you just calculated? Show your work. (4
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points)

15. Obviously, the Ares and Tiu Valles formed in a different fashion than Warrego. We
now want to examine the feature named “Hydaspis Chaos” in image #6. This feature
“drains into” the Tiu Vallis. In image #9, we present a wide view image of this feature.
In image #10, we show a close up of a small part of Hydaspis. Why do you think such
features were given the name “Chaos” regions? (2 points)

16. Scientists believe that Chaos regions are formed by the sudden release of large amounts
of groundwater (or, perhaps, the sudden melting of ice underneath the surface), causing
massive, and rapid flooding. Does such an idea make sense to you? Why? What
evidence for this hypothesis is present in these images to support this idea? (4 points)

17. In image #11 is a picture taken at the time of the disembarkation of the little Pathfinder
rover (named “Sojourner”) as it drove down the ramp from its lander. Is the surround-
ing terrain consistent with its location in the flood plain of Ares Vallis? Why/why not?
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(3 points)

18. Recent research into the age of the Ares and Tiu Valles suggest that, while they began
to form around 3.6 billion years ago (like Warrego), water still flowed in these channels
as recently as 2.5 billion years ago. Thus, the flood plains of Ares and Tiu are much
younger than Warrego. Do you agree with this assessment? How did you arrive at this
conclusion? (4 points)

19. You have now studied Warrego and Ares Valles up close. Compare and contrast the
two different varieties of fluvial (water-carved) landforms in as many ways
as you can think of (at least three!). Do you think they formed the same way?
How does the volume of water required to form Ares Valles compare to the volume of
water required to form Warrego Valles? (5 points)
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7.2 The Global Perspective

In image #12 is a topographic map of Mars that is color-coded to show the altitude of the
surface features where blue is low, and white is very high. Note that the northern half of
Mars is lower than the southern half, and the North pole is several km lower than the South
pole. The Ares and Tiu Valles eventually drain into the region labeled “Chryse Planitia”
(longitude 330◦, latitude 25◦).

20. If there was an abundance of water on Mars, what would the planet look like? How
might we prove if this was feasible? For example, scientists estimate the age of the
northern plains as being formed between 3.6 and 2.5 billion years ago. How does this
number compare with the ages of the Ares and Tiu Valles? Could they be one source
of water for this ocean? (5 points)

One way to test the hypothesis that the northern region of Mars was once covered by an
ocean is to look for similarities to Earth. Over the history of Earth, oceans have covered
large parts of the current land masses/continents (as one once covered much of New Mexico).
Thus, there could be ancient shoreline features from past Earth oceans that we can compare
to the proposed “shoreline” areas of Mars. In image #13 is a comparison of the Ebro river
basin (in Spain) to various regions found on Mars that border the northern plains. The Ebro
river basin shown in the upper left panel was once below sea level, and a river drained into
an ancient ocean. The sediment laid down by the river eventually became sedimentary rock,
and once the area was uplifted, the softer material eroded away, leaving ridges of rock that
trace the ancient river bed. The other three panels show similar features on Mars.

If the northern part of Mars was covered by an ocean, where did the water go? It might
have evaporated away into space, or it could still be present frozen below the surface. In
2006, NASA sent a spacecraft named Phoenix that landed above the “arctic circle” of Mars
(at a latitude of 68◦ North). This lander had a shovel to dig below the surface as well as
a laboratory to analyze the material that the shovel dug up. Image #14 shows a trench
that Phoenix dug, showing sub-surface ice and how chunks of ice (in the trench shadow)
evaporated (technically “sublimated”, ice changing directly into gas) over time. The slow
sublimation meant this was water ice, not carbon dioxide ice. This was confirmed when
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water was detected in the samples delivered to the onboard laboratory.

21. Given all of this evidence presented in the lab today, Mars certainly once had abundant
surface water. We still do not know how much there was, how long it was present on the
surface, or where it all went. But explain why discovery of large amounts of subsurface
water ice might be important for astronauts that could one day visit Mars (5 points)
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7.3 Possible Quiz Questions

1. Is water an important erosion process on Mars?

2. What does “dendritic” mean?

3. What does “anastomosing” mean?
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7.4 Extra Credit (ask your TA for permission before attempting,
5 points)

In this lab you have found that dendritic and anastomosing “river” patterns are found on
Mars, suggesting there was free flowing water at some time in Mars’ history. Use web-based
resources to investigate our current ideas about the history of water on Mars. Then find
images of both dendritic and anastomosing features on the Earth (include them in your
report). Describe where on our planet those particular patterns were found, and what type
of climate exists in that part of the world. What does this suggest about the formation of
similar features on Mars?
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Name: _________________ 
Team Number: __________ 

Water on Mars Take Home Exercise (35 points total) 
1. What happened to all of the water that carved these valley systems? We do not see any water on 

the surface of Mars when we look at present-day images of the planet, but if our interpretation of 
these features is correct, and your calculated water volumes are correct (which they are), then 
where has all of the water gone? ​Discuss two possible fates that the water might have 
experienced.​ (HINT: Think about discussions we have had in class about the atmospheres of the 
various planets and what their fates have been. Also think about how Earth compares to Mars 
and how the water abundances on the two planets now differ.)​ ​(10 points each) 
Possible fate 1: 
 
 
 
 
 
 
Possible fate 2: 
 
 
 
 
 

 
2. Scientists believe that life (the first, primitive, single cell creatures) on Earth began about 1 

billion years after its formation, or 3.5 billion years ago. Scientists also believe that liquid water 
is essential for life to exist.  
a. Looking at the ages and lifetimes of the Warrego, Ares, and Tiu Valles, what do you think 

about the possibility that life started on Mars at the same time as Earth? ​(5 points) 
 
 
 
b. What must have Mars been like at that time? ​(5 points) 
 
 
 
 
c. What would have happened to this life? ​(5 points) 
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Name:
Date:

8 The Volcanoes of Io

8.1 Introduction

During this lab, we will explore Jupiter’s moon Io, the most volcanically active body in the
Solar System. The reason for Io’s extreme level of volcanic activity is due to the intense
tidal ‘stretching’ it experiences because of its proximity to Jupiter, and due to its interaction
with the moons Europa and Ganymede. The regions of the surface where molten lava from
the interior comes up from below are very hot, but in general the rest of the surface is quite
cold (about −172oC = −279oF) since Io is 5.2 AU from the Sun. Regions of different surface
temperatures emit different amounts of thermal (blackbody) radiation, since the amount of
thermal energy emitted is proportional to the temperature raised to the 4th power: T4. We
will use infrared observations, obtained with the Galileo spacecraft in the late 1990’s, to
determine the temperatures of some of the volcanic regions on Io, and estimate the total
amount of energy being emitted by the volcanoes on Io.

Supplies:

1. Exercise squeeze balls and thermometers

2. Visual and thermal images of regions on Io

3. A map of Io with various features identified by name

4. A transparency sheet for temperature fitting of blackbodies

8.2 Introduction to Io

Io (pronounced eye-Oh) is one of the four large moons of Jupiter discovered by Galileo.
Images of these four moons (Io, Europa, Ganymede, and Callisto) are shown in Figure 8.2.
Io, Ganymede and Callisto are all larger than the Earth’s moon, while Europa is slightly
smaller. It is clear from Figure 8.2 that Io appears to be quite different from the other
Galilean satellites (especially when viewed in color!): it has few obvious impact craters, and
has a mottled surface that is unlike any other object in the solar system. Even before the
two Voyager probes first flew past Io back in the late 1970’s, it was already known that it
was an unusual object. The Voyager images of Io certainly suggested that it was covered
with volcanoes and lava flows, but it was not until an image showing an erupting volcano,
also shown in Figure 8.2, that the case was clinched. From the imaging data, astronomers
estimate that there may be as many as 200 volcanoes on Io!

Why does Io have so many volcanoes? It has to do with a process called “tidal heat-
ing”. As you have learned in the lectures this semester, the gravitational pull on one body
by a second massive body raises tides—an example are those caused by the Moon upon the
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Figure 8.2: Left: The four Galilean moons of Jupiter. Right: An erupting volcano on Io
seen in a Voyager image.

Earth’s oceans. As we have also found this semester, the orbits of objects in the solar system
are not perfect circles, but ellipses. That means the distance of an object orbiting a larger
body (planet around the Sun, or moon around a planet) is constantly changing. In the case
of Io, we have an object that has about the same mass as the Earth’s moon, but it orbits
Jupiter, an object that has 300 times the mass of the Earth! We have learned that the force
of gravity is directly proportional to the mass of an object, Newton’s second law: F = ma.
For gravity, Newton’s second law is F = (Gm1m2)/r2 (“G” is the “gravitational constant”).
Thus, even a slightly eccentric orbit, as demonstrated in Figure 8.3, means that large changes
in tidal force are felt as Io goes around Jupiter (the 1/r2 term in the equation). In fact, the
surface of Io rises and falls by about 100 meters over an orbit! This should be compared to
the approximate 0.3 meter rise and fall of the Earth’s surface due to the Moon’s pull.

The reason that Io’s orbit is so eccentric is due to the gravity of Europa and Ganymede.
First, let’s look at the orbital periods (i.e., the time it takes the moon to orbit Jupiter a
single time) of these three moons: PIo = 1.769 days, PEuropa = 3.551 days, and PGanymede

= 7.155 days. It we take the ratios of these orbital periods we get the following answers:
PEuropa/PIo = 2.0, PGanymede/PIo = 4.0. What does this mean? Well, it tells you that every
3.551 days Europa and Io will be in the same exact location (relative to each other), and that
every 7.155 days Ganymede, Europa and Io will be in the same relative places! A diagram
of this is shown in Figure 8.3. The term astronomers use for such an arrangement is “orbital
resonance”. Because of these orbital resonances, the gravitational tug on Io is amplified, as
it and Europa (and it and Ganymede) make close approaches on a regular, and repeating
basis. Thus, Europa and Ganymede continually pull on Io, making its orbit more eccentric.
[Note that we believe that Europa also has considerable tidal heating, and this heating may
mean that below its frozen surface, there is a large ocean of liquid water that could support
primitive life. This might even be happening on Ganymede.] The tidal heating causes the
interior of Io to become molten, and this liquid rises to the surface, where it erupts in vol-
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Figure 8.3: Left: Because Io’s orbit around Jupiter is an ellipse, the distance is constantly
changing, and so is the gravitational force exerted on Io by Jupiter (note that this figure is
not to scale, and the ellipticity of the orbit and the shape of Io have been grossly exaggerated
to demonstrate the effect). This changing force causes Io to stretch and relax over each orbit.
Right: The tidal forces exerted by Europa and Ganymede distort the orbit of Io because the
orbits of all three moons are in “resonance”: for every four trips Io makes around Jupiter,
Europa makes two, and Ganymede makes one. This resonance enhances the gravitational
forces of Europa and Ganymede, as these three moons keep returning to the same (relative)
places on a regular basis. This repeated and periodic tugging on Io causes its orbit to be
much more eccentric than it would be if Europa and Ganymede did not exist.

canoes. We will return to Io later in this lab, but before we do so, we must cover several
complicated topics that will allow us to better understand what is happening on Io.

8.3 The Electromagnetic Spectrum

Before we begin today’s lab, we have to review what is meant by the term “spectrum”, and
“wavelength”. As we have discussed in class, light is an energy wave that travels through
space. For now, we can use the analogy that waves of light are like waves of water: they have
crests, and troughs. The “wavelength” is the distance between two crests, as shown in Fig.
8.4. The energy contained in light is directly related to the wavelength: low energy light has
long wavelengths, while high energy light has short wavelengths. Thus, scientists have con-
structed several categories of light based on wavelength, and which you have certainly heard
about: Gamma-ray, X-ray, Ultraviolet, Visible, Infrared, Microwave and Radio. Gamma-
and X-rays have very short wavelengths and have lots of energy, so they penetrate through
materials, and often damage them as they pass through. Ultraviolet light causes sunburns
and skin cancer. Visible light is what our eyes detect. We feel intense infrared light as
“heat”, microwaves cook our food, while radio waves allow you to listen to music and watch
television. The common textbook plot of the electromagnetic spectrum is shown in Fig 8.5.
When we break-up light and plot how much energy is coming out at each wavelength, we
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construct a “spectrum”. A spectrum of an object supplies a lot of information, and is the
main tool astronomers use to understand the objects they study.

We can also think of the electromagnetic spectrum as a way to represent temperature.
For example, objects that emit X-rays are at temperatures of millions of degrees, while ob-
jects that emit visible light have temperatures of thousands of degrees (like the Sun), while
infrared sources have temperatures of 100’s of degrees. To understand this concept, we must
talk about “blackbody” radiation.

Figure 8.4: The wavelength is the distance between two crests.

Figure 8.5: The electromagnetic spectrum.

8.4 Blackbody Radiation Review

Let us review the properties of blackbody radiation. A blackbody is an object that exactly
satisfies the Stefan-Boltzmann law (named for the two scientists who first figured it out), and
has a spectrum that is always the same shape, no matter what temperature the source has, as
shown in Fig. 8.6. While real objects do not exactly behave like this, many objects come very
close and in general we assume that most solar system objects (including Io) are blackbodies.
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Figure 8.6: The spectra of blackbodies always have the same shape, but the wavelength
where the peak emission occurs depends on temperature, and can be calculated using the
“Wien displacement law” (since Wien is a German name, it is properly pronounced “Veen”).
In this particular plot the unit of wavelength is the micrometer, 10−6 meter, symbolized by
“µm.” Note also that the x-axis is plotted as the log of wavelength, and the y-axis is the log
of the radiant energy. We have to use this type of “log-log” plot since blackbodies cover a
large range in radiant energy and wavelength, and we need an efficient way to compress the
axes to make compact plots. We will be using these types of plots for the volcanoes of Io.
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The Stefan-Boltzmann law states that the total amount of energy at all wavelengths
emitted by a blackbody at temperature T is proportional (“∝”) to the fourth power of its
temperature, which can be written in equation form as:

E ∝ T 4. (8)

Here E is the amount of energy emitted by each square meter of the object each second.
You might be wondering to yourself why we write E ∝ T4, instead of E = T4. In fact, the
real blackbody equation is E = sT4, where “s” is the “Stefan-Boltzmann constant.” The
Stefan-Boltzmann constant is a special number that makes the equation work, and insures
that the output energy is in Watts (or another appropriate energy unit), instead of oF4. You
measure the energy of a light bulb in Watts, not the fourth power of degrees Fahrenheit.
The actual value of s is 5.6703 × 10−8. This is a horrible number to deal with, so we will
use a technique that does not require us to remember it!

As noted in Fig. 8.6, the Wein displacement law relates the temperature of a blackbody,
and the wavelength (λ) of its maximum emission: λmax × T = 3670, where 3670 is the value
of “Wien’s constant” when wavelength is measured in micrometers, and radiant energy in
Watts/m2 (as we will use in this lab).

Definition of Temperature

Before we go any further in understanding blackbodies, we must define the temperature
scale that is used in the Stefan-Boltzmann formula, and in Wien’s law. In the United States,
our weather forecasts use the Fahrenheit scale. This scale was developed around the idea that
in our everyday experience, a big number like “100o F” would be “hot”, and “0o F” would be
“very cold.” On this scale water boils at 212o F, and freezes at 32o F. The Fahrenheit scale
is not very easy to work with, in that it has 180o F between the boiling and freezing point
of water (two processes that are easy to observe, allowing accurate calibration). With the
development of the metric system, based on powers of 10, a temperature scale was developed
where the freezing point of water was defined to be 0o, and the boiling point was set to 100o.
This is the “Celsius” scale (denoted by “o C”), predominantly used outside the United States.

Both the Fahrenheit and Celsius scales, however, cannot be used with the blackbody
energy equation. Why? Because both scales have “zeroes” and negative temperatures. Even
in Las Cruces, the temperature often goes to 0o C or below on the Celsius scale during
winter (and once in a while, as in 2010, it goes below zero on the Fahrenheit scale!). Look
at our equation again, E ∝ T4. If the temperature changes from 3o C to 0o C, the amount
of energy emitted by a blackbody would go from positive to zero. If this object got colder
and colder, however, its emitted energy would increase! For example, if its temperature had
now dropped to −3o C, the emitted energy would be the same as it was at +3o C: E = −3
× −3 × −3 × −3 = 81 = 3 × 3 × 3 × 3. Do you see why this is? The fourth power (or any
even power in the exponent) means that a negative number will turn out positive: (10)4 =
(−10)4 = 10,000, because every time you multiply two negative numbers together, the result
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is a positive number.

If we were to use the Fahrenheit or Celsius temperature scales, our equation would
produce nonsensical answers, since it is obvious that a hotter object has more energy than
a colder one. Thus, scientists use a scale that has no negative numbers, the “Kelvin” scale.
On the Kelvin scale, the temperature at which water freezes is 273 K, and it boils at 373 K
(Kelvin has the same size degrees as the Celsius scale, and note also that the little degree
symbol, “o”, is not used with Kelvin). In our example, 3o C = 276 K, and 0o C = 273
K. Now, a drop in temperature by 3 degrees does not cause the emitted energy to go from
positive to zero, the energy simply decreases. There is a 0 K, but that temperature is so cold
that any object with that temperature would emit zero energy (that, in fact, is the definition
of 0 K!).

Working with the Stefan-Boltzmann Law

An equation like the Stefan-Boltzmann law is scary to many Astronomy 105 students.
Nearly all of you have heard about “squares”, such as the area of a circle being πR2. But,
there are many equations in science when the exponent is larger than 2. All an exponent says
is that you must multiply the number by itself that many times: R2 = R × R. Or, R5 = R ×
R × R × R × R. Other than the large numbers that come out of the Stefan-Boltzmann law
(it is astronomy after all!), there is nothing difficult about understanding how to deal with T4.

Ok, let’s see how to use equation (1) so we can compare the energy emitted by each
square meter of the surface of two different objects, A and B. We will construct the ratio so
we do not have to worry about the value of the Stefan-Boltzmann constant:

EA

EB

=
sT 4

A

sT 4
B

=

(
TA
TB

)4

(9)

Do you understand what happened? We had an s on the top and bottom of our equation,
but s = s, so it cancels out! We also use the property where T 4

A ÷ T 4
B = (TA/TB)4 (in math

this is called the “Power of a Quotient property”).

Let’s work an example. Object P has a temperature of 43 K, and object Q has a tem-
perature of 33 K. The objects have the same area. How many times greater is the energy
emitted by P compared to the energy emitted by Q? Set-up the equation:

EP

EQ

=
s(43)4

s(33)4
=

(
43

33

)4

= (1.3)4 = 1.3× 1.3× 1.3× 1.3 = 2.86 (10)

Now it is your turn:

1. Assume that TA, the surface temperature of Object A, is 200 K, and TB, the surface
temperature of Object B, is 100 K. The objects have the same area. How many times
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greater is the energy emitted by A compared to the energy emitted by B? (2 points)

2. Object R and Object S have the same temperature. But object R has an area of 4
square meters, and object S has an area of 2 square meters. How much more energy
does object R emit compared to Object S? (2 points)

3. Now we are going to go backwards (much harder!): assume that we receive 81 times
more energy from Object X than from Object Y. Object X and Y have the same areas.
How many times hotter is the surface of X compared to the surface of Y? [Hint: what
number multiplied by itself 4 times = 81?] (2 points)

We know that the last problem was hard! How does one solve such equations? The key to
understanding this is to realize that for every mathematical operation that uses exponents,
there is the reverse process of “taking the root”. For example, two squared: 22 = 4. What is
the square root of 4?

√
4 = 2. The square root can also be written as a fractional exponent:

(4)1/2 = 2. This is how we solve the problem above. Here is an example: What is Q, if Q4

= 6561? On a fancy scientific calculator, we just enter this: (6561)1/4 = 9. But the fourth
root is really just two successive square roots:

√
6561 = 81,

√
81 = 9 = (6561)1/4. So you

do not need a fancy calculator, got it?

Working with Wien’s Law

Unlike the Stefan-Boltzmann law, Wien’s Law is very simple. So simple we do not think you
need an example on how to use it! [Here is Wien’s law again: λmax × T = 3670]

4. If the temperature of a black body is 1000 K, at what wavelength (λmax) does it emit
its peak amount of energy? (Remember to include the wavelength unit!) (2 points)
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5. An object is observed to have a blackbody spectrum that peaks at λmax = 37 µm, what
temperature is this object? (Remember to include the temperature unit!) (2 points)

8.5 Simulating Tidal Heating

As we noted above, the process of tidal heating is what causes Io to be covered in active
volcanoes. In this exercise we are going to simulate tidal heating, where you are the source
of the energy input. First off, however, have you ever tried to break a piece of wire with your
hands? You cannot simply pull it apart with your hands, it is too strong. But we can break
it by adding heat. We do this by first folding the wire to create a kink, and then rapidly
bending the wire back and forth. The wire becomes very, very hot at the kink, and will
eventually snap. What you have done is transfer energy your body generates and focused it
on a tiny region of the wire. The intense heat weakens the wire and it snaps (you should try
this with a paper clip). This process is what is going on in Io, a stretching/bending of the
rock that generates heat.

Exercise #1:

Io is not a wire, it is a sphere! While the repeated bending of a wire is exactly like the
process that is heating Io, it is not very realistic. Let’s take this concept to a slightly more
realistic level by “stretching” a sphere. Among the materials you were given were two, small
exercise squeeze balls and a digital thermometer. We will now use these. To start this exper-
iment, insert the thermometer into each of the balls and record the Start Temperature.
Make sure the tip of the metal probe reaches the center of the ball (and no further!). Note
that it also takes a certain amount of time for the temperature to stabilize at the correct
value. Enter these values into Table 8.1.

Now, one member of your group should take a ball in each hand. One of these will be
the “control ball”, let’s call that Ball #1. You will not do anything to Ball #1, except hold
it in your hand. But for Ball #2, repeatedly, as rapidly as possible, squeeze this ball as
tightly as possible, release, and repeat. Do this for four straight minutes (one group member
needs to be the time keeper!). At the end of four minutes, as quickly as you can, insert the
thermometer into the ball you have been squeezing and record the temperature. Note that it
takes quite a few seconds for the temperature to read the correct value, continue to squeeze
this ball with the thermometer inserted, until the temperature no longer rises. Record this
value in the “End Temperature” column for Ball #2. Now, do the same for Ball #1, but do
not squeeze, simply continue to quietly hold it in your hand while the thermometer rises to
its maximum temperature. Put this value in Table 8.1. [If you cannot repeatedly squeeze
Ball #2 for four straight minutes in one hand, go ahead and switch hands, as long as the
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same ball is the one that continues to get squeezed.]

Take the difference between the End and Start temperatures and enter it into the final
column of Table 8.1. (6 points)

Table 8.1: Exercise Ball Temperatures
Start Temperature End Temperature Change in Temperature

Ball #1
Ball #2

Answer the following questions: Are the start and end temperatures for both balls
different? Why do you think we had you hold onto Ball #1 the entire time you were
squeezing Ball #2? Which ball showed the greater temperature rise? Why did this happen,
and where did this energy come from? (6 points)

8.6 Investigating the Volcanoes of Io

Now to the main part of today’s lab, the volcanoes of Io. Along with the other lab materials,
we have supplied you with a three ring binder containing images of Io, along with a large
laminated map of Io. Please do not write on any of these items! The first section contains
some images of Io taken with the Galileo spacecraft. Just page through them to get familiar
with Io (including color versions of the Figures in the introduction of this lab). Io is an
unusual place!

Today we are going to look at images and data obtained with three different instruments
of the Galileo spacecraft: the Solid State Imager (SSI), the Near-Infrared Mapping Spec-
trometer (NIMS), and the Photopolarimeter-Radiometer (PPR). The SSI is simply a (“0.6
megapixel”) digital camera not unlike the one in your smart phone, and only can detect
visible light (technically wavelengths from 0.4 to 1.1 µm). NIMS is also an imager, but it
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detects near-infrared light, having wavelengths from 0.7 to 5.2 µm (your TA will demonstrate
a version of this type of infrared camera during lab). The PPR measures the heat output
of objects (not really an imager, though you could make coarse pictures with it), and could
detect light with wavelengths from 17 to 110 µm.

Let’s go back and look at Fig. 8.6. Do you understand why these instruments were
included on a mission to Jupiter? The Sun has a blackbody temperature of about 6,000
K, what is the wavelength of peak emission for such a blackbody? This is the light that
illuminates the Earth during the day, and all of the other objects in our solar system. Thus,
to see these objects, we only need a regular camera (the SSI). But Jupiter is very far from
the Sun, and thus it is very cold place. For example, at the surfaces of the Galilean satellites,
the temperatures are about 100 K. To measure such cold objects, we need an instrument
like the PPR. If there are hot spots on Jupiter or any of its moons (like Io!), they might
have temperatures between 500 and 2000 K, and we will need a “near-infrared” camera like
NIMS to detect this light.

In the second section of the three ring binder are some NIMS images. The first set of im-
ages shows a color picture of Io obtained with the SSI, and two images obtained with NIMS
(at 1.593 and 4.133 µm). Note that in the SSI image there are bright and dark regions all
over Io. In the NIMS images, however, Io begins to look quite different. In image #5a, at
1.593 µm there is still some reflected sunlight (since this is a daytime NIMS image), but by
4.133 µm thermal (blackbody) emission from Io is now strong.

Exercise #2

6. In image #5a, we see that at 4.133 µm there are many bright spots. Returning to Fig.
8.6 (above), estimate the temperature of these bright spots. [Hint: can you see the
bright spots at 1.593 µm? What is the hottest blackbody in this figure that has a lot
of emission at 4.133 µm, but (almost) none at 1.593 µm?] (4 points)

7. In image #5b, around the dark spot near the center of the 1.3 µm image, there is a
bright ring. But this ring is very dark at 4.2 µm, suggesting it is very cold. How can it
be bright at 1.3 µm, and dark at 4.2 µm? These are daytime images. Can you explain
this feature? [Hint: think about snow] (4 points)
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8. In Fig. 8.7, below, are plotted two blackbodies (energy emitted in Watts vs. wavelength
in micrometers). Using Wien’s law, what are the approximate temperatures of each of
these blackbodies (one solid line, one dashed) in “K”? Which one is emitting more
total energy? How do you explain this? (4 points)

1 2 3 4 5 6 7 8 9 10
0

0.5

1

Wavelength (micrometers)

Figure 8.7: The energy vs. wavelength, the “spectra” (spectra is plural of spectrum), pro-
duced by two blackbodies with different temperatures.

Exercise #3

In section 3 of the binder, we have some NIMS images of active regions on Io. On these
images are some small, numbered boxes, we will be looking at the NIMS + PPR spectra
of some of these boxed regions to determine their temperatures. The names of the features
on Io are from a variety of mythologies that have to do with deities of fire, volcanoes, the
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Sun, thunder and characters and places from Dante’s Inferno. Named mountains, plateaus,
layered terrain, and shield volcanoes are given the terms mons, mensa, planum, and tholus,
respectively. The term “Patera” (plural = Paterae) means a bowl, and brighter, whitish
regions go by the name “Regio”.

9. Region #1 (Image #6) is a night time NIMS image of a region on Io. In this image,
you can see lines of longitude and latitude. It basically runs from 125◦W to 132◦W in
longitude, and from +59◦ to +71◦ in latitude. Using the big map of Io, what is the
name of this active region? [Note: an SSI image of this region is shown in binder image
#4!] (2 points)

11. It is clear the NIMS instrument does not make very pretty pictures, it has “poor reso-
lution”. When this camera was built, infrared imaging technology was just becoming
possible. The infrared camera that your TA has demonstrated today in class is as
good, or better than NIMS! In these NIMS images, redder colors mean hot, and bluer
colors mean cool. Compare the Region #1 NIMS image to Image #4 in the binder
from the SSI (they have totally different orientations!!!). Can you figure out what is
happening? Can you figure out which boxes in the NIMS image cover the hot, glowing
lava feature in the SSI image? (6 points)

12. The NIMS image of Region #2 is shown as Image #7. Using the large map, what is
the name of this region? (2 points)
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13. In fact, the NIMS image of Region #2 does not cover all of this large feature, does
it? In Fig. 8.8 we present the NIMS + PPR spectra of the six boxes shown identified
in Image #7. Using the plastic blackbody overlay, measure the temperatures for only
boxes 1 and 4. [If you are having trouble doing this, ask your TA for help.] (4 points)

Table 8.2: Region #2 Box Temperatures
Box Maximum Wavelength (µm) Temperature (K)

Box #1
Box #4

14. The radius of Io is 1,821.3 km, that means that the circumference of Io is (C = 2πR)
11,443.6 km. Since there are 360◦ in a circle, each degree of latitude represents 31.79
km. Assuming the northern half of this glowing ring has the same size as the southern
half, what is the total area covered by the hot material of this feature? [Hint: The
latitude increases from the bottom to the top of the image (approximately the y-axis
of the figure), while the horizontal (x-axis) direction is longitude. Note that the white
grid lines are identical in size in the vertical and horizontal directions, thus you can
measure both sides of the box in degrees of latitude (note that degrees of longitude
only equal degrees of latitude at the equator, and this region is not at the equator!).
The degrees of latitude are the small white numbers that run from 9 to 13.]

The area of a square is simply side × side = s2. Calculate the area in square kilometers
of one white grid box (not the tiny little boxes you measured the temperatures for!).
Next, estimate the number of such grid squares fully covered by the “hot” reddish
regions for the southern half of this feature (this will be a fraction of a grid box for
some spots). The total area in square kilometers is the number of boxes covered times
the area of one box—find this number. Multiply that result by two, and you have the
approximate area of the entire feature. (6 points)

15. Now we want to figure out the total energy output of all of the volcanoes on Io. Step
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1: In the large map of Io, the paterae are the brown regions. You can see that the
volcano you just measured is just about the largest such feature on Io. The average
patera appears to have about 5% (= 0.05) the area of this feature. Estimate the total
area covered by all of the paterae on Io. [Hint: note what we said in the introduction
about the estimated number of volcanoes on Io.] (4 points)

Total Volcano Area = Average area × number of volcanoes = ???? km2

Total Volcano Area = × = km2

16. Step 2: Figure out the total area of Io. The area of a sphere is 4πR2. (3 points)

17. Step 3: We will assume that the average surface temperature of the non-volcanic
regions on Io is the same as that of box #4 on Image #7 that you found above. We
will assume that the average temperature of the paterae is the same as that of box #1
on Image #7 that you found above. Now, we are going to use the Stephan-Boltzmann
law to calculate how much energy the volcanoes on Io put out compared to the rest of
Io. Remember, the Stephan-Boltzmann law was the amount of energy output per unit
area (m2):

EA

EB

=
sT 4

A

sT 4
B

=

(
TA
TB

)4

(11)

Since in this problem we have two different emitting areas (total Io area, and area covered
by volcanoes), we have to modify this law to explicitly include the area terms:

(Total Emitted Energy)A
(Total Emitted Energy)B

=
AreaA
AreaB

×
(
TA
TB

)4

(12)

So,

(Total Emitted Energy)V olcano

(Total Emitted Energy)Io
=

(Area)V olcano

(Area)Io
×
(
T#1

T#4

)4

(13)
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Figure 8.8: The blackbody spectra of the six boxes shown in Image #7. Be careful, these
plots have log wavelength on the x-axis.
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(Total Emitted Energy)V olcano

(Total Emitted Energy)Io
= (14)

The volcanoes on Io put out how much more energy than the total for all of Io? Do you
find this surprising? Note that the Sun is far away (5.2 AU), and cannot heat-up Io very
much. Thus, gravitational heating can be very important. This process is probably going
on elsewhere in the solar system (such as with the moons of Saturn). What does this mean
for the possibility of life existing on/inside these moons? (4 points)
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8.7 Possible Quiz Questions

1. Why does Io have volcanoes?

2. What does the term “orbital resonance” mean?

3. What is a “blackbody”?

4. What is Wien’s law?

5. What does the term “patera” mean?

8.8 Extra Credit (ask your TA for permission before attempting,
5 points)

Orbital resonances are found elsewhere in the solar system. For example, the shaping of
Saturn’s ring system, or the relationship between Neptune and Pluto. Type-up a one page
discussion of how orbital resonances affect the appearance of Saturn’s rings, or how the
Neptune-Pluto orbital resonance gives us insight into the processes that shaped the formation
of our solar system.
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Name: _________________ 
Team Number: __________ 

Volcanoes of Io Take-Home Exercise (35 points total) 
 

1. In the graph below, sketch 2 curves indicating the blackbody curves (energy as a function of wavelength 
emitted by: 

a. A hot object (T = 6,000 K) 

b. A cool object (T = 1,000 K) 

Both objects have the same area.  You will be graded on the relative positions of these two curves with 
respect to one another, as well as which one emits more energy. ​(10 points) 

 

 

 

 

130



 

 

2. Why does Io have volcanoes? Answer in 1-2 sentences. ​(5 points) 

 

 

 

 

3. Jupiter has several moons that are much smaller than Io and that orbit even closer to Jupiter than Io. 
Explain why these moons do NOT show evidence of volcanism. ​(Hint: think of a man-made satellite in 
Earth’s orbit, such as the International Space Station.) ​(5 points) 

 

 

 

 

 

4. Consider the orbits of Io, Europa, and Ganymede.  

a. Why is Io’s orbit very eccentric? ​(5 points) 

 

 

 

b. What does it mean that Io, Europa, and Ganymede are in orbital resonance? ​(5 points) 

 

 

 

c. If Europa and Ganymede were further from Jupiter (had larger orbits), but Io remained where 
it is, would you still expect Io to experience volcanism? ​(5 points) 
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Name:
Date:

9 Gases, Liquids and Ices in the Outer Solar System

9.1 Introduction

Water. You are familiar with water in all of its three forms: liquid, gaseous (steam), and
solid (ice). Human life, and life on Earth itself, would be impossible without liquid water.
Thus, NASA has used the goal of “Follow the Water” in searching for life elsewhere in our
solar system. We have found that water exists in some form on just about all of the bodies in
the solar system. On hot Mercury, there appears to be water ice located in the polar regions
in permanently shadowed craters. The same is true for the Earth’s moon. Even one of the
driest bodies in our solar system, Venus, has a little bit of water vapor in its atmosphere,
and probably has some water buried deep within its crust.

It is difficult to envision how any forms of life could survive on Mercury, Venus, or the
Moon. The same is not true, however, as we go further out into the solar system. As you
have learned in this class, the planet Mars has ample evidence that liquid water flowed on its
surface in the past, as well as large deposits of ice at its poles, and frozen into the soil. The
big question is whether there is liquid water anywhere on present-day Mars. As you also will
find out this semester, several of the moons of the Jovian planets have evidence for liquid
water. In fact, water ice is ubiquitous in the outer solar system–many of the solid surfaces
found beyond the orbit of Mars have water ice as a major constituent.

Today we are going to investigate gases, liquids and ices. Since objects in the outer
solar system are far from the Sun, they are cold, thus any liquid water on the surface will
usually be frozen. To understand the conditions on Mars, or on one of the moons of the
Jovian planets, we have to understand how water, and other substances, behave at different
temperatures and at different pressures.

9.2 Water on Earth, and the Triple Point Diagram

All of you are experienced with how water behaves on the surface of Earth. If the temper-
ature is above the freezing point, any water on the surface, or any that falls from the sky,
will be a liquid. You know that this temperature is 32oF. This is the freezing point of water
on the surface of the Earth. You are also aware that if you heat a pot of water on the stove
for long enough, the water will boil, producing water vapor (steam). Steam is the gaseous
form of water. The boiling point of water is 212oF at sea level.

Did you notice we added the “at sea level” in the previous sentence? If you are a cook,
you might have noticed that many recipes (even frozen pizzas!) have different cooking times
depending on altitude. Why? It is because the temperature at which water boils and be-
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comes steam is dependent on the atmospheric pressure. For Las Cruces, our elevation is near
4,000 feet. Our air pressure is lower than at sea level, and thus the boiling point of water is
lower: 204oF. It takes a little bit longer to cook spaghetti in Las Cruces, than if you lived in
San Diego.

The first question you may have is “why does the atmospheric pressure drop with in-
creasing altitude?” The answer is simple: atmospheric pressure is just the “weight” of all
of the air above your head. As you climb in altitude, there is less air above you, so there is
less pressure. At some altitude, there will be no atmosphere left, and thus no pressure: the
vacuum of space. Most definitions of the end of the Earth’s atmosphere put this altitude at
100 km.

The second question you should ask, or at least be thinking about, is “why does atmo-
spheric pressure have anything to do with the boiling point of water?” This question is a
little bit harder to answer. When you heat a substance (whether solid, liquid or gaseous), the
molecules that make up that substance start vibrating. They are getting “excited” by the
heat. As a liquid heats up, some of the molecules near the surface of the liquid have enough
energy to jump out of the liquid, and try to escape. But the atmospheric pressure pushes
back on them, and keeps them in the liquid. Eventually, however, these molecules acquire
enough energy to overcome that atmospheric pressure, and the highest energy molecules can
escape. Eventually, all of the molecules have enough energy to escape, and the liquid boils
away.

Bell Jar Demo: We are going to demonstrate this effect in class today. To do this, a glass
“bell jar” is connected to a strong pump. As we pump out the air, we lower the pressure.
As the pressure drops, the water in the container will freeze—even though the temperature
in the room is well above freezing! The pump, besides removing the air in the vessel, also
removes the most “excited” water molecules. Thus, the water is also cooled.

Just about every substance in the Universe behaves this way. There are solid forms, liquid
forms and gaseous forms of just about all substances. There is a complicated relationship
between the boiling points and freezing points that depend on the local temperature and
pressure. These relationships can be easily summarized in something called a triple point
(or “phase”) diagram. A simple version of such a plot is shown in Fig. 9.1.

9.3 Understanding the Triple Point Diagram for Water

For the first part of today’s lab, we are going to be looking at the triple point diagram for
water. In such a diagram, the temperature will be on one of the axes, while the pressure is
on the other one. Note that sometimes temperature is on the x-axis, and sometimes it is on
the y-axis. There is no rule.

Before we begin, however, we must talk about the units we are going to be using in this
lab. For the temperature, these diagrams are either in Celsius or Kelvin. Remember that
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Figure 9.1: A simple triple point diagram. At certain temperatures and pressures a
substance can be a solid, a liquid or a gas. There is one place in “phase space”
where all three states of matter simultaneously exist: the triple point. In this
version of the diagram, temperature is on the x-axis, and pressure on the y-axis (from
http://www.kchemistry.com/Quizzes/triple point lg.jpg).

the Celsius temperature scale was defined with respect to the behavior of water: 0oC is the
freezing point of water (= 32oF), and 100oC (= 212oF) is the boiling point. In the Kelvin
system 0oC = 273 K, and 100oC = 373 K (the zero of the Kelvin scale is something called
“absolute zero”, and is equivalent to −273 oC = −459oF). The three scales are compared in
Fig. 9.2.

Figure 9.2: A comparison of the three temperature scales used by the public and by
scientists: Fahrenheit, Celsius, and Kelvin (from https://www.learner.org/courses/chem-
istry/images/lrg img/ThermometersFCK.jpg).

The other component of a triple point diagram is the pressure. There are several dif-
ferent units that can be used for pressure. In the US we use pounds per square inch. In
countries on the metric system they may use kilograms per square centimeter. But these
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result in complicated numbers to memorize. The unit of pressure that we will be using is the
“bar.” One bar is the standard pressure at the Earth’s surface, or “one unit of atmospheric
pressure.” If the pressure is 0.1 bar, this is equivalent to 10% of the pressure at the Earth’s
surface.

Now we are ready to look at a more realistic triple point diagram for water: Fig. 9.3. At
one bar (the air pressure at sea level), the freezing point of water is at 0oC, and the boiling
point at 100oC (or 273 K and 373 K, respectively). Note that the triple point of water is
at 0oC, but at a very low pressure: 6 millibars. On Earth, this corresponds to an altitude
of 60 km! Notice that the range of temperatures and pressures at which water is a liquid
is smaller than found for either ice or gas. Water ice can occur over a very wide range of
temperatures and pressures. At high pressures, there can be forms of water ice that exist at
temperatures above 1,000oF! As this diagram delineates, there are various types of ice that
are segregated by the shape of the ice crystals.

1. The (average) atmospheric surface pressure on Mars is 6 millibar (= mbar). This is very
close to what special place in the phase diagram of water? What form(s) of water might we
find at this pressure? (2 points).

Like on Earth, the temperatures at various locations on Mars depend on the season, and
span the range from −140oC in winter to 20oC in the summer. Unlike the Earth, the
atmospheric pressure on Mars spans a large range: from 4 mbar in winter to about 9 mbar
in summer (more than a factor of two!).

2. Do we expect to find liquid water on the surface of Mars during the winter? Why?
What form(s) or phase(s) of water can exist during the winter time on Mars? (2 points).

3. How about during the summer? What phases of water can exist during the summer
time on Mars? (2 points).

It is clear that there is a very narrow window of temperatures and pressures that would
allow for liquid water on the surface of Mars. Let’s look at some other objects you have
learned (or will learn) about in class. The Jovian planets Uranus and Neptune are also
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Figure 9.3: The triple point diagram for water. On the x-axis we have the temperature in
Celsius, and on the top of the diagram, the temperature is in Kelvin. On the y-axis (right
hand side) we have the pressure in units of bars. Note that this axis is plotted in powers of
10, or logarithmically. This allows us to plot the enormous range in pressures necessary to
explore the triple point diagram of water. The left hand y-axis has the metric units of pressure
in “Pascals,” from 1 Pa, to 1 TPa (Terra Pascal = 1 trillion Pascals). 1 bar = 100,000 Pa.
We will not be using Pascals in this lab! (From https://en.wikipedia.org/wiki/Triple point.)

called “ice giants.” This is not because they have icy surfaces, but because deep below the
tops of the clouds there is a region of ice. The so-called “ice mantle,” shown in Fig. 9.4.

4. If the temperature of the ice mantle in Uranus is 350oC (= 623 K = 660oF), and if it
were composed entirely of water (not true), what must the pressure be in the ice mantle?
(2 points)

9.4 Sublimation and Vaporization

Returning back to Fig. 9.1, there are some words in this diagram we need to become fa-
miliar with: sublimation, and vaporization. To these we add the word for the reverse of
vaporization: condensation. Between the solid phase and the liquid phase, we have a line
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Figure 9.4: The interior structure of Uranus, showing that the “ice mantle” contains most
of the mass of the planet. The ice mantle is made up of a mixture of water, ammonia, and
methane ices. From https://en.wikipedia.org/wiki/Uranus.

that marks the “Melting/Freezing” line. This term needs no explanation. As you lower the
temperature (move to the left in Fig. 9.1), the liquid freezes. If you raise the temperature,
the solid melts and becomes a liquid.

There are two other types of transitions in the triple point diagram. The first is subli-
mation: this is when a gas can become a solid, or a solid can become a gas, without first
becoming a liquid. If the pressure is low enough, the water molecules that form ice can in-
stantly become vapor if they can absorb a little heat—such as if the sun shines on the frozen
ice. The other type of transition is the change from liquid to gas, called vaporization. This
is essentially “boiling,” where the liquid turns into a gas. The reverse is also possible, called
“condensation,” depending on the change in temperature or pressure. Condensation is what
happens when you take a glass containing a cold drink outside—water suddenly collects on
the side of the glass. It is also why clouds form.

5. Astronomers have found that there is always water vapor (gaseous water) present in the
atmosphere of Mars (we see clouds!). How is this possible if there is no liquid water on the
surface? (3 points)

137



9.5 Europa, Enceladus, Titan and Pluto

Now we are going to use the knowledge we have just acquired and apply it to four bodies in
the outer solar system: Europa, Enceladus, Titan and Pluto. Europa is one of the four big
moons of Jupiter, while Enceladus and Titan are moons of Saturn. Pluto is the infamous
“dwarf planet” discovered by Clyde Tombaugh, a former faculty member at NMSU (note
that astronomers still argue about whether Pluto should be called a planet, but that
discussion is for some other time and place).

Exercise #1: Understanding Europa

In the binder that you were given as part of this lab, we have some images of Europa. Of
the four “Galilean satellites” of Jupiter (discovered by Galileo in 1610), Europa is the
smallest and least massive. It is similar in size to the Earth’s moon (a radius of 1,560 km
vs. 1,738 km), but its density, 3 gm/cm3, is lower than that of our moon, 3.3 gm/cm3, so it
is quite a bit less massive. Europa orbits Jupiter between Io and Ganymede. All three of
these moons are locked in an orbital resonance, that causes tidal heating. This creates an
internal heat source that supports a sub-surface ocean for Europa (and possibly
Ganymede), and hundreds of volcanoes on Io.

Image #1 shows a wide view of Europa. In this wide view there is not very much surface
detail. We can see what looks like a crater towards the bottom right. Otherwise there just
seem to be some brownish regions, and some dark, linear streaks.

6. The average surface temperature of Europa is −160◦C. If there is water on its surface,
what phase will the water be in? (1 point)

Image #2 shows a close-up view of Europa, giving us a better view of the streaks, some
other brown spots, and some white bumps, appearing to be a bit higher than the local
area. Europa has the smoothest surface in the solar system, with most of the highest
features having elevations of ∼ 10 meters. Remember, we said its radius was 1,560 km; 10
meters is 0.01 km, so its surface is essentially smooth to 1 part in 156,000. A billiard ball is
smooth to 1 part in 57,150. If you could shrink Europa down to the size of a billiard ball, it
would be smoother!

Why so smooth? The surface of Europa is almost pure water ice. If you have seen the
surface of a frozen pond or lake, you know that such a surface can be very smooth.
Astronomers believe that the pull of gravity from Jupiter, and the moons Io and
Ganymede, is tugging on Europa, causing it to stretch and contract. This stretching heats
the inside of Europa, melting the ice, and turning it into water. The surface of Europa is
cold, so a thin (10, 20, or 100 km thick?) layer of ice forms on top the ocean.

7. Water covers much of the Earth’s surface, but water ice covers the entire surface of
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Europa. Why? (4 points)

The other thing to notice in the wide view of Europa is that there are almost no impact
craters: There are only seven craters on Europa that have diameters of 20 km or more. In
contrast Callisto, the fourth of the Galilean satellites, has hundreds!

8. Something is erasing the impact craters on Europa. Can you think of a reason why there
are no big impact craters on the surface of Europa? [Hint: Think of the process: a high
speed impactor crashes into a thin layer of ice that covers a body of water. What
happens?](4 points)

Finally, for Europa, is Image #3: there are water vapor plumes that erupt from the surface
of this moon! Presumably they come from one (or more) of the cracks. This proves that
there is a source of liquid water below Europa’s icy surface. We will see much more
dynamic versions of these plumes on our next object, Enceladus.

Exercise #2: Investigating Enceladus

Enceladus is the sixth largest moon of Saturn with a radius of 500 km. It has a low density
of only 1.6 gm/cm3. Given its low density we can infer that water must make up much of
the mass of Enceladus. Enceladus is the “shiniest” large object in the solar system in that
it reflects about 80% of the incoming light. This, and its great distance from the Sun (1.4
billion km), means its surface is very cold: −200 oC, and any water or carbon dioxide will
be frozen solid.
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Image #4 is a wide view of Enceladus. The upper-right portion of Enceladus appears to be
covered with craters. At the bottom are some blueish stripes, or cracks. On the left edge is
a very, very smooth region devoid of any surface features.

9. Compare the surface of Enceladus to that of Europa. How are they different, and how
are they similar? (4 points)

Image #5 is a distant picture of Enceladus taken by the Cassini spacecraft. Note the jets
of material coming out of the bottom of the moon. Image #6 is a closer view of those jets,
or “geysers.” It is now clear that this material is shooting out of the blue stripes seen in
Image #4 (note that we have to see the jets of material illuminated by the sunlight against
the blackness of space, as they are faint in comparison to the moon itself).

10. We now know that most of the material in these jets is water vapor, various kinds of
ice crystals, hydrogen gas, and a bit of salt (sodium chloride = table salt!). What does this
tell you about what is beneath the icy surface of Enceladus? (4 points)

In Image #7, we take a long look at Enceladus (the tiny black dot near the bright white
spot) and find that it has created its own ring around Saturn! This is the so-called
“E-ring,” and is made up of material ejected from the inside of Enceladus. Just like
Europa, Enceladus is in a orbital resonance with a nearby moon (Dione), and the tidal
heating causes some portion of the interior of Enceladus to melt, creating a sub-surface
lake, or ocean, from which the geysers emanate. This ejected material then goes into orbit
around Saturn, forming a ring.
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Exercise #3: Exploring Titan

Titan is the largest moon of Saturn, and the second largest moon in the solar system. It
has a radius of 2,575 km, making it larger in size than the planet Mercury (radius of 2,432
km). But Titan only has a density of 1.9 gm/cm3, compared to Mercury’s 5.5 gm/cm3.
Mercury is much more massive. Titan is surrounded by a very dense atmosphere, with a
surface pressure of 1.45 bar. Titan has a more massive atmosphere than that of the Earth!
This atmosphere is 97% nitrogen (N2), and 2.7% methane (CH4). Methane is a very
intense “greenhouse gas,” and thus the surface temperature of Titan is warmer than it
would be without its atmosphere: −180oC (= 93 K).

With an atmosphere dominated by nitrogen and methane, we now have to examine the
triple point diagrams for these substances to fully understand Titan. In Fig. 9.5, we plot
the (simplified) phase diagrams for water, methane and nitrogen. Note that unlike the
previous diagrams, pressure is now on the x-axis, and temperature on the y-axis (and the
temperature scale is in Kelvin. Remember, 0 K = −273oC). Also note that 100 bar = 1
bar, 102 bar = 100 bar, 10−2 bar = 0.01 bar, etc.

Figure 9.5: The triple point/phase diagrams for water (top, black), methane (middle, blue),
and nitrogen (bottom, green). The x-axis has pressure labeled in an unusual way, but just
note that 100 bar = 1 bar, and 102 bar = 100 bar, etc.

11. Given that the surface pressure is 1.4 bar, and the temperature 93K, in what phases do
we expect to see water, methane, and nitrogen? (4 points)
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12. This is a surprising result, isn’t it? We now have at least one substance that should be
a liquid on the surface of Titan. What do you think this might mean if we could take some
images of the surface of Titan? (2 points)

In Image #8 we show a wide view of Titan. Boring, eh? Titan’s atmosphere is very hazy
and cloudy, and we cannot see anything in visible light. Fortunately, as Cassini entered the
Saturnian system it dropped a little probe named Huygens into Titan’s atmosphere. As
Huygens floated down to the surface it took pictures, one of which is shown in Image #9.

13. What surface feature is shown in Image #9, and what do you think forms, or creates,
this feature? (4 points)

If Titan has rivers, what else might it have? Because astronomers already knew Titan was
cloudy, they equipped the Cassini probe with a radar system to map the surface of Titan
(radar waves can see through clouds, a similar system was sent to Venus). Image #10 is
one of these radar maps of a slice of Titan’s surface: there are lakes of methane on Titan!
The conditions on Titan are just right to have a “hydrological cycle” based on methane.
This means that high in the atmosphere methane condenses from gaseous vapor into liquid
droplets, these grow and fall as rain, the rain forms rivers and lakes, there is vaporization
(evaporation) from the lakes producing gaseous methane, and the cycle is completed.

Exercise #4: Inspecting Pluto

When Pluto was discovered in 1930 by Clyde Tombaugh, astronomers thought they had
finally found the most distant planet in our solar system. Pluto is indeed very far away,
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with an average distance of 5.9 billion kilometers (39.5 AU). But we now know that there
are other objects beyond Pluto that are just as big, and thus to avoid having to add extra
planets to the solar system every few years, a new classification was devised: the “dwarf
planet.” This did not make everyone happy (especially at NMSU), but officially, Pluto has
been reclassified as a dwarf planet.

Pluto is so far away that the Sun provides little heat, and it is very cold: 44 K = −229oC.
Pluto has a radius of 1,188 km, smaller than the Earth’s moon (1,738 km). Pluto has a
density of 1.9 gm/cm3, similar to that of Titan. Therefore it must be made of similar
materials. We do not have time today to perform a deep investigation of Pluto, but the
take home portion of this lab will have two questions about Pluto, so be sure to read those
before you leave lab today.

Until the New Horizons spacecraft went by Pluto in 2015, we knew very little about this
interesting object. Before we look at the surface of Pluto, we want you to look at what was
actually one of the last pictures taken by New Horizons, Image #11. Here, Pluto is
blocking the direct view of the Sun, and we see that it has an atmosphere!

14. Given that Pluto probably has water, CO2, methane and nitrogen on its surface, use
the triple point diagrams above to predict which of these substances is the most likely one
to be in a gaseous phase at the temperature of Pluto. (2 points)

15. Given the substance you have chosen, what must the pressure be in this atmosphere?
(2 points)

The surface pressure measured from New Horizons data for Pluto is 10−5 bar. This should
now make sense to you, and demonstrates how useful triple point diagrams are. Now for
the surface of Pluto. In Image #12 we present a wide view of Pluto. Note that Pluto has
flat, smooth regions, highlands, shallow impact craters, and darker regions. Pluto is both
quite a bit different, and at the same time somewhat similar, to the other objects we’ve
looked at today.

In Image #13 we show a close up of some mountains that appear to have nitrogen glaciers
flowing from them with embedded chunks of water ice that form “hill chains,” and “hill
clusters.”

143



9.6 The Triple Point Diagram for Carbon Dioxide

Now we are going to change substances, from water (H2O) to carbon dioxide (CO2). The
triple point diagram for carbon dioxide is shown in Fig. 9.6. It is quite a bit simpler than
that for water. Note where the triple point is located in this diagram: 5.2 bar, −56oC.

Figure 9.6: The triple point diagram for carbon dioxide. Note the units for pressure on the
y-axis: 102 = 100 bar. The mid-way point between 1 and 100 bar is of course 10 bar (the
tickmarks in a log plot are not evenly spaced, but still run from 1 to 10, or 10 to 100, etc.).

16. Can liquid or solid carbon dioxide ever exist on the Earth’s surface? What if you were
told that the coldest temperature ever recorded on Earth (in Antarctica, of course), was
−94.7oC? (2 points).

17. Predict how carbon dioxide will behave on Mars as we pass from winter into summer.
How might this influence that change in atmospheric pressure we noted earlier? (4 points)

Experiment #1: Solid Carbon Dioxide. Your TA is going to give you a small chunk of
frozen carbon dioxide (dry ice) inside a ziploc bag. Zip up the baggie for a few minutes.

18. Describe what is happening. What process is occurring here? Why is frozen carbon
dioxide called “dry ice?” (4 points).
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Now, unzip the baggie, but leave the dry ice in it, and move it to the side.

Experiment #2: Liquid Carbon Dioxide. We are now going to see if we can make liquid
carbon dioxide at room temperature. Look back at the triple point diagram for carbon
dioxide. How can we make liquid CO2 at temperatures well above the triple point?

19. What do we need to increase in order to get liquid carbon dioxide to be stable at
warmer temperatures? (1 point)

Your TA is going to give everyone safety goggles, a small amount of finely crushed dry ice
in a paper towel, a plastic pipet, like used in chemistry and biology labs, a small funnel (a
piece of wire to help convince the dry ice to go through the funnel), and a pair of pliers.
We have cut off the tip of pipet so you can fit the funnel into it. Use the paper towel to
pour the dry ice into the funnel so that THE DRY ICE FILLS THE PIPET BULB
BY ABOUT ONE THIRD! Now, take the pliers and bend over the tip of the pipet,
and clamp it–we need to create a good, tight seal–we do not want the CO2 gas to escape,
we need to increase the pressure! One member of the group needs to start timing: After
about 90 seconds or so, you should begin to see liquid CO2 form. As soon as all of the dry
ice turns to liquid, release the pressure: Warning: there is going to be a small pop!
IF YOU WAIT TOO LONG THERE WILL BE A BIG POP—THE PIPET
WILL EXPLODE!

20. Explain what happened in this demo. What allowed us to form the liquid CO2? What
happened when you released the pressure? Into what phase did the liquid CO2 return?
Why? (4 points).

9.7 The Importance of Density in Shaping the Surfaces of Objects
in the Outer Solar System

Earlier this semester you might have had a lab on density. As a reminder, density is sim-
ply the mass of an object divided by its volume: Density = Mass/Volume. It has units of
gm/cm3, or kg/m3. The densities of various substances are listed in Table 9.1. Note that we
have two densities listed here, one for the solid phase and one for the liquid phase.

145



Table 9.1: The Densities of Various Substances
Substance Density as a Solid Density as a Liquid

(g/cm3) (g/cm3)
Water 0.92 1.0
Carbon Dioxide 1.6 1.1
Nitrogen 1.03 0.80
Iron 7.9 6.9
Silver 10.5 9.3
Gold 19.3 17.3

21. Compared to the other substances listed in Table 9.1, water is unusual. Why do we say
that? What does this actually mean? [Hint: what happens when you put the solid phase of
a substance on top of its liquid phase?] (4 points)

Experiment #3: Let’s confirm your answer to question #11. Using the beaker with
water in it that your TA gave you, drop an ice cube into the water.

22. What happens? (2 points)

Now we are going to drop the piece of dry ice into the beaker (this is going to be a bit
more exciting!). Before doing so, look at Table 9.1, what do you think is going to happen?
Carefully drop the chunk of dry ice from the Ziploc bag into the beaker.

23. What happened? (2 points)
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9.8 Take Home Exercise (35 points total)

Answer the following questions in the space provided:

1. What is a triple point diagram? What are the two quantities on the axes of the plot?
What does this diagram tell you, and how do you use it? (10 points)

2. In this week’s lab, we encountered three objects that were very smooth, or had very
smooth regions on their surfaces (Europa, Enceladus, and Pluto). The solar system is
a violent place, with meteors crashing into the planets and moons all of the time
(more so long ago). How can Enceladus or Pluto have such smooth regions on their
surfaces? [Hint: Words you might use in your explanation are “activity,”
“resurfacing,” “convection,” or “recycling.” Do some research! Make sure to cite your
sources.]

(a) Europa (5 points)

(b) Enceladus (5 points)
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(c) Pluto (5 points)

3. In the Introduction we mentioned that if we are going to find life elsewhere in our
solar system, we need to locate liquid water. Given what you know now, where would
you go to search for life in our solar system? How would you go about doing this?
(10 points)
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9.9 Possible Quiz Questions

1. What is a triple point diagram?

2. What does 1 bar, a unit of pressure, actually mean?

3. List the three phases, or states, of ordinary substances.

4. What is a Kelvin?

9.10 Extra Credit (ask your TA for permission before attempting,
5 points)

In several of the triple point diagrams in this week’s lab there was a point labeled the “criti-
cal point.” What is the critical point? See if you can identify two more elements/substances
that behave like water (i.e., their solid forms are less dense than their liquid forms).
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10 Building a Comet

During this semester we have explored the surfaces of the Moon, terrestrial planets and other
bodies in the solar system, and found that they often are riddled with craters. In Lab 12
there is a discussion on how these impact craters form. Note that every large body in the
solar system has been bombarded by smaller bodies throughout all of history. In fact, this
is one mechanism by which planets grow in size: they collect smaller bodies that come close
enough to be captured by the planet’s gravity. If a planet or moon has a rocky surface, the
surface can still show the scars of these impact events–even if they occurred many billions
of years ago! On planets with atmospheres, like our Earth, weather can erode these impact
craters away, making them difficult to identify. On planets that are essentially large balls of
gas (the “Jovian” planets), there is no solid surface to record impacts. Many of the smaller
bodies in the solar system, such as the Moon, the planet Mercury, or the satellites of the
Jovian planets, do not have atmospheres, and hence, faithfully record the impact history
of the solar system. Astronomers have found that when the solar system was very young,
there were large numbers of small bodies floating around the solar system impacting the
young planets and their satellites. Over time, the number of small bodies in the solar system
has decreased. Today we will investigate how impact craters form, and examine how they
appear under different lighting conditions. During this lab we will discuss both asteroids
and comets, and you will create your own impact craters as well as construct a “comet”.

• Goals: to discuss asteroids and comets; create impact craters; build a comet and test
its strength and reaction to light

• Materials: A variety of items supplied by your TA

10.1 Asteroids and Comets

There are two main types of objects in the solar system that represent left over material from
its formation: asteroids and comets. In fact, both objects are quite similar, their differences
arise from the fact that comets are formed from material located in the most distant parts
of our solar system, where it is very cold, and thus they have large quantities of frozen water
and other frozen liquids and gases. Asteroids formed closer-in than comets, and are denser,
being made-up of the same types of rocks and minerals as the terrestrial planets (Mercury,
Venus, Earth, and Mars). Asteroids are generally just large rocks, as shown in Fig. 10.1
shown below.

The first asteroid, Ceres, was discovered in 1801 by the Italian astronomer Piazzi. Ceres
is the largest of all asteroids, and has a diameter of 933 km (the Moon has a diameter of
3,476 km). There are now more than 40,000 asteroids that have been discovered, ranging in
size from Ceres, all the way down to large rocks that are just a few hundred meters across.
It has been estimated that there are at least 1 million asteroids in the solar system with
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Figure 10.1: Four large asteroids. Note that these asteroids have craters from the impacts
of even smaller asteroids!

diameters of 1 km or more. Most asteroids are harmless, and spend all of their time in
orbits between those of Mars and Jupiter (the so-called “asteroid belt”, see Figure 10.2).
Some asteroids, however, are in orbits that take them inside that of the Earth, and could

Figure 10.2: The Asteroid Belt.

potentially collide with the Earth, causing a great catastrophe for human life. It is now
believed that the impact of a large asteroid might have been the cause for the extinction
of the dinosaurs when its collision threw up a large cloud of dust that caused the Earth’s
climate to dramatically cool. Several searches are underway to insure that we can identify
future “doomsday” asteroids so that we have a chance to prepare for a collision–as the Earth
will someday be hit by another large asteroid.
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10.2 Comets

Comets represent some of the earliest material left over from the formation of the solar
system, and are therefore of great interest to planetary astronomers. They can also be
beautiful objects to observe in the night sky, unlike their darker and less spectacular cousins,
asteroids. They therefore often capture the attention of the public.

10.3 Composition and Components of a Comet

Comets are composed of ices (water ice and other kinds of ices), gases (carbon dioxide,
carbon monoxide, hydrogen, hydroxyl, oxygen, and so on), and dust particles (carbon and
silicon). The dust particles are smaller than the particles in cigarette smoke. In general, the
model for a comet’s composition is that of a “dirty snowball.” 10.3

Figure 10.3: The main components of a comet.

Comets have several components that vary greatly in composition, size, and brightness.
These components are the following:

• nucleus: made of ice and rock, roughly 5-10 km across

• coma: the “head” of a comet, a large cloud of gas and dust, roughly 100,000 km in
diameter

• gas tail: straight and wispy; gas in the coma becomes ionized by sunlight, and gets
carried away by the solar wind to form a straight blueish “ion” tail. The shape of the
gas tail is influenced by the magnetic field in the solar wind. Gas tails are pointed in
the direction directly opposite the sun, and can extend 108 km.

• dust tail: dust is pushed outward by the pressure of sunlight and forms a long, curving
tail that has a much more uniform appearance than the gas tail. The dust tail is
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pointed in the direction directly opposite the comet’s direction of motion, and can also
extend 108 km from the nucleus.

These various components of a comet are shown in the diagram, above (Fig. 10.3).

10.4 Types of Comets

Comets originate from two primary locations in the solar system. One class of comets, called
the long-period comets, have long orbits around the sun with periods of more than 200
years. Their orbits are random in shape and inclination, with long-period comets entering
the inner solar system from all different directions. These comets are thought to originate in
the Oort cloud, a spherical cloud of icy bodies that extends from ∼20,000 to 150,000 AU
from the Sun. Some of these objects might experience only one close approach to the Sun
and then leave the solar system (and the Sun’s gravitational influence) completely.

In contrast, the short-period comets have periods less than 200 years, and their orbits
are all roughly in the plane of the solar system. Comet Halley has a 76-year period, and
therefore is considered a short-period comet. Comets with orbital periods < 100 years do
not get much beyond Pluto’s orbit at their farthest distance from the Sun. Short-period
comets cannot survive many orbits around the Sun before their ices are all melted away. It
is thought that these comets originate in the Kuiper Belt, a belt of small icy bodies beyond
the large gas giant planets and in the plane of the solar system. Quite a few large Kuiper
Belt objects have now been discovered, including one (Eris) that is about the same size as
Pluto.

Figure 10.4: The Oort cloud.

10.5 The Impacts of Asteroids and Comets

Objects orbiting the Sun in our solar system do so at a variety of speeds that directly
depends on how far they are from the Sun. For example, the Earth’s orbital velocity is 30
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Figure 10.5: The Kuiper belt.

km/s (65,000 mph!). Objects further from the Sun than the Earth move more slowly, objects
closer to the Sun than the Earth move more quickly. Note that asteroids and comets near
the Earth will have space velocities similar to the Earth, but in (mostly) random directions,
thus a collision could occur with a relative speed of impact of nearly 60 km/s! How fast is
this? Note that the highest muzzle velocity of any handheld rifle is 1,220 m/s = 1.2 km/s.
Thus, the impact of any solar system body with another is a true high speed collision that
releases a large amount of energy. For example, an asteroid the size of a football field that
collides with the Earth with a velocity of 30 km/s releases as much energy as one thousand
atomic bombs the size of that dropped on Japan during World War II (the Hiroshima bomb
had a “yield” of 13 kilotons of TNT). Since the equation for kinetic energy (the energy of
motion) is K.E. = 1/2(mv2), the energy scales directly as the mass, and mass goes as the
cube of the radius (mass = density × Volume = density × R3). A moving object with ten
times the radius of another traveling at the same velocity has 1,000 times the kinetic energy.
It is this kinetic energy that is released during a collision.

10.6 Exercise #1: Creating Impact Craters

To create impact craters, we will be dropping steel ball bearings into a container filled with
ordinary baking flour. There are at least two different sizes of balls, there is one that is twice
as massive as the other. You will drop both of these balls from three different heights (0.5
meters, 1 meters, and 2 meters), and then measure the size of the impact crater that they
produce. Then on graph paper, you will plot the size of the impact crater versus the speed
of the impacting ball.

1. Have one member of your lab group take the meter stick, while another takes the
smaller ball bearing.

2. Take the plastic tub that is filled with flour, and place it on the floor.

3. Make sure the flour is uniformly level (shake or comb the flour smooth)

4. Carefully hold the meter stick so that it is just touching the top surface of the flour.
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5. The person with the ball bearing now holds the ball bearing so that it is located exactly
one half meter (50 cm) above the surface of the flour.

6. Drop the ball bearing into the center of the flour-filled tub.

7. Use the magnet to carefully extract the ball bearing from the flour so as to cause the
least disturbance.

8. Carefully measure the diameter of the crater caused by this impact, and place it in the
data table, below.

9. Repeat the experiment for heights of 1 meter and 2 meters using the smaller ball
bearing (note that someone with good balance might have to carefully stand on a chair
to get to a height of two meters!).

10. Now repeat the entire experiment using the larger ball bearing. Record all of the data
in the data table.

Height Crater diameter Crater diameter Impact velocity
(meters) (cm) Ball #1 (cm) Ball #2 (m/s)
0.5
1.0
2.0

Now it is time to fill in that last column: Impact velocity (m/s). How can we determine
the impact velocity? The reason the ball falls in the first place is because of the pull of the
Earth’s gravity. This force pulls objects toward the center of the Earth. In the absence of
the Earth’s atmosphere, an object dropped from a great height above the Earth’s surface
continues to accelerate to higher, and higher velocities as it falls. We call this the “accelera-
tion” of gravity. Just like the accelerator on your car makes your car go faster the more you
push down on it, the force of gravity accelerates bodies downwards (until they collide with
the surface!).

We will not derive the equation here, but we can calculate the velocity of a falling body
in the Earth’s gravitational field from the equation v = (2ay)1/2. In this equation, “y” is
the height above the Earth’s surface (in the case of this lab, it is 0.5, 1, and 2 meters). The
constant “a” is the acceleration of gravity, and equals 9.80 m/s2. The exponent of 1/2 means
that you take the square root of the quantity inside the parentheses. For example, if y = 3
meters, then v = (2 × 9.8 × 3)1/2, or v = (58.8)1/2 = 7.7 m/s.

1. Now plot the data you have just collected on graph paper. Put the impact velocity
on the x axis, and the crater diameter on the y axis. (10 points)
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10.6.1 Impact crater questions

1. Describe your graph, can the three points for each ball be approximated by a single
straight line? How do your results for the larger ball compare to that for the smaller ball? (3
points)

2. If you could drop both balls from a height of 4 meters, how big would their craters
be? (2 points)

3. What is happening here? How does the mass/size of the impacting body effect your
results. How does the speed of the impacting body effect your results? What have you just
proven? (5 points)

10.7 Crater Illumination

Now, after your TA has dimmed the room lights, have someone take the flashlight out and
turn it on. If you still have a crater in your tub, great, if not create one (any height more
than 1 meter is fine). Extract the ball bearing.

1. Now, shine the flashlight on the crater from straight over top of the crater. Describe
what you see. (2 points)

2. Now, hold the flashlight so that it is just barely above the lip of the tub, so that the
light shines at a very oblique angle (like that of the setting Sun!). Now, what do you see? (2
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points)

3. When is the best time to see fine surface detail on a cratered body, when it is noon
(the Sun is almost straight overhead), or when it is near “sunset”? [Confirm this at the
observatory sometime this semester!] (1 point)

10.8 Exercise #2: Building a Comet

In this portion of the lab, you will actually build a comet out of household materials. These
include water, ammonia, potting soil, and dry ice (CO2 ice). Be sure to distribute the work
evenly among all members of your group. Follow these directions: (10 points)

1. Use a freezer bag to line the bottom of your bucket.

2. Place a little less than 1 cup of water (this is a little less than 1/2 of a “Solo” cup!) in
the bag/bucket.

3. Add 3 spoonfuls of sand, stirring well. (NOTE: Do not stir so hard that you rip the
freezer bag lining!!)

4. Add 1 capful of ammonia.

5. Add 1 spoon of organic material (potting soil). Stir until well-mixed.

6. Your TA will place a block or chunk of dry ice inside a towel and crush the block with
the mallet and give you some crushed dry ice.

7. Add about 1 cup of crushed dry ice to the bucket, while stirring vigorously. (NOTE:
Do not stir so hard that you rip the freezer bag!!)

8. Continue stirring until mixture is almost frozen.

9. Lift the comet out of the bucket using the plastic liner and shape it for a few seconds
as if you were building a snowball (use gloves!).

10. If not a solid mass, add small amounts of water until mixture is completely frozen.

11. Unwrap the comet once it is frozen enough to hold its shape.
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10.8.1 Comets and Light

1. Observe the comet as it is sitting on a desk. Make some notes about its physical char-
acteristics, for example: shape, color, smell (5 points):

2. Now bring the comet over to the light source (overhead projector) and place it on top.
Observe, and then describe what happens to the comet (5 points):

10.8.2 Comet Strength

Comets, like all objects in the solar system, are held together by their internal strength.
If they pass too close to a large body, such as Jupiter, their internal strength is not large
enough to compete with the powerful gravity of the massive body. In such encounters, a
comet can be broken apart into smaller pieces. In 1994, we saw evidence of this when Comet
Shoemaker-Levy/9 impacted into Jupiter. In 1992, that comet passed very close to Jupiter
and was fragmented into pieces. Two years later, more than 21 cometary fragments crashed
into Jupiter’s atmosphere, creating spectacular (but temporary) “scars” on Jupiter’s cloud
deck.

Exercise: After everyone in your group has carefully examined your comet (make sure
to note its appearance, shape, smell, weight), it is time to say goodbye. Take a sample rock
and your comet, go outside, and drop them both on the sidewalk. What happened to each
object? (2 points)
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Figure 10.6: The Impact of “Fragment K” of Comet Shoemaker-Levy/9 with Jupiter. Note
the dark spots where earlier impacts occurred.

10.8.3 Comet Questions

1. Draw a comet and label all of its components. Be sure to indicate the direction the
Sun is in, and the comet’s direction of motion. (5 points)

2. What are some differences between long-period and short-period comets? Does it make
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sense that they are two distinct classes of objects? Why or why not? (5 points)

3. If a comet is far away from the Sun and then it draws nearer as it orbits the Sun, what
would you expect to happen? (5 points)

4. Do you think comets have more or less internal strength than asteroids, which are
composed primarily of rock? [Hint: If you are playing outside with your friends in a
snow storm, would you rather be hit with a snowball or a rock?] (3 points)
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10.9 Possible Quiz Questions

1. What is the main difference between comets and asteroids, and why are they different?

2. What is the Oort cloud and the Kuiper belt?

3. What happens when a comet or asteroid collides with the Moon?

4. How does weather effect impact features on the Earth?

5. How does the speed of the impacting body effect the energy of the collision?

10.10 Extra Credit (ask your TA for permission before attempt-
ing, 5 points)

On the 15th of February, 2013, a huge meteorite exploded in the skies over Chelyabinsk,
Russia. Write-up a small report about this event, including what might have happened if
instead of a grazing, or “shallow”, entry into our atmosphere, the meteor had plowed straight
down to the surface.
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Name: _________________ 
Team Number: __________ 

Building a Comet Take-Home Exercise (35 points total) 
 

1. How does the mass of an impacting asteroid or comet affect the size of an impact crater? ​(3 points) 

 

 

2. How does the speed of an impacting asteroid or comet affect the size of an impact crater? ​(3 points) 

 

 

3. a) Why are comets important to planetary astronomers? ​ (4 points) 

 

 

b) What can comets tell us about the solar system? ​ (4 points) 

 

 

4. What are the four components of comets? (​NOT​ what the comet is made of, but the 4 different ‘parts’ that 
make up a comet.)  ​(2 points each) 

a.  

b.  

c.  

d.  

5.  Which components of a comet are affected by the Sun, and how are they affected?​ (5 points) 

 

 

 

6.  List two ways are comets are different from asteroids. ​ (4 points each) 

a.  

 

b.  
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11 Discovering Exoplanets

11.1 Introduction

One of the most exciting discoveries in Astronomy over the last twenty years was the con-
clusive detection of planets orbiting other stars. At last count, we are closing-in on having
discovered two thousand planets orbiting other stars. Planets orbiting other stars are called
“exoplanets.” These exoplanets range in size from similar to the Earth, to larger than
Jupiter. With much hard work, we now know that small exoplanets are much more common
than big exoplanets, and some astronomers believe that Earth-sized planets orbit nearly ev-
ery normal star. The current goal of astronomers is to find exoplanets that are most similar
to Earth (same mass, radius, orbiting their host star at 1 AU, etc.). With improvements
in technology, we will one day be able to determine whether such exoplanets support life.
In the distant future, maybe we will be able to send a space probe to those exoplanets to
investigate the life found there.

Astronomers have been studying the sky with advanced instruments for more than 100
years, but it was only in the early 1990’s that the first real exoplanets were found. Why
did it take so long? The answer is that compared to their host stars, exoplanets are tiny,
and hard to see. We will quantify how hard it is to see them shortly. First though, how
might we discover such objects? There are three main techniques: direct imaging, transits
(mini-eclipses), and “radial velocity” measurements. As its name suggests, direct imaging
is simply taking a picture of a star and looking for its planets. The big problem is that the
star is very bright (it generates its own energy), while an exoplanet shines by reflected light
from the star. This is by far the hardest method to find exoplanets. To be effective, we will
need to launch special telescopes into space where our image-disturbing atmosphere does
not exist, allowing us to see much, much more clearly.

The transit method is much easier in that what we monitor is the light output from a
star, and if an exoplanet crosses in front of the star, the light briefly dims. As we will learn,
this technique also tells us the diameter of the exoplanet. The radial velocity method uses
the Doppler effect to detect the orbital motion of the planet. The radial velocity technique
allows us to determine the mass of the exoplanet. If we can combine the transit and radial
velocity techniques, we can get the size and mass of a planet, and thus measure its density,
and therefore constrain its composition. We will investigate all three methods in this lab,
and then learn how we can characterize the properties of these objects.
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11.2 Why are Exoplanets so hard to see?

In our first experiment, we are simply going to demonstrate how hard it is to directly see
an exoplanet. First, however, a diagram to remind you how small the Earth and Jupiter are
compared to the Sun (Figure 11.1).

Figure 11.1: Comparison of the size of the Earth and Jupiter to the Sun.

Let’s look at some numbers. The radius of the Sun is 695,550 km, the radius of Jupiter is
69,911 km, and the radius of the Earth is 6,371 km. Note that these objects are all spheres,
and thus when we look at them from space, they all appear to be circles (“disks”). What is
the area of a circle? Acircle = πR2.

Exercise #1: Calculate the areas of the circular disks of the Sun, Jupiter, and Earth (if
you want make the calculation simpler, just set RSun = 700,000 km, RJupiter = 70,000 km,
and REarth = 6000 km). (3 points).

(Area of Earth) = km2

(Area of Jupiter) = km2

(Area of Sun) = km2

If we are going to take a picture of a exoplanet around a star, we have two problems: how
much light will the exoplanet reflect compared to its star, and how close-in is it? Let’s tackle
the first question.

Exercise #2: We are going to keep everything very simple, and just estimate how much
sunlight the Earth or Jupiter would reflect compared to that emitted by the Sun. We will
assume that these planets reflect 100% of the light that hits them, and we are going to
ignore the fact that the amount of sunlight at the orbits of each of these planets is less
than at the surface of the Sun (remember, the amount of light passing through a sphere
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surrounding a light source drops off as 1/R2). In this unrealistic scenario, the maximum
amount of light that a planet can reflect is simply the ratio of its area to that of the star it
orbits. Calculate the following: (2 points).

(Area of Earth)/(Area of Sun) =

(Area of Jupiter)/(Area of Sun) =

These already small numbers are actually way too big. As we noted, Earth can only
reflect the amount of light it intercepts at the distance it is from the Sun. In fact, the Earth
only intercepts 1.67 × 10−9 of the Sun’s light output, and the amount of visible light it
reflects (its “albedo”) is 40%. So, seen from distant space, the Earth is only one billionth as
bright as the Sun! Jupiter is obviously much bigger than the Earth, but remember, Jupiter
is at 5.2 AU, so it actually receives 1/27th the amount of sunlight as does the Earth. Thus, to
an observer outside our solar system, Jupiter is only 4.4 times more luminous than the Earth.

Directly detecting exoplanets is going to be hard, besides being very faint, they are
located very close to their host stars. We need a way to “turn off” the star. One way to do
this is to block its light out with a small, opaque metal disk. As shown in Figure 11.2, we
now have the capability to do this, but only for finding big planets located far from their
host stars (in fact, to date, only Jupiter-sized planets located at large distances from their
host stars have been directly imaged). There is a more complex technique called “nulling
interferometry” where you use the star’s own light to cancel itself out, but not its planets,
that lets astronomers search for planets closer to the host star. While it can be done from
the ground, it is better from space. You can more read about this method by searching for
the canceled NASA mission “Terrestrial Planet Finder” on the web (it was killed due to
budget cuts).

11.3 Exoplanet Transits

The exoplanet transit method of discovery is simple to envision, and the easiest to carry-out.
As shown in Figure 11.3, a transit occurs when an exoplanet crosses the disk of its host star
as seen by observers on Earth. Since the planet does not emit any light (we are looking at
the “nighttime side”), it is completely dark. Thus, the amount of light from the star will
dim as the planet blocks out (“eclipses”) a small portion of the star’s light-emitting disk.
The plot of the brightness of a star versus time is called a “light curve”. The light curve of
the transit is shown below the cartoon of the star and exoplanet in Figure 11.3.

Exercise #3: Simulating an Exoplanet transit
As part of the materials set out for you to use during today’s lab is a device to simulate

an exoplanet transit. Take a look at the wooden device. It has a light meter attached to
the back, and three rods that dangle down in front of the light meter. We will use the desk
lamp as our light source (“star”), and move the rods across the light meter. Note that the
dowel rod on top has five notches. The two furthest from the center represent where we will
be at the start and end of our simulation. At these positions, no light is blocked (similar to
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Figure 11.2: A planet orbiting the star Fomalhaut (inside the box, with the arrow labeled
“2012”). This image was obtained with the Hubble Space Telescope, and the star’s light has
been blocked-out using a small metal disk. Fomalhaut is also surrounded by a dusty disk of
material—the broad band of light that makes a complete circle around the star. This band
of dusty material is about the same size as the Kuiper belt in our solar system. The planet,
“Fomalhaut B”, is estimated to take 1,700 years to orbit once around the star. Thus, using
Kepler’s third law (P2 ∝ a3), it is roughly about 140 AU from Fomalhaut (remember that
Pluto orbits at 39.5 AU from the Sun).

Figure 11.3: The diagram of an exoplanet transit. The planet, small, dark circle/ disk,
crosses in front of the star as seen from Earth. In the process, it blocks out some light.
The light curve shown on the bottom, a plot of brightness versus time, shows that the star
brightness is steady until the exoplanet starts to cover up some of the visible surface of the
star. As it does so, the star dims. It eventually returns back to its normal brightness only
to await the next transit.

position #1 in Figure 11.3). Note also that we have two planets, one big, one small, and a
bare rod without a planet. What do you think the latter is used for? Yes, our planets need
to be attached to something to allow us to perform this experiment. Thus, this planet-less
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rod allows us to measure how much light just the bare rod blocks out. We will have to take
this into account when we plot our light curves.

The light meter itself is rather simple, it has power, mode, and hold buttons. We only
will use the power and mode buttons. Hit the power button (note that to extend battery
life, the device automatically shuts off after 45 seconds). At the bottom of the device display
window there will either be a “LUX” or “FC” displayed. We want the unit to be in LUX,
so click the mode button until LUX is displayed.

Setting things up: Move all of the metal rods to the left end of the dowel rod so that
nothing is blocking the lamp light from illuminating the white circle. Turn on the light
meter. Note that the number bounces around–this is due to electronic noise. Every
electronic device has this type of noise, and it takes much hard work (and expense) to
minimize this noise (one way is to chill the device to low temperatures). Here we have to
live with it, but this is just like what an astronomer would have to deal with in a real
observation. You are going to have to make a mental average of the values at each
measurement point. For example, in five seconds, if the numbers are 78, 81, 79, 82, and 78,
we would just estimate the count rate as “80”. Note: the light meter is very sensitive, so
you must keep yourself and your hands well away from the front of the device when making
a measurement (the meter will detect light reflected off of you, making it hard to figure out
what is going on!).

With the room lights turned off, set the desk lamp about two feet in front of the transit
device. Power on the light and the light meter. With no rods in front of the glass disk,
adjust the height and direction of the desk lamp to maximize the number of counts. Make
sure the light bulb in the lamp is at roughly the same height as the round, glass disk in
front of the light meter. One way to do this is move the big planet in front (putting the rod
in the center-most notch) and make sure its shadow hits the center of the glass disk. Move
all of the rods out of the way, and then move the transit device closer to the lamp until it
gives a reading above 200 counts.

Now we are simply going to move each of the three rods (Bare Rod, Small Planet, Large
Planet) into the five notches on the top dowel rod, and write down the average value of the
light meter measurement at each position into Table 11.1. We do this one rod at a time.
Once done, move that rod to the far right side of the dowel rod to start the process for the
next rod. The rods may swing around a bit, just let them stop moving, back away from the
front of the device, and take your measurement. It sometimes takes a few seconds for the
light meter to settle to the correct value, so give it a few seconds, and then make a
estimate of the average light value at this position. Note: if you accidently bump the lamp
or transit device you have to start over! Small changes in the separation or lamp height
will result in bad data.

Now we have to account for the dimming effect of the rod. First, add the bare rod
measurements at positions #1 and #5 together and divide by 2 to create the average
unobscured value. Now, in the column labeled “δ”, fill in the differences between the
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Table 11.1: Exoplanet Transit Data
Position Bare Rod δ Small P. S.P.+δ Large P. L.P.+δ

#1 0.0
#2
#3
#4
#5 0.0

average unobscured value you just calculated, and your bare rod measurements at positions
2 through 4 (δ = Ave. − #2, etc.). Then in columns 5 (S.P. + δ) and 7 (L.P. + δ), add
the value in column 3 to the measurements in columns 4 and 6, respectively for all five
measurements [obviously, you add the value of δ at position #2 to the value of Small P. at
position #2 to get the value of (S.P. + δ) at position #2]. (14 points)

Making Light Curves
Now we want to plot the data in Table 11.1 to make a light curve for our two planets. Plot
your data on the graph paper in the next two windows. We have filled-in the X axis with
notation for the five positions you measured. You will have to put values on the Y axis
that allow the entire light curve to be plotted. For example if the unobscured value was
near 285 (positions #1 or #5), the top Y axis grid line might be set to 300. If the value at
position #3 was 223, the bottom of the Y axis could have a value of 200. It depends on
your light meter, and how bright the light source was. You will have to decide how to label
the Y axis! Plot the data for both planets in Figures 11.4 and 11.5. (8 points).
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Figure 11.4: The light curve of the transit of the small planet.

Figure 11.5: The light curve of the transit of the large planet.

11.3.1 Real exoplanet transits

Now that we have seen how one might observe a real exoplanet transit, and construct its
light curve. We now want to examine how hard this really is. You probably have already
found the dimming signal due to the small planet was quite small. Let’s calculate how much
the light dimmed in our simulations so we can compare them to real exoplanet transits. First
we need to find the difference between the unobscured value, and the value at position #3
for both planets: (2 points)
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Total dimming small planet = (Position #1) − (Position #3) = counts

Total dimming large planet = (Position #1) − (Position #3) = counts

Now let’s put this in the fractional amount of dimming (“∆F/F”):

Fractional dimming small planet = (Total dimming small planet)/(Position #1) =

Fractional dimming large planet = (Total dimming large planet)/(Position #1) =

How does this compare to the real world? You actually already calculated the percent dim-
ming for the Earth and Jupiter in Exercise #2. In that exercise we calculated the ratio of
the areas of the planets relative to the Sun—this ratio is in fact how much the light from the
Sun would dim (in fractional terms) when the Earth or Jupiter transited it as seen from a
very distant point in space (or as some alien would measure watching those crazy exoplanets
transit the star we call the Sun!).

Questions:

1) Compare the percent dimming of our simulated exoplanets to the values for the Earth
and Jupiter found in Exercise #2. Was our simulation very realistic? (2 points)

2) Let’s imagine an alien pointed their telescope at our Sun to watch a transit of the Earth.
If his light meter was measuring 25,000 counts from the Sun before the Earth transited
(i.e., Point #1), what would it read at mid-transit (i.e., Point #3)? Show your math.
[Hint: remember the dimming is very small, so the mid-transit number will be very close to
the unobscured value.] (2 points)
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As you have now seen, detecting planets around other stars is very hard. The amount of
dimming during a transit is only about 1% for a Jupiter-sized exoplanet that orbits another
star. To make such high precision measurements, especially to see Earth-sized planets, re-
quires us to get above the Earth’s atmosphere and use special detectors that have very low
noise. Note that we also have to observe for a very long time—the Earth only has one transit
per year! Jupiter would have one every 12 years! These events only last a few hours, so
we also have to observe the star continuously so we do not miss the transit. This requires
a dedicated instrument, and this need was the genesis of the Kepler mission launched by
NASA several years ago. Kepler detected over 1,000 transiting exoplanets during its four
year mission. Unfortunately, Kepler is no longer fully functional, and it will not be able to
continue searching for Earth-like planets.

Before we leave the subject of transits behind, we want to talk a little more about how
we can use light curves to get actual information on the exoplanet. In Figure 11.6 is plotted
an exoplanet transit and light curve, with all of the math (scary, eh?) that needs to be taken
into account to decipher exactly what is going on (actually the math is not real scary, as it
is derived from Kepler’s laws). In the preceding we have assumed that the planet crosses
the center of the star—but this almost never happens. The orbit is tilted a little bit, so
the transit path is shortened. There are ways to figure all of this out, as demonstrated by
the many math equations in this figure. But we want to focus your attention on the most
important result that a transit tells you: the radius of the exoplanet. In the top corner of
Figure 11.6 there is a simple equation: ∆F/F = (Rp/R∗)

2. As we have calculated above,
the depth of the eclipse, ∆F/F, allows you to determine the radius of an exoplanet. As all
of the math in this figure shows you, if you can estimate the stellar parameters (R∗, M∗),
you can also determine other characteristics of the exoplanet orbit (semi-major axis, orbital
inclination). It is fairly simple to estimate R∗ and M∗. In fact, if we measure the period of
the orbiting planet, we can measure the mass of the host star using Kepler’s laws (the P2

= 4π2/GM∗ equation). Thus observing transits provides much insight into the nature of an
exoplanet, its orbit, and the host star.

11.4 Exoplanet Detection by Radial Velocity Variations

The final method we are going to investigate today, the technique of radial velocity vari-
ations, is the most difficult to understand as we have to talk about “center of mass”, the
Doppler effect, and spectroscopy. You have probably heard about all three of these during
the lectures over this past semester, but we are sure you need to have a review of these topics.

You are certainly aware of the concept center of mass, even if you never knew what it
was called. Take the pencil or pen that you have with you today and try to balance it across
the tip of your finger. The point on the pencil/pen where it balances on your finger tip is
its center of mass. A teeter totter is another good way to envision the center of mass. If a
small kid and a big kid are playing on the teeter totter, the balance is not good, and it is
hard to have fun. You need to either adjust the balance point of the teeter totter, or have
two kids with the same weight use it.
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Figure 11.6: An exoplanet transit light curve (bottom) can provide a useful amount of
information. As we have shown, the most important attribute is the radius of the exoplanet.
But if you know the mass and radius of the exoplanet host star, you can determine other
details about the exoplanet’s orbit. As the figure suggests, by observing multiple transits
of an exoplanet, you can actually determine whether it has a moon! This is because the
exoplanet and its moon orbit around the center of mass of the system (“barycenter”), and
thus the planet appears to wobble back and forth relative to the host star. We will discuss
center of mass, and the orbits of stars and exoplanets around the center of mass, in the next
subsection.

A diagram for defining the center of mass for two objects with different masses is shown
in Figure 11.7. If the two objects had the same mass, the center of mass would be halfway
between them. If one object has a much bigger mass, than the center of mass will be located
closer to it. You have a device today that clearly demonstrates this type of system.

Figure 11.7: Center of mass, “xCM”, for two objects that have unequal masses. The center
of mass can be thought as being the point where the system would balance on a “fulcrum”
if connected by a rod.

Exercise #4: Defining the Center of Mass for a Two Body System

As part of the materials for today’s lab, you were given a center of mass demonstrator. It
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consists of a large black mass connected to a small white mass by a long rod. There is also
a wooden handle with a small pin at one end.

Remove the wooden handle from the long rod. Using the meter stick, estimate the length
of the entire device, from the center of the black sphere (we will call it “M1”), to the
center of the white sphere (“M2”). What is this number in cm? (1 point):

Ok, now find the halfway point from the center of one ball to the next. You need to divide
the length you just measured by two, and measure in from one of the balls and note its
location (if necessary, use a piece of tape). Is there a hole there? If you try to balance the
device on the tip of your finger at this center point/hole, what happens? (2 points)

Now put the device on the tip of your finger and find the balance point of the device.
There is also a hole there. Use the meter stick to estimate (and write down) the distance
between the center of the black ball to this point (we will call this “X1”), and the distance
between the center of the white ball and this point (we will call this “X2”). This exercise is
best done by two people. (2 points)

X1 = cm

X2 = cm

This spot on the rod is “the center of mass”. The center of mass point is important, as it
allows us to determine the “mass ratio”, and if we know the mass of one of the objects, we
can figure out the mass of the other object. The equation for center of mass is this:

M1X1 = M2X2

and the mass ratio is:

M1/M2 = X2/X1

Determine the mass ratio for the center of mass device. (2 points)

M1/M2 =

If M1 = 250 grams, what is the mass of M2? (2 points)
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M2 = grams

Now that we have explored the concept of center of mass, let’s see how it applies to objects
that orbit each other. Inserting the pin on the wooden handle into the center point of the
rod (not the center of mass hole!), hold the wooden handle and try to spin the device
(watch your head!). Now, move the wooden handle to the center of mass hole. Spin the
device. Explain what happened at both locations: (2 points)

Any two objects in orbit around each other actually orbit the center of mass of the system.
This is diagrammed in Figure 11.81. Thus, the Earth and Sun orbit each other around their
center of mass, and Jupiter and the Sun orbit each other around their center of mass, etc.
In fact, the motion of the Sun is a complex combination of the orbits of all of the planets in
our solar system. For now, we are going to ignore the other planets, and figure out where
the center of mass is for the Sun−Earth system.

The Sun has a mass of MSun = 2.0 × 1030 kg, while the Earth has a mass of MEarth = 6.0 ×
1024 kg. We will save you some math and just tell you that the approximate mass ratio is:

MSun/MEarth = 330,000

To determine where the center of mass is for the Earth-Sun system, we have to do a little
bit of algebra. Remember that the mean distance between the Earth and the Sun is 1 AU.
Thus, using our notation from above:

1 AU = X1 + X2

Therefore,

1An animation of this can be found at http://astronomy.nmsu.edu/tharriso/ast105/Orbit3.gif

174



Figure 11.8: If two stars are orbiting around each other, or a planet is orbiting a star, they
both actually orbit the center of mass. If the two objects have the same mass, the center of
mass is exactly halfway between the two objects. Otherwise, the orbits have different sizes.

X1 = 1 AU − X2 (Equation #1)

Does that make sense to you? X1 and X2 are the distance from the Sun to the center of
mass, and the Earth to the center of mass, respectively. As the center of mass demonstration
device shows you, the center of mass is located somewhere on the line that connects the two
objects. Thus, X1 + X2 = distance between the two masses. For the Earth and Sun, X1 +
X2 = 1 AU. Now, going back to our center of mass equation:

M1X1 = M2X2 (Equation #2)

We can substitute the result for X1 in equation #1 into Equation #2:

M1(1 AU − X2) = M2X2 (Equation #3)

Dividing both sides of Equation #3 by M1 gives:

1 AU − X2 = (M2/M1)X2 (Equation #4)

But (M2/M1) = 1/330,000 for the Earth-Sun system, and now we can solve to find X2:

1 AU = (M2/M1)X2 + X2 = (1/330,000 + 1)X2
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Thus,

X2 = 1.0/(1 + 1/330,000) = 0.999997 AU

Essentially, the Earth is 1 AU from the center of mass, how far away is the Sun from the
Earth-Sun center of mass? Go back to equation #1:

X1 = 1 − 0.999997 = 0.000003 AU

The Sun is very close to the center of mass of the Earth-Sun system.

Exercise #5: Determining the Size and Velocity of the Sun’s “Reflex Motion”

We are going to calculate the size of the Sun’s orbit around the center of mass for the
Sun-Earth system, and then determine how fast the Sun is actually moving. The motion of
the Sun (or any star) due to an orbiting planet is called the “reflex motion.” Like the name
suggests, it is the response of the star to the gravitational pull of the planet. Since AU per
year is not a normal unit with which to measure velocity, we need to convert the numbers
we have just calculated to something more useful.

1 AU = 149,597,871 km. How far from the center of mass is the Sun in km? (1 point):

X1 (km) = X1 (AU) × 149,597,871 (km/AU) = km

Hopefully, you noticed how the units of length canceled in the last equation.

So, we now have the distance of the Sun from the center of mass. Note that this number
puts the center of mass of the Earth-Sun system well inside the Sun (actually very close to
its core). We now want to figure out what the length of the orbit is that the Sun executes
over one year (remember, the Earth takes one year to orbit the Sun, so the “orbital period”
of the Sun around the Earth-Sun center of mass will be one year). Referring back to the
center of mass device, if you put the handle in the center of mass hole and spin the system,
what path do the masses trace? That’s right, a circle. Do you remember how to calculate
the circumference of a circle? C = 2πR, where R is the radius of the circle and π = 3.14.

What is the circumference of the orbit circle (in km) that is traced-out by the Sun? (2
points):

This is how far the Sun travels each year, thus we can turn this into a velocity (km/hr =
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kph) by dividing the distance traveled (in km) by the number of hours in a year. Show
your math (2 points):

VSun (km/hr) = C (km) ÷ (# hours in year) = ???

1) Comment on the size of the reflex velocity (VSun) of the Sun. Note that the Earth
travels much, much further during the year, so its velocity is much, much higher: 107,000
km/hr! (3 points):

Because all of the math above involved simple, “linear” equations, we can quickly estimate
the reflex velocity of the Sun if we replaced the Earth by something more massive. For
example, if we put an object with 10 Earth masses in an orbit with R = 1 AU, the reflex
velocity of the Sun would be 10 times that which you just calculated for the Earth.

2) Jupiter has a mass that is 318 times that of the Earth. If Jupiter orbited the Sun at 1
AU, what would the reflex velocity of the Sun be? (2 points):

Since Jupiter is at 5.2 AU, and its orbital period is 11.9 yr, the reflex motion of Jupiter is
actually: VJupiter = 318 × VEarth × 5.2 ÷ 11.9 ≈ 45 km/hr.

Exercise #6: Understanding the Sizes of the Reflex Motions
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For the final exercise of today’s lab, we want to demonstrate how big these reflex motions
are by comparing them to the velocities that you can generate. To do so, we are going to be
using radar guns just like those used by the police to catch speeders. These devices are very
expensive, so please be extremely careful with them. The radar guns are a bit technical to
set-up, so your TA will put them in the correct mode for measuring velocities in km/hr.

Your lab group should head out of the classroom, and into the hallway (or outside) to get a
long enough path to execute this part of the lab. The idea is to have one of the lab
members move down the hallway, and act as the “speeding car”. Note that if there are
other people moving around in the hallway, the radar gun might get a confusing signal and
not read correctly. So, make sure only one person is moving when doing this.

1) One lab member hold the radar gun, have another lab member walk towards the radar
gun. Hold down the trigger a few seconds and then let go. Do this several times to get a
good reading. What is the average velocity of the walking speed of this lab member? (2
points):

2) Now, we are going to measure the running speed. BE CAREFUL!. Have everyone
participate, and see who can run the fastest. What are the velocities for the various lab
members? (2 points):

3) Compare your walking and running velocities to the Sun’s reflex velocity caused by the
Earth that you calculated above. How massive a planet (in Earth masses) would it take to
get your walking reflex motion to be executed by the Sun? How about your running reflex
motion? (5 points).
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11.5 Radial Velocity and the Doppler Effect

Earlier we called this final exoplanet discovery technique “the radial velocity” method. What
do we mean by this term? The radial velocity is a measurement of how fast something is
coming towards you, or going away from you. If an object is moving across your line of
sight (like the cars on the road as you wait to cross a street at the pedestrian crossing), it
has no radial velocity (formally, they would have a “tangential velocity” only). If we were
an alien watching the Sun, the Sun would sometimes have a radial velocity coming towards
us (normally defined to be a negative number), and a radial velocity going away from us
(normally defined as a positive number), due to the reflex motions imparted on it by the
planets in our solar system. This gives rise to something called a “radial velocity curve.”

So how do we detect the radial velocity of a star? We use something called the Doppler
effect. The Doppler effect is the change in frequency of a sound or light wave due to motion
of the source. Think of an ambulance. When the ambulance is coming towards you, the
siren has a high pitch. As it passes by you, the pitch drops (for audio examples, go here:
http://www.soundsnap.com/search/audio/doppler/score?page=1”). This is shown in Fig-
ure 11.9. The radar guns you just used emit microwaves that are Doppler shifted by moving
objects. Stars are too far away to use radar. Fortunately, the same process happens with all
types of electromagnetic radiation. Astronomers use visible light to search for Exoplanets.
In a source coming towards us the light waves get compressed to higher frequency. When
it is receding the light waves are stretched to lower frequency. Compressing the frequency
of light adds energy, so it “blueshifts” the light. Lowering the frequency removes energy, so
it “redshifts” the light. For an object orbiting the center of mass, sometimes the light is
blueshifted (at point #4 in Figure 11.10), sometimes it is redshifted (at point #2 in Figure
11.10).

Figure 11.9: For a stationary vehicle emitting sound, there is no Doppler effect. As the
vehicle begins to move, however, the sound is compressed in the direction it is moving, and
stretched-out in the opposite direction.

This is how astronomers discover exoplanets, they monitor the spectrum of a star and look
for a changing radial velocity like that shown in Figure 11.10. What they see is that the
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Figure 11.10: A radial velocity curve (left) for a planet with a one year orbit like Earth, but
that imparts a reflex velocity of 1.5 km/hr on its host star. When the motion is directly away
from us, #2, we have the maximum amount of positive radial velocity. When the motion
of the object is directly towards us, #4, we have the maximum negative radial velocity. At
points #1 and #3, the object is not coming towards us, or going away from us, thus its
radial velocity is 0 km/hr. The orbit of the object around the center of mass (“X”) is shown
in the right hand panel, where the observer is at the bottom of the diagram. The numbered
points represent the same places in the orbit in both panels.

absorption lines in the spectrum of the exoplanet host star shift back and forth, red to blue
to red to blue. Measuring the shift gives them the velocity. Measuring the time it takes to
go from maximum blueshift to maximum redshift and back to maximum blueshift, is the
exoplanet’s orbital period. Remember, the exoplanet is too faint to detect directly, it is only
the reflex velocity of the host star that can be observed. And, now you should understand
how we measure the mass of the exoplanet. The amount of reflex velocity is directly related
to the mass of the exoplanet and the size of its orbit. We can use the orbital period and
Kepler’s laws to figure out the size of the exoplanet’s orbit. We then measure the radial
velocity curve, and if we can estimate the host star’s mass, we can directly measure the mass
of the exoplanet using the techniques you have learned today.

Here is how it is done. To determine the mass of an exoplanet, we first must figure out
the semi-major axis of its orbit (for the Earth, the semi-major axis = R = 1 AU). We return
to Kepler’s laws:
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R3 =
GMstar

4π2
P 2 (Equation #5)

In this equation, “G” is the gravitational constant. P is the orbital period. In physics
equations like these, the system of units used must be the same for each parameter. Such
as centimeter-gram-second, or meter-kilogram-second. We call these the “‘cgs” and “mks”
systems, respectively. You cannot mix and match. Thus, there have to be two flavors of G
for this equation: Gcgs = 6.67 × 10−8, and Gmks = 6.67 × 10−11. The equation above is just
Kepler’s third law P2 ∝ a3 you learned about at the beginning of the semester. What Isaac
Newton did was figure out what is needed to change the “∝” into the “=” sign. If we know
“R” and the exoplanet host star mass (Mstar) we can figure out the exoplanet’s mass. So
using equation #5 above, we find R. Since we know the orbital period (P), we can estimate
the exoplanet’s orbital velocity:

Vpl =
2πR

P
(Equation #6)

The mass of the planet is simply:

Mpl =
MstarVstar

Vpl

In this equation Vstar is the host star reflex velocity like those we calculated above for
the Earth-Sun, and Jupiter-Sun systems. The biggest unknown when making such mass
measurements is estimating the host star mass. There are ways to do this, but they are
beyond the scope of today’s lab. We will use these equations in the take-home part of this
lab, so make sure you understand what is going on here before leaving today.
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Date:

11.5.1 Possible Quiz Questions

1) What is an Exoplanet?
2) Name one of the techniques used to find Exoplanets
3) Why are Exoplanets so hard to discover?

11.5.2 Extra Credit (make sure you get permission from your TA before at-
tempting, 5 points)

Using the web, search for an article on an “Earth-like exoplanet” and write a one page
discussion of this object, and what makes it “Earth-like”. Note that there are quite a few
such objects, just pick the one you find most interesting (and one that has sufficient discussion
to allow you to write a short paper).
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Name: Date: 
Team Number: 

Discovering Exoplanets Take Home (35 points total) 
1. About how many exoplanets have been found to date? What method has detected the 

most exoplanets? ​(4 pts) 

 

 

2. Describe two methods of detecting exoplanets (we talked about 3 in lab: Direct Imaging, 
Transits, and Radial Velocity). Describe how your chosen methods work, discuss we can 
learn about an exoplanet from it, and challenges associated with your selected method. 
Answer these questions in the table below. ​(2 pts per answer) 

 Method 1 Method 2 

What is the name of the 
method? 

  

How does this method 
work? 

  

What can you learn 
about an exoplanet if you 
observe it with this 
method? 

  

What are some 
challenges associated 
with detecting exoplanets 
with this method? 

  

 

3. Choose one exoplanetary system to research. Briefly describe the system (how many 
planets, are they earth-like or Jupiter-like, what kind of star do they orbit around), and 
mention how the planets were detected. Answer these question in the table below. ​(3pts 
per answer) 

a. Here are a few of our favorite systems, if you need ideas (but you are not limited 
to these!): 

i. TRAPPIST-1, which is a nearby solar system of 7 planets that could be 
habitable! 

Page 1 
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ii. Proxima Centauri, the closest star to the Sun, which was recently 
discovered to have a planet 

iii. Kepler 16-B, which includes a exoplanet orbiting around a two-star binary 
system (like Tatooine from Star Wars) 

Name of your exoplanetary system:  

How many Planets are there:  

What type of planet(s) do they have:  

What type of star are they orbiting:  

How were the planets detected:  

 

 

Page 2 
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12 Introduction to the Geology of the Terrestrial Plan-

ets

12.1 Introduction

There are two main families of planets in our solar system: the Terrestrial planets (Earth,
Mercury, Venus, and Mars), and the Jovian Planets (Jupiter, Saturn, Uranus, and Neptune).
The terrestrial planets are rocky planets that have properties similar to that of the Earth.
While the Jovian planets are giant balls of gas. Table 12.1 summarizes the main properties
of the planets in our solar system (Pluto is an oddball planet that does not fall into either
categories, sharing many properties with the “Kuiper belt” objects discussed in the “Comet
Lab”).

Table 12.1: The Properties of the Planets

Planet Mass Radius Density
(Earth Masses) (Earth Radii) gm/cm3

Mercury 0.055 0.38 5.5
Venus 0.815 0.95 5.2
Earth 1.000 1.00 5.5
Mars 0.107 0.53 3.9

Jupiter 318 10.8 1.4
Saturn 95 9.0 0.7
Uranus 14.5 3.93 1.3

Neptune 17.2 3.87 1.6
Pluto 0.002 0.178 2.1

It is clear from Table 12.1 that the nine planets in our solar system span a consider-
able range in sizes and masses. For example, the Earth has 18 times the mass of Mercury,
while Jupiter has 318 times the mass of the Earth. But the separation of the planets into
Terrestrial and Jovian is not based on their masses or physical sizes, it is based on their
densities (the last column in the table). What is density? Density is simply the mass of an
object divided by its volume: M/V. In the metric system, the density of water is set to 1.00
gm/cm3. Densities for some materials you are familiar with can be found in Table 12.2.

If we examine the first table we see that the terrestrial planets all have higher densities
than the Jovian planets. Mercury, Venus and Earth have densities above 5 gm/cm3, while
Mars has a slightly lower density (∼ 4 gm/cm3). The Jovian planets have densities very close
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Table 12.2: The Densities of Common Materials

Element or Density Element Density
Molecule gm/cm3 gm/cm3

Water 1.0 Carbon 2.3
Aluminum 2.7 Silicon 2.3

Iron 7.9 Lead 11.3
Gold 19.3 Uranium 19.1

to that of water–in fact, the mean density of Saturn is lower than that of water! The density
of a planet gives us clues about its composition. If we look at the table of densities for com-
mon materials, we see that the mean densities of the terrestrial planets are about halfway
between those of silicon and iron. Both of these elements are highly abundant throughout
the Earth, and thus we can postulate that the terrestrial planets are mostly composed of
iron, silicon, with additional elements like carbon, oxygen, aluminum and magnesium. The
Jovian planets, however, must be mostly composed of lighter elements, such as hydrogen and
helium. In fact, the Jovian planets have similar densities to that of the Sun: 1.4 gm/cm3.
The Sun is 70% hydrogen, and 28% helium. Except for small, rocky cores, the Jovian planets
are almost nothing but hydrogen and helium.

The terrestrial planets share other properties, for example they all rotate much more
slowly than the Jovian planets. They also have much thinner atmospheres than the Jovian
planets (which are almost all atmosphere!). Today we want to investigate the geologies of the
terrestrial planets to see if we can find other similarities, or identify interesting differences.

12.2 Topographic Map Projections

In the first part of this lab we will take a look at images and maps of the surfaces of the
terrestrial planets for comparison. But before we do so, we must talk about what you will
be viewing, and how these maps/images were produced. As you probably know, 75% of the
Earth’s surface is covered by oceans, thus a picture of the Earth from space does not show
very much of the actual rocky surface (the “crust” of the Earth). With modern techniques
(sonar, radar, etc.) it is possible to reconstruct the true shape and structure of a planet’s
rocky surface, whether it is covered in water, or by very thick clouds (as is the case for
Venus). Such maps of the “relief” of the surface of a planet are called topographic maps.
These maps usually color code, or have contours, showing the highs and lows of the surface
elevations. Regions of constant elevation above (or below) sea level all will have the same
color. This way, large structures such as mountain ranges, or ocean basins, stand out very
clearly.

There are several ways to present topographic maps, and you will see two versions today.
One type of map is an attempt at a 3D visualization that keeps the relative sizes of the
continents in correct proportion (see Figure 12.1, below). But such maps only allow you to
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see a small part of a spherical planet in any one plot. More commonly, the entire surface of
the planet is presented as a rectangular map as shown in Figure 12.2. Because the surface
of a sphere cannot be properly represented as a rectangle, the regions near the north and
south poles of a planet end up being highly distorted in this kind of map. So keep this in
mind as you work through the exercises in this lab.

Figure 12.1: A topographic map showing one hemisphere of Earth centered on North Amer-
ica. In this 3D representation the continents are correctly rendered.

Figure 12.2: A topographic map showing the entire surface of the Earth. In this 2D repre-
sentation, the continents are incorrectly rendered. Note that Antarctica (the land mass that
spans the bottom border of this map) is 50% smaller than North America, but here appears
massive. You might also be able to compare the size of Greenland on this map, to that of
the previous map.

12.3 Global Comparisons

In the first part of this lab exercise, you will look at the planets in a global sense, by com-
paring the largest structures on the terrestrial planets. Note that Mercury has recently been
visited by the Messenger spacecraft. Much new data has recently become available, but we
do not yet have the same type of plots for Mercury as we do for the other planets.

Exercise #1: At station #1 you will find images of Mercury, Venus, the Earth, the Moon,
and Mars. The images for Mercury, Venus and the Earth and Moon are in a “false color”
to help emphasize different types of rocks or large-scale structures. The image of Mars,
however, is in “true color”.
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Impact craters can come in a variety of sizes, from tiny little holes, all the way up to the
large “maria” seen on the Moon. Impact craters are usually round.

1. On which of the five objects are large meteorite impact craters obvious? (1 point)

2. Does Venus or the Earth show any signs of large, round maria (like those seen on the
Moon or Mercury)? (1 point)

3. Which planet seems to have the most impact craters? (1 point)

4. Compare the surface of Mercury to the Moon. Are they similar? (3 points)

Mercury is the planet closest to the Sun, so it is the terrestrial planet that gets hit by comets,
asteroids and meteoroids more often than the other planets because the Sun’s gravity tends
to collect small bodies like comets and asteroids. The closer you are to the Sun, the more
of these objects there are in the neighborhood. Over time, most of the largest asteroids on
orbits that intersect those of the other planets have either collided with a planet, or have
been broken into smaller pieces by the gravity of a close approach to a large planet. Thus,
only smaller debris is left over to cause impact craters.

5. Using the above information, make an educated guess on why Mercury does not have as
many large maria as the Moon, even though both objects have been around for the same
amount of time. [Hint: Maria are caused by the impacts of large bodies.] (3 points)
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Mercury and the Moon do not have atmospheres, while Mars has a thin atmosphere. Venus
has the densest atmosphere of the terrestrial planets.

6. Does the presence of an atmosphere appear to reduce the number of impact craters?
Justify your answer. (3 points)

Exercise #2: Global topography of Mercury, Venus, Earth, and Mars. At station #2 you
will find topographic maps of Mercury, Venus, the Earth, and Mars. The data for Mercury
has not been fully published, so we only have topographic maps for about 25% of its
surface. These maps are color-coded to help you determine the highest and lowest parts of
each planet. You can determine the elevation of a color-coded feature on these maps by
using the scale found on each map. [Note that for the Earth and Mars, the scales of these
maps are in meters, for Mercury it is in km (= 1,000 meters), while for Venus it is in
planetary radius! But the scale for Venus is the same as for Mars, so you can use the scale
on the Mars map to examine Venus.]

7. Which planet seems to have the least amount of relief (relief = high and low features)?
(2 points)

8. Which planet seems to have the deepest/lowest regions? (2 points)

9. Which planet seems to have the highest mountains? (2 points)

On both the Venus and Mars topographic maps, the polar regions are plotted as separate
circular maps so as to reduce distortion.
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10. Looking at these polar plots, Mars appears to be a very strange planet. Compare the
elevations of the northern and southern hemispheres of Mars. If Mars had an abundance of
surface water (oceans), what would the planet look like? (3 points)

12.4 Detailed Comparison of the Surfaces of the Terrestrial Plan-
ets

In this section we will compare some of the smaller surface features of the terrestrial planets
using a variety of close-up images. In the following, the images of features on Venus have
been made using radar (because the atmosphere of Venus is so cloudy, we cannot see its
surface). While these images look similar to the pictures for the other planets, they differ
in one major way: in radar, smooth objects reflect the radio waves differently than rough
objects. In the radar images of Venus, the rough areas are “brighter” (whiter) than smooth
areas.

In the Moon lab, there is a discussion on how impact craters form (in case you have
not done that lab, read that discussion). For large impacts, the center of the crater may
“rebound” and produce a central mountain (or several small peaks). Sometimes an impact
is large enough to crack the surface of the planet, and lava flows into the crater filling it up,
and making the floor of the crater smooth. On the Earth, water can also collect in a crater,
while on Mars it might collect large quantities of dust.

Exercise #3: Impact craters on the terrestrial planets. At station #3 you will find
close-up pictures of the surfaces of the terrestrial planets showing impact craters.

11. Compare the impact craters seen on Mercury, Venus, Earth, and Mars. How are they
alike, how are they different? Are central mountain peaks common to craters on all
planets? Of the sets of craters shown, does one planet seem to have more lava-filled craters
than the others? (4 points)
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12. Which planet has the sharpest, roughest, most detailed and complex craters? [Hint:
details include ripples in the nearby surface caused by the crater formation, as well as
numerous small craters caused by large boulders thrown out of the bigger crater. Also
commonly seen are “ejecta blankets” caused by material thrown out of the crater that
settles near its outer edges.] (2 points)

13. Which planet has the smoothest, and least detailed craters? (2 points)

14. What is the main difference between the planet you identified in question #12 and that
in question #13? [Hint: what processes help erode craters?] (2 points)

You have just examined four different craters found on the Earth: Berringer, Wolfe Creek,
Mistastin Lake, and Manicouagan. Because we can visit these craters we can accurately de-
termine when they were formed. Berringer is the youngest crater with an age of 49,000 years.
Wolf Creek is the second youngest at 300,000 years. Mistastin Lake formed 38 million years
ago, while Manicouagan is the oldest, easily identified crater on the surface of the Earth at
200 million years old.
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15. Describe the differences between young and old craters on the Earth. What happens
to these craters over time? (4 points)

12.5 Erosion Processes and Evidence for Water

Geological erosion is the process of the breaking down, or the wearing-away of surface fea-
tures due to a variety of processes. Here we will be concerned with the two main erosion
processes due to the presence of an atmosphere: wind erosion, and water erosion. With
daytime temperatures above 700oF, both Mercury and Venus are too hot to have liquid wa-
ter on their surfaces. In addition, Mercury has no atmosphere to sustain water or a wind.
Interestingly, Venus has a very dense atmosphere, but as far as we can tell, very little wind
erosion occurs at the surface. This is probably due to the incredible pressure at the surface
of Venus due to its dense atmosphere: the atmospheric pressure at the surface of Venus is
90 times that at the surface of the Earth–it is like being 1 km below the surface of an Earth
ocean! Thus, it is probably hard for strong winds to blow near the surface, and there are
probably only gentle winds found there, and these do not seriously erode surface features.
This is not true for the Earth or Mars.

On the surface of the Earth it is easy to see the effects of erosion by wind. For residents
of New Mexico, we often have dust storms in the spring. During these events, dust is carried
by the wind, and it can erode (“sandblast”) any surface it encounters, including rocks, boul-
ders and mountains. Dust can also collect in cracks, arroyos, valleys, craters, or other low,
protected regions. In some places, such as at the White Sands National Monument, large
fields of sand dunes are created by wind-blown dust and sand. On the Earth, most large
dune fields are located in arid regions.

Exercise #4: Evidence for wind blown sand and dust on Earth and Mars. At station #4
you will find some pictures of the Earth and Mars highlighting dune fields.
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16. Do the sand dunes of Earth and Mars appear to be very different? Do you think you
could tell them apart in black and white photos? Given that the atmosphere of Mars is
only 1% of the Earth’s, what does the presence of sand dunes tell you about the winds on
Mars? (3 points)

Exercise #5: Looking for evidence of water on Mars. In this exercise, we will closely
examine geological features on Earth caused by the erosion action of water. We will then
compare these to similar features found on Mars. The photos are found at Station #5.

As you know, water tries to flow “down hill”, constantly seeking the lowest elevation. On
Earth most rivers eventually flow into one of the oceans. In arid regions, however,
sometimes the river dries up before reaching the ocean, or it ends in a shallow lake that has
no outlet to the sea. In the process of flowing down hill, water carves channels that have
fairly unique shapes. A large river usually has an extensive, and complex drainage pattern.

17. The drainage pattern for streams and rivers on Earth has been termed “dendritic”,
which means “tree-like”. In the first photo at this station (#23) is a dendritic drainage
pattern for a region in Yemen. Why was the term dendritic used to describe such drainage
patterns? Describe how this pattern is formed. (3 points)

18. The next photo (#24) is a picture of a sediment-rich river (note the brown water)
entering a rather broad and flat region where it becomes shallow and spreads out. Describe
the shapes of the “islands” formed by this river. (3 points)
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In the next photo (#25) is a picture of the northern part of the Nile river as it passes
through Egypt. The Nile is 4,184 miles from its source to its mouth on the Mediterranean
sea. It is formed in the highlands of Uganda and flows North, down hill to the Mediterranean.
Most of Egypt is a very dry country, and there are no major rivers that flow into the Nile,
thus there is no dendritic-like pattern to the Nile in Egypt. [Note that in this image of the
Nile, there are several obvious dams that have created lakes and reservoirs.]

19. Describe what you see in this image from Mars (Photo #26). (2 points)

20. What is going on in this photo (#27)? How were these features formed? Why do the
small craters not show the same sort of “teardrop” shapes? (2 points)

21. Here are some additional images of features on Mars. The second one (Photo #29) is a
close-up of the region delineated by the white box seen in Photo #28. Compare these to
the Nile. (2 points)

22. While Mars is dry now, what do you conclude about its past? Justify your answer.
What technique can we use to determine when water might have flowed in Mars’ past?
[Hint: see your answer for #20.] (4 points)
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12.6 Volcanoes and Tectonic Activity

While water and wind-driven erosion is important in shaping the surface of a planet, there
are other important events that can act to change the appearance of a planet’s surface:
volcanoes, earthquakes, and plate tectonics. The majority of the volcanic and earthquake
activity on Earth occurs near the boundaries of large slabs of rock called “plates”. As shown
in Figure 12.3, the center of the Earth is very hot, and this heat flows from hot to cold, or
from the center of the Earth to its surface (and into space). This heat transfer sets up a
boiling motion in the semi-molten mantle of the Earth.

As shown in the next figure (Fig. 12.4), in places where the heat rises, we get an up-
welling of material that creates a ridge that forces the plates apart. We also get volcanoes
at these boundaries. In other places, the crust of the Earth is pulled down into the mantle
in what is called a subduction zone. Volcanoes and earthquakes are also common along
subduction zone boundaries. There are other sources of earthquakes and volcanoes which
are not directly associated with plate tectonic activity. For example, the Hawaiian islands
are all volcanoes that have erupted in the middle of the Pacific plate. The crust of the
Pacific plate is thin enough, and there is sufficiently hot material below, to have caused the
volcanic activity which created the chain of islands called Hawaii. In the next exercise we
will examine the other terrestrial planets for evidence of volcanic and plate tectonic activity.

Figure 12.3: A cut away diagram of the structure of the Earth showing the hot core, the
mantle, and the crust. The core of the Earth is very hot, and is composed of both liquid and
solid iron. The mantle is a zone where the rocks are partially melted (“plastic-like”). The
crust is the cold, outer skin of the Earth, and is very thin.

Exercise #6: Using the topographical maps from station #2, we will see if you can
identify evidence for plate tectonics on the Earth. Note that plates have fairly distinct
boundaries, usually long chains of mountains are present where two plates either are sepa-
rating (forming long chains of volcanoes), or where two plates run into each other creating
mountain ranges. Sometimes plates fracture, creating fairly straight lines (sometimes several
parallel features are created). The remaining photos can be found at Station #6.
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Figure 12.4: The escape of the heat from the Earth’s core sets-up a boiling motion in the
mantle. Where material rises to the surface it pushes apart the plates and volcanoes, and
mountain chains are common. Where the material is cooling, it flows downwards (subsides)
back into the mantle pulling down on the plates (“slab-pull’). This is how the large crustal
plates move around on the Earth’s surface.

23. Identify and describe several apparent tectonic features on the topographic map of the
Earth. [Hint: North and South America are moving away from Europe and Africa]. (2
points)

24. Now, examine the topographic maps for Mars and Venus (ignoring the grey areas that
are due to a lack of spacecraft data). Do you see any evidence for large scale tectonic
activity on either Mars or Venus? (3 points)

The fact that there is little large-scale tectonic activity present on the surfaces of either
Mars or Venus today does not mean that they never had any geological activity. Let us
examine the volcanoes found on Venus, Earth and Mars. The first set of images contain
views of a number of volcanoes on Earth. Several of these were produced using space-based
radar systems carried aboard the Space Shuttle. In this way, they better match the data for
Venus. There are a variety of types of volcanoes on Earth, but there are two main classes of
large volcanoes: “shield” and “composite”. Shield volcanoes are large, and have very gentle
slopes. They are caused by low-viscosity lava that flows easily. They usually are rather flat
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on top, and often have a large “caldera” (summit crater). Composite volcanoes are more
explosive, smaller, and have steeper sides (and “pointier” tops). Mount St. Helens is one
example of a composite volcano, and is the first picture (Photo #31) at this station (note
that the apparent crater at the top of St. Helens is due to the 1980 eruption that caused
the North side of the volcano to collapse, and the field of devastation that emanates from
there). The next two pictures are also of composite volcanoes while the last three are of the
shield volcanoes Hawaii, Isabela and Miakijima (the last two in 3D).

25. Here are some images of Martian volcanoes (Photos #37 to #41). What one type of
volcano does Mars have? How did you arrive at this answer? (2 points)

26. In the next set (Photos #42 to #44) are some false-color images of Venusian volcanoes.
Among these are both overhead shots, and 3D images. Because Venus was mapped using
radar, we can reconstruct the data to create images as if we were located on, or near, the
surface of Venus. Note, however, that the vertical elevation detail has been exaggerated by a
factor of ten! It might be hard to tell, but Venus is also dominated by one main type of
Volcano, what is it? (5 points)
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12.7 Possible Quiz Questions

1. What are the main differences between Terrestrial and Jovian planets?
2. What is density?
3. How are impact craters formed?
4. What is a topographic map?

12.8 Extra Credit (ask your TA for permission before attempting,
5 points)

Since Mars currently has no large bodies of water, what is probably the most important
erosion process there? How can we tell? What is the best way to observe or monitor this
type of erosion? Researching the images from the several small landers and some of the
orbiting missions, is there strong evidence for this type of erosion? What is that evidence?
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Name: _________________ 
Team Number: __________ 

Geology of Terrestrial Planets Take-Home (35 points total) 
As we have seen, many of the geological features common to the Earth can be found on the other 
terrestrial planets. Each planet has its own peculiar geology. For example, Venus has the greatest number 
of volcanoes of any of the terrestrial planets, while Mars has the biggest volcanoes. Only the Earth has 
active plate tectonics. Mercury appears to have had the least amount of geological activity in the solar 
system and, in this way, is quite similar to the Moon. Mars and the Earth share something that none of the 
other planets in our solar system do: erosion features due to liquid water. This, of course, is why there 
continues to be interest in searching for life (either alive or extinct) on Mars. 
 
1. Describe the surfaces of each of the terrestrial planets, and the most important geological forces that 

have shaped their surfaces. ​(6 points each) 
a. Mercury 

 
 
 
 

b. Venus 
 
 
 
 

c. Earth 
 
 
 
 

d. Mars 
 
 
 
 
2. Consider the four terrestrial planets. 

a. Which one seems to be the least interesting? ​(2 Points) 
 
 

b. Can you think of one or more reasons why this planet is so inactive? ​(4 points) 
 
 
 
3. If you were in charge of searching for life on Mars, where would you want to begin your search? ​(5 

points) 
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13 Apendix A: Algebra Review

Because this is a freshman laboratory, we do not use high-level mathematics. But we do
sometimes encounter a little basic algebra and we need to briefly review the main concepts.
Algebra deals with equations and “unknowns”. Unknowns, or “variables”, are usually rep-
resented as a letter in an equation: y = 3x + 7. In this equation both “x” and “y” are
variables. You do not know what the value of y is until you assign a value to x. For example,
if x = 2, then y = 13 (y = 3×2 + 7 = 13). Here are some additional examples:

y = 5x + 3, if x=1, what is y? Answer: y = 5×1 + 3 = 5 + 3 = 8

q = 3t + 9, if t=5, what is q? Answer: q = 3×5 + 9 = 15 + 9 = 24

y = 5x2 + 3, if x=2, what is y? Answer: y = 5×(22) + 3 = 5×4 + 3 = 20 + 3 = 23

What is y if x = 6 in this equation: y = 3x + 13 =

13.1 Solving for X

These problems were probably easy for you, but what happens when you have this equation:
y = 7x + 14, and you are asked to figure out what x is if y = 21? Let’s do this step by step,
first we re-write the equation:

y = 7x + 14

We now substitute the value of y (y = 21) into the equation:

21 = 7x + 14

Now, if we could get rid of that 14 we could solve this equation! Subtract 14 from both
sides of the equation:

21 − 14 = 7x + 14 − 14 (this gets rid of that pesky 14!)

7 = 7x (divide both sides by 7)

x = 1

Ok, your turn: If you have the equation y = 4x + 16, and y = 8, what is x?
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We frequently encounter more complicated equations, such as y= 3x2 + 2x − 345, or p2 =
a3. There are ways to solve such equations, but that is beyond the scope of our introduction.
However, you do need to be able to solve equations like this: y2 = 3x + 3 (if you are told
what “x” is!). Let’s do this for x = 11:

Copy down the equation again:

y2 = 3x + 3

Substitute x = 11:

y2 = 3×11 + 3 = 33 + 3 = 36

Take the square root of both sides:

(y2)1/2 = (36)1/2

y = 6

Did that make sense? To get rid of the square of a variable you have to take the square
root: (y2)1/2 = y. So to solve for y2, we took the square root of both sides of the equation.
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14 Observatory Worksheets
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