Lab #2: Density

Which is More Massive?

A kilogram of feathers or a kilogram of lead?

Which is More Massive?

A kilogram of feathers or a kilogram of lead?

Answer: Neither! They both have a mass of one kilogram!

In other words, they have the same number of protons and neutrons.

Mass vs. Weight

• Mass and weight are **NOT** the same!

Mass	Weight
Measure of how much stuff is in something	Measure of the amount that gravity pulls on stuff, or the <i>force</i> exerted by gravity on stuff
Has the same value everywhere in the universe	 Value depends on where you are For example, a given object weighs more on the surface of the Earth than it does on the Moon.
Measured in kilograms	Measured in pounds or Newtons

Volume

- Volume is a measure of how much space something takes up
- For example, your textbook has a smaller volume than BX 102

How to Calculate Volume

 For a rectangular, or box-shaped, object, use

Volume = length x width x height

For a sphere, use

Volume = $(4/3) \times \pi \times (radius)^{3}$

- Volume of your textbook
- Length = 27.5 cm
- Width = 21.5 cm
- Height = 2.0 cm
- So

Volume = 27.5 cm x 21.5 cm x 2.0 cm = 1,182.5 cm³

Density

- Measure of how much stuff per unit volume
- Defined as

Density = Mass/Volume

• Has units of g/cm³

- What is the density of your textbook?
- Mass = 3.0 kilograms = ? grams

- What is the density of your textbook?
- Mass = 3.0 kilograms = 3,000 grams

- What is the density of your textbook?
- Mass = 3.0 kilograms = 3,000 grams
- Volume = 1,182.5 cm³
- So

Density = Mass/Volume = 3,000 grams/ 1,182.5 cm³ = 2.54 grams/cm³

Some Densities of Common Materials

Material	Density
Gold	19.3 g/cm ³
Iron	7.5 g/cm ³
Rock	2.5 g/cm ³
Water	1.0 g/cm ³
lce	0.92 g/cm ³
Air	1.3 x 10 ⁻³ g/cm ³
Helium	1.8 x 10 ⁻⁴ g/cm ³

Which is Denser?

• A kilogram of feathers or a kilogram of lead?

Which is Denser?

• A kilogram of feathers or a kilogram of lead?

Answer: Lead

This is because lead has the same amount of mass in a smaller volume.

Lead: 11.4 g/cm^3 Feathers: $2.5 \times 10^{-3} \text{ g/cm}^3$

Volumes of Irregular Objects

- Unfortunately, not all objects are boxes and spheres
- No nice formula
- Use displacement method developed by Archimedes
- Volume of water displaced = volume of object
- 1 milliliter (ml) = 1 cm^3

Additional Information

- Volume of object = (Volume of water after object is added) – (Volume of water before object is added)
- Measure masses using the balances
- For bigger objects, use scale and the formula

Mass = 454 g x [(Your weight with object) – Your weight without object)]